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[1] A variational retrieval method has been implemented to evaluate the possibility of
assimilating rain-affected microwave radiances in an operational weather forecasting
model. The method employs an efficient multiple scattering radiative transfer code and its
tangent-linear and adjoint versions to simulate model state equivalent radiances and their
sensitivities to changes in hydrometeor contents. Profiles of temperature and humidity
together with the ECMWF model convection and cloud schemes are used to produce first-
guess hydrometeor profiles. The hydrometeor error covariance matrix is calculated
from the operational error covariance matrix of temperature and humidity convolved with
both convection and cloud scheme for each profile. A sensitivity study is applied to a
tropical cyclone using data from the TRMM Microwave Imager where large differences
between the first-guess and observed precipitation fields occurred. The study shows that
the approach results in single-column retrievals that compare well with an independent
algorithm. A strong dependence of the analysis on the microwave frequencies chosen as
observations was noted. This was especially the case in areas where some microwave
channels lost their sensitivity to modifications of the profiles due to saturation or where
ambiguous contributions from either cloud droplet absorption or raindrop absorption and
scattering were present. Including all channels at 10.7, 19.35, 21.3, and 37.0 GHz
produced the lowest number of minimization failures. The failures are either due to
strongly non-linear sensitivities of radiances to changes in hydrometeor contents for a
given profile or due to areas where the channel dependent spatial resolution produces
inconsistent observations. INDEX TERMS: 3337 Meteorology and Atmospheric Dynamics:

Numerical modeling and data assimilation; 3354 Meteorology and Atmospheric Dynamics: Precipitation

(1854); 3360 Meteorology and Atmospheric Dynamics: Remote sensing; KEYWORDS: Variational, retrieval,

precipitation, microwave observation
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1. Introduction

[2] The assimilation of satellite derived rain rates in
numerical weather prediction (NWP) models has made
important progress during the last decade due to advances
in data assimilation techniques and the availability of
improved satellite instruments [Treadon, 1997; Hou et al.,
2000; Krishnamurti et al., 2001; Marécal and Mahfouf,
2002]. In particular the variational data assimilation systems
[Parrish and Derber, 1992, Courtier et al., 1994] offer a
unified framework for the assimilation of any type of
observation including spaceborne radiance measurements
and retrieved geophysical products. Also, quantitative pre-
cipitation retrieval has become much more accurate using
new satellite instruments such as the Precipitation Radar
(PR) onboard the Tropical Rainfall Measuring Mission
(TRMM) and the TRMM Microwave Imager (TMI).

[3] Several studies have been carried out at ECMWF to
prepare the variational assimilation of rain information. An
independent one-dimensional variational retrieval (1D-Var)
scheme was implemented using temperature and moisture
profiles as control variables. The ECMWF’s moist physics
package and its Jacobians, i.e., the sensitivity of surface rain
rate to changes in moisture and temperature were used in the
minimization. As observable, only surface rain rate obtained
from TMI data was employed. The analyzed profiles were
then transmitted to the four-dimensional framework as
pseudo-observations [Marécal and Mahfouf, 2002].
[4] The main results from this exercise can be summa-

rized as follows: (1) A positive impact of rain rates
assimilation on both analysis and subsequent forecast
[Marécal and Mahfouf, 2002]. (2) When assimilating rain
rates mainly moisture was affected while temperature
remained almost unchanged [Marécal and Mahfouf, 2002].
(3) Differences between assimilation experiments were
caused by both differences in retrieved rain rates and differ-
ences in the calculation of the associated errors [Marécal et al.,
2002]. (4) Spatial error correlation must be taken into account
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when comparing observed to modelled fields [Bauer et
al., 2002a]. (5) The model’s moist physics package has to
be adapted to reduce non-linearities and to ensure proper
minimization [Marécal and Mahfouf, 2003].
[5] As a consequence of these studies, the 1D-Var assim-

ilation of radiances presents an attractive alternative because
the system would be more independent of algorithm per-
formance and therefore more flexible with respect to the
employed satellite instrument. Additionally, the definition
of observation errors is facilitated because these would
mainly consist of radiometric noise and radiative transfer
modeling errors. Currently, data from the Special Sensor
Microwave/Imager (SSM/I) represents the only passive
microwave imagery observation that is operationally assim-
ilated at ECMWF in terms of radiances while sounder data
from the Advanced Microwave Sounding Unit (AMSU-A)
has been assimilated since 1999. In both cases, the assim-
ilation is restricted to clear-sky areas for improving the
analysis of atmospheric temperature, moisture, and near-
surface wind speed [Bauer et al., 2002b].
[6] In cloud and rain covered areas, Chevallier and Bauer

[2002] have already demonstrated fairly good correspon-
dence of SSM/I radiances from ECMWF model simulations
and SSM/I observations. Chevallier et al. [2002] performed
first single-column variational retrieval exercises using a
limited set of channels from the High-resolution Infrared
Radiation Sounder (HIRS) and AMSU-A to demonstrate the
positive impact of cloud information on the cloud analysis.
This impact was quantified using independent satellite
observations.
[7] To introduce the assimilation of rain affected radiances

(here in terms of blackbody equivalent brightness temper-
atures), tb, a sensitivity study is carried out investigating
the relative response of microwave frequencies to changes
in liquid water and ice concentrations obtained from the
ECMWF model’s cloud and convection schemes using
short-range model forcasted temperature and moisture
profiles. An essential step toward the use of there data in
rain affected areas is the development of an accurate, fast
and linearizable radiative transfer model for the computa-
tion of the model-equivalent rain affected radiances that
includes the effects of scattering of electromagnetic radia-
tion at hydrometeors. This model and the sensitivities of
modelled radiances to changes in hydrometeor contents are
introduced in Section 2. A one-dimensional variational
retrieval scheme for testing the general performance of a
retrieval constrained by the model’s first-guess including
the available combined cloud-radiative transfer model is
presented in Section 3 and tested on a tropical cyclone in
Section 4. Section 5 demonstrates the impact of different
frequency selections on the analysis and Section 6 summa-
rizes the study and describes the prospects for future
assimilation efforts.

2. Microwave Radiative Transfer

2.1. Forward Model

[8] For simulating the radiative transfer in clouds and
precipitation for large data volumes the fast modeling
framework RTTOV [Eyre, 1993; Saunders et al., 2001]
was chosen because it is also used for all clear-sky simu-
lations at ECMWF. RTTOV employs the fast emissivity

model FASTEM-2 [English and Hewison, 1998; Deblonde
and English, 2000] for an ocean surface. Multiple scattering
contributions are implemented through the Eddington
second approximation which has proven to provide sufficient
accuracy [Kummerow, 1993]. Comparison to other models of
various types have shown small differences of less than 1K
over ocean for SSMI or TMI sensor configurations [Smith et
al., 2002; Moreau et al., 2002].
[9] All hydrometeor types, i.e., rain, snow, cloud liquid

water and cloud ice, are modelled as spheres. To increase
numerical efficiency, their optical properties are taken from
pre-calculated look-up tables. Liquid water permittivity is
calculated from the model of Liebe et al. [1989] and ice
permittivity from the model of Hufford [1991]. The Ray-
leigh-approximation is used for the calculation of the optical
properties of cloud liquid water and cloud ice assuming
monodisperse size distributions. Extinction coefficient,
single scattering albedo, and asymmetry parameter of all
precipitating particles are calculated from Mie-theory
assuming exponential size distributions. More details can
be found in Bauer [2001, 2002].

2.2. Tangent-Linear and Adjoint Models

[10] For the purpose of variational retrievals, further
developments are needed to increase the computational
efficiency of the sensitivity calculations. To avoid the
explicit calculation of Jacobians from finite differences of
tb’s between perturbed and reference profiles, the tangent-
linear and the adjoint versions of the forward model are
required. Let x represent the model (control) variables and y
represent the computed brightness temperatures, the radia-
tive transfer model H is:

y ¼ H xð Þ ð1Þ

The tangent-linear model of H, called H, is:

dy ¼ H xð Þdx ¼ @H xð Þ
@x

dx ð2Þ

H computes output perturbations, dy, associated to input
perturbations, dx, assuming a first-order Taylor decomposi-
tion of the direct model H. The computation time of H is
typically about twice as much as that of H. The adjoint
model, HT, is then the transpose of the tangent-linear model
and computes the sensitivities of x to perturbations in y. The
computation of HT is only about three to four times slower
than the the calculation of H. All Jacobians presented here
were calculated with the adjoint of the radiative transfer
model described above.

2.3. Jacobians

[11] A sensitivity study has been carried out to investigate
the relative response of microwave tb’s to changes in cloud/
rain water and ice concentrations based on ECMWF model
data. The model variables are produced from a 3-hour
forecast (using cycle 23R4 of the operational ECMWF
forecast system) with spectral truncation TL511L60
corresponding to �40 km grid resolution and 60 vertical
levels between surface and top of the atmosphere. Tropical
cyclone MITAG located in the Western Pacific on March 5,
2002, was selected. Figure 1 shows the surface rain rates
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from the operational 3-hour forecast and near-surface rain
rates retrieved from TMI data using the algorithm of Bauer
et al. [2001] as well as the position of the cross-section used
in the following investigation.

[12] Hydrometeor concentrations of rain (wr) and cloud
liquid water (wc) as well as snow and cloud ice are shown
Figure 2. Cloud top is located near 16 km and peak near-
surface rain rates reach 5 mm/h (corresponding to about

Figure 1. (a) Surface rain rates mm/h from the operational 3h-forecast and (b) 2-km rain rate retrieved
with the Bauer et al., [2001] algorithm. The dashed line denotes the cross-section shown in Figures 2–5
and Figure 9.
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0.3 gm�3). Between 4 and 10 km substantial snow amounts
are present. The investigated frequencies are at 10.7, 19.35,
21.3/22.235, 37.0 and 85.5 GHz which correspond to those
available from SSM/I and TMI radiometers. The Jacobians
at the above frequencies with respect to rain liquid water are
shown in Figure 3. A variation in rain liquid water content
results in a modification of tb’s depending on the frequency
and on the initial amount of rainwater content. Positive
Jacobians may be due to an increasing emission contribu-
tion from cloud and raindrops. Negative Jacobians may
originate from either an increasing emission above optically
thick clouds reducing the effective emission temperature or
from scattering at large hydrometeors such as raindrops or
frozen precipitation.
[13] In regions of low rainwater content, as for the

structure between 124� and 126� longitude or near the
boundary of the cyclone at 132� longitude, the Jacobians
are positive for frequencies up to 37.0 GHz. They are

related to areas where particle emission is stronger than
scattering. The 37.0 and 19.35 GHz frequencies show the
strongest sensitivity to changes in rain water content. In
regions of large rainwater content, as in center of the
cyclone at longitude 130� or in the center of the second
structure at longitude 127.2� only the 10.7 GHz channel
shows sensitivity to changes in rainwater content, all others
channels being saturated. This suggests the usefulness of
this channel for retrievals in tropical precipitation regimes.
[14] At 37.0 and 85.5 GHz, the Jacobians are negative in

the upper part of the rain structure. Below, these channels
are not sensitive to any changes in water content. The
Jacobians for cloud liquid water are shown in Figure 4.
They show a similar behavior with positive values at all
frequencies. As for rain, the positive sensitivity is due to the
contribution of cloud absorption. Moreover, the Jacobian
amplitudes are similar. This highlights the ambiguity of
contributions from clouds and rain to the observations.

Figure 2. (a) Contents of rain water, (b) cloud liquid water, (c) snow and (d) cloud ice in gm�3.
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Sensitivities to snow contents are shown in Figure 5. An
increase in snow content results in a decrease in tb’s at high
frequencies where scattering of radiation is very efficient.
At lower frequencies, both absorption and scattering by
snow are weak resulting in Jacobians near zero.
[15] From these results it is concluded that channels up to

37.0 GHz appear to be the most useful for the variational

retrieval of precipitation because: (1) they exhibit a signif-
icant sensitivity to rainwater and, (2) they show less
sensitivity to snow. The strong sensitivity to cloud absorp-
tion, however, suggest that cloud and rain contributions to
the total signal are not easily separable. Therefore both must
be part of the control vector. The cross-correlation between
rain and cloud water has to be considered in the background

Figure 3. Jacobians for rain water at (a) 10.7, (b) 19.35, (c) 21.3, (d) 37.0 and (e) 85.5 GHz in K/(gm�3).
Shaded areas denote positive Jacobians.
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error matrix B to properly relate their relation in the 1D-Var
retrieval.

3. Variational retrieval

3.1. 1D-Var Retrieval

[16] Let x be the control vector representing the atmo-
spheric state and y be the observed brightness temperature
vector. The 1D-Var algorithm aims at an optimal balance
between y and x by finding an optimal state xa being

constrained by the observation, the background state and
their errors. Observation and model errors are assumed to be
Gaussian, unbiased, and mutually uncorrelated. The depar-
ture between an observation yo and an a priori model state
xb called background (or first-guess) is measured by an
objective cost function defined as:

J xð Þ ¼ 1

2
x� xb
� �T

B�1 x� xb
� �

þ 1

2
H xð Þ � yoð ÞTR�1 H xð Þ � yoð Þ

ð3Þ

Figure 4. As Figure 3 for cloud liquid water.
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where H is the obervation operator providing the equivalent
of the observation to the model state x. B is the background
error covariance matrix of state xb, and R is the observation
error covariance matrix (including measurement, represen-
tativeness and H errors). Superscripts ‘�1’ and ‘T’ denote
inverses and transposes, repectively. H is the radiative
transfer model described in Section 2. The control vector x
contains vertical profiles of rain and cloud liquid water.

While the relative contribution of temperature and water
vapor profiles as well as surface characteristics contribute
little to the total signal in clouds and precipitation, frozen
hydrometeors should also be part of the control vector. This,
however, was not considered because only frequencies with
little sensitivity to snow were chosen. It was assumed that
this simplification does not cause serious problems unless
higher frequencies (85 GHz and above) are included.

Figure 5. As Figure 3 for snow.
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[17] The minimization of (3) requires the gradient of J(x):

� J xð Þ ¼ B�1 x� xb
� �

þHTR�1 H xð Þ � yoð Þ ð4Þ

where HT is the adjoint operator of the radiative transfer
model. A particular case occurs if there is no rain or cloud
liquid water in an atmospheric layer of the background xb.
In these cases, the derivatives of the radiances with respect
to the control variables are equal to zero and the 1D-Var
algorithm would not be able to create rain or cloud water. To
avoid this limitation, these values in xb are replaced by an
epsilon value that is 10�4gm�3 as in Chevallier et al.
[2002]. The minimization module is a limited memory
quasi-Newton (M1QN3) software developed by Gilbert and
Lemarechal [1989].

3.2. Error Covariance Matrices

[18] The background error covariance matrix, B, defines
error variances and error correlations of the control variables.
Only a few studies have been carried out on the definition of
the error covariances of rain and clouds, i.e., B(wr, wc).
Lopez [2001] estimated the error covariance matrix of rain
and cloud water from the French global model (ARPEGE)
based on the National Meteorological Center (NMC) tech-
nique [Parrish and Derber, 1992]. This is based on a
statistical comparison of forecasts over different time periods
assuming that these differences are representative for the
error covariances. Chevallier et al., [2002] empirically
defined a simple covariance matrix of clouds with rather
large errors and Gaussian correlation patterns.
[19] In this study, an alternative approach has been used

to compute B(wr, wc) that is based on the error covariance
matrix of temperature, t, and humidity, q. B(t,q) is currently
used in the operational assimilation procedure of the
ECMWF model [Rabier et al., 1997]. First, one hundred
perturbed temperature and humidity profiles are generated
with magnitudes corresponding to those of the background
errors contained in B(t, q). The ensemble of perturbed
profiles are then used as input to the moist convective and
large-scale condensation schemes [Tiedtke, 1989; Tiedtke,
1993, Lopez, Tompkins, Janiskova, pers. communication]
for producing an ensemble of perturbed rainwater and cloud
liquid water profiles. From these, B(wr, wc) is calculated at
each grid point.
[20] An example of B(wr, wc) is presented in Figure 6

where it is decomposed into the error correlation matrix and
the standard deviation of rain and cloud water contents.
Rainfall rates below cloud base are rather constant and rain
production is simulated by a diagnostic approach. Therefore
high error correlations occur among rain layers throughout
the rain column which increase with increasing distance to
cloud top (Figure 6a). A more complex structure of cloud
liquid water produces correlations that decrease strongly
with distance to the reference level (Figure 6b). The cloud
layers are strongly correlated with the rain layers below
because of the diagnostic rain generation approach. Close to
cloud base, rain production is reduced and cross-correlation
decreases (Figure 6c). It has to be noted that the cross-
correlation matrices are non-symmetric. Figure 6d shows
that the error standard deviations of both rain water, swr

, and
cloud water, swc

, are proportional to the rain/cloud water
profiles themselves.

[21] A constant observation error covariance matrix R
was defined. It is assumed that there is no correlation
between the channels. The observation error, R, takes into
account errors from different source, i.e., instrumental noise
as well as radiative transfer modeling errors. The accuracy
of the TMI measurements is set to 1K [Hollinger et al.,
1990; Kummerow et al., 1998]. The description of the
modeling errors is more complex. The error component
associated with the inaccurracy of the Eddington second
approximation was quantified from an extensive compari-
son with a multiple-stream model [Moreau et al., 2002].
Those elements originating from uncertainties of the micro-
physical parameterizations and the modeling of cloud-
inhomogeneity can only be roughly estimated [Tassa et
al., 2003]. Therefore rather large errors were assumed, that
is 3 K for all frequencies in vertical polarization and 6 K in
horizontal polarization due to the difference in dynamic
range between the polarizations (see Table 1). In the future,
a more complex approach for a better estimation of obser-
vation errors will be required, in particular for the inclusion
of error correlations. This, however, will require the
employment of three-dimensional Monte Carlo radiative
transfer simulations to estimate the errors due to the
approximations on sub-grid scale variability. The estimation
of errors originating from the assumptions on cloud micro-
physics may also use ensembles of perturbed profiles to
calculate the variance in observation space.

4. Results

[22] For tropical cyclone MITAG, TMI-observations were
co-located with the model grid by choosing the observation
closest to the center of the corresponding model grid box,
respectively. The average temporal difference between
observation and model output was limited to less than one
hour. Only situations where background and/or observation
contained rain were chosen. To classify a situation as rainy
from the observation, a simple test based on the difference
of the observed brightness temperature at 37 GHz at vertical
and horizontal polarization, i.e., tb37v � tb37h < 40 K, was
used. Since the observation operator is non-linear, the
minimization procedure cannot always converge to a unique
solution. For this purpose, another criterion was defined to
accept only those retrievals for which:

Xn

k¼1

tba kð Þ � tbo kð Þ½ �2

3 	 s kð Þ½ �2

 1 ð5Þ

where n is the number of observation and s the standard
deviation of the observation error according to R. In case of
rejection, the analyzed profile is replaced by the back-
ground. These infrequent cases correspond to situations
with very high rain rates in the background where most of
the channels are saturated. These are marked by white
crosses in Figures 7 and 8. The 1D-Var retrievals presented
in this section use TMI tb’s at 19.35 GHz (vertically and
horizontally polarized) and at 21.3 GHz (vertically
polarized) as observations. These channels are denoted
19v, 19h, 21v for the remainder of the paper. This
experiment will be used as the control experiment.
[23] Once the 1D-Var method has been applied to the

background state, that is after the minimization, analyzed

ACL 11 - 8 MOREAU ET AL.: VARIATIONAL PRECIPITATION RETRIEVAL



radiances (tba) are available. The tba are first compared to
the observations (tbo) to verify the good convergence of the
minimization. Table 1 presents both background (tbb � tbb)
and analysis departures (tbo � tba) for the three considered
channels. The background radiances (tbb) are computed
from the background state. For all channels the background
departures are quite large with root-mean-square differences
(errors), rmse s, of 17.2, 33.6 and 9.2 K at 19v, 19h and 21v,
respectively. An efficient 1D-Var retrieval should produce
analyzed radiances close to the TMI observation to the level
of the accuracy of the observations as defined in the R
matrix. The analysis departures are reduced by �80% of the
background departures, with rmse s of 1.8, 6.3 and 2.5 K at
19v, 19h and 21v, respectively. This means that the mini-
mization worked successfully.
[24] Special attention has to be given to the biases

because they are an undesired feature in variational assim-

ilation. Observational biases can be attributed to imperfect
sensor calibration and drift while model biases may origi-
nate from an inadequate physical description of the surface-
atmosphere system as well as biased radiative transfer
modeling. Therefore bias-correction schemes may be
applied to remove the systematic differences between model
generated radiances and observations partly or completely
[e.g., Harris and Kelly, 2001]. In case of cloud and rain
affected radiances, model biases can be expected which are
supposed to be removed by the analysis rather than a bias-
correction. From Table 1 it is evident that the biases are
significant and that after the 1D-Var retrieval thay are
reduced to a third of their first-guess values. The overesti-
mation of rainfall [Chevalier and Bauer, 2003] explains the
negative biases. How the four-dimensional assimilation
would react to a globally systematic reduction of rainfall
and therefore moisture will be the subject of future studies.

Figure 6. (a) Vertical correlation of rain water profile, (b) cloud liquid water profile. (c) Vertical cross-
correlation between cloud liquid and rain water. (d) Profile of errors of rain and cloud liquid water.

Table 1. Control Experiment Statisticsa

19.35 GHz (v) 21.3 GHz (v) 19.35 GHz (h)

bias std rmse bias std rmse bias std rmse

OBS-FG All pts. �5.3 16.4 17.2 �3.3 8.6 9.2 �12.9 31.0 33.6
OBS-AN All pts. �0.3 1.8 1.8 �0.5 2.4 2.5 �4.4 4.5 6.3
OBS-AN wr

a > wr
b 0.8 1.0 1.4 0.6 1.9 2.0 �1.2 2.2 2.5

OBS-AN wr
a < wr

b �0.9 1.7 2.0 �1.2 2.4 2.7 �6.3 4.4 7.7
aOBS, observation; FG, first-guess; AN, analysis; std, standard deviation; rmse, root mean square error; wr

b, background rain
water content; wr

a, analysis rain water content; v/h, vertical/horizontal polarization. All units are in Kelvin.
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[25] The difference in rmse s between 19v and 19h can be
attributed to the greater sensitivity of the horizontally polar-
ized channel to changes in optical depth due to its larger
dynamic range which has been taken into account in the
definition of the observation errors. It has to be noted that the
minimization is successful in cases where: (1) Analyzed
rainwater contents (wr

a) are greater than background rain-

water (wr
a) which means that the algorithm has been able to

increase rain and cloud water contents. In this cases, the
analysis departures are reduced to 1.4 and 2.5 K at 19v and
19h (Table 1). (2) wr

a is lower than wr
b. In this cases, the 1D-

Var retrieval has been able to reduce and possibly switch off
the precipitation. The analysis departures increase but still
remain close to the values specified in R.

Figure 7. Surface rain rates in mm/h (left) and cloud liquid water paths (right) in kg m�2 from (a) the
first-guess and (b) the analysis of the control experiment.
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[26] Background and analyzed integrated rain and cloud
liquid water paths of MITAG are shown in Figure 7. An
obvious feature is the large differences between background
and the analysis fields. The 1D-Var retrieval has therefore
been able (1) to shift the cyclone to the West by several
degrees longitude in the Northern part of the area, (2) to
create a second precipitating structure in the North East part
of the cyclone which was completely missing in the

background, and (3) to remove the major part of the three
rain spots below longitude 129� East.
[27] The analyzed rainwater distribution may be com-

pared to surface rain rates derived from the algorithm of
Bauer et al. [2000] to verify the general agreement of the
rain structures (Figure 1). The cyclone’s location and extent
are very similar between the algorithm and the 1D-Var
analysis. The three detached rain structures in the West of

Figure 7. (continued)
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the storm center that were present in the background are not
retrieved by either algorithm or variational retrieval.

5. Channel Selection

[28] To illustrate the influence of different microwave
channels on the 1D-Var retrieval performance three experi-

ments were carried out adding the 10.7 GHz and 37.0 GHz
channels to those used in the control experiment. As dis-
cussed in Section 2.3, the channels at 19.35 GHz saturate for
high rainwater contents so that there is little or no sensitivity
to rainwater content. This is where the 10.7 GHz channels
will improve the analysis. On the other hand, there is large
sensitivity to cloud liquid water at 37 GHz so that these

Figure 8. Surface rain rates in mm/h (top) and cloud liquid water paths (bottom) in kg m�2 from the
analysis using channels at (a) 10.7, 19.35, and 21.3 GHz, (b) 19.35, 21.3, 37.0 GHz, and (c) 10.7, 19.35,
21.3, 37.0 GHz.
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channels should provide complementary information on
cloud vs. rainwater in the analysis.
[29] Three new experiments were set-up adding either 10v

and 10h (test1), 37v and 37h (test2) or both channel pairs
(test3). As previously, the convergence of the 1D-Var retrieval
for all test experiments was tested and is presented in Table 2.
The background departures are quite large again, with rmse s
that reach 30.5 K at 10h and 40.9 K at 37h indicating the large

difference between the background and the observations. For
all experiments, the analysis departures are of the same order
of magnitude as the observation errors. This demonstrates the
good convergence of the 1D-Varminimizationwith the above
described assumptions on errors and error correlations. By
adding observations, i.e., in test1, test2, and test3, the analysis
departures at 19v,h and 21v slightly increase compared to the
control experiment. This points to the combined effect of

Figure 8. (continued)
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radiative transfer and cloud modeling errors which produces
inconsistencies among channels. The biases behave as for the
control experiment. At 37.0GHz, quite substantial first-guess
biases occur (�11.4 and �24.0 K for the vertical and
horizontal polarization, respectively) indicating that at this
frequency the mismatch between model and observations for
both clouds and light precipitation accumulates.

[30] The surface rain rates and the integrated cloud water
fields for the test experiments are presented in Figure 8. As
in the control experiment (in Figure 7), the analysis shifts
the cyclone and produces a more circular structure. While
these general features are produced by both control and test
experiments, the test experiments exhibit some significant
differences:

Figure 8. (continued)
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[31] . The 10 GHz channels (test1) lead to an increase of
rain and cloud water inside the cyclone and to a slight
decrease of low cloud amounts in the vicinity.
[32] . The 37 GHz channels (test2) slightly decrease the

rain intensity and the cloud amount in the neighborhood of
the cyclone (especially in its North–Eastern part).
[33] . The 10 and 37 GHz channels together (test3) merge

the particular influence of both frequencies by increasing
both rain and cloud in the cyclone and by decreasing the
cloud amount where rain intensities are small.More details
are shown in Figure 9 by vertical cross-sections of rain and
cloud liquid water profiles through the cyclone from the
background, the control and the three test experiments,
respectively. The rain and cloud water structures are similar
in all test experiments and the removal of the convective
cell near 127�E with respect to the control experiment is
evident. The core of the cell near 130.5�E has been shifted
by 0.5� and largely intensified and widened. As described
before, adding more channels influences the intensity of the
rain and cloud water contents in the three test experiments.
In the center of the cyclone (around 130�E) with rainwater
contents of �0.4gm�3 in the control experiment, 19v, 19h
and 21v are saturated, which means that an increases of the
rain or cloud amount will lead only to a very small
modification of the radiances. The addition of 10v and
10h in test1, produces an increase of the rainwater content
to up to 0.6gm�3 in the lower levels. The 37 GHz channels
used in test2 produce a decrease in the amount of cloud and
rainwater, as shown at 128.5� and 133�E. This is consistent
with their sensitivity to cloud water. Adding both 10 and
37 GHz channels (test3), the effect of both frequencies are
combined. An increase of rainwater (as in test1) and a
decrease of cloud water (as in test2) are produced. Interest-
ingly, both channels compensate their effect on cloud water
in the structure located at 70�E. The analyzed cloud water
was decreased by the 10 GHz channels and increased by the
37 GHz channels but their combination produces cloud
water distributions similar to the control experiment. This
demonstrates the usefulness of both frequencies in order to
separate sensitivities to cloud and rain water, that is to
minimize aliasing. It is worth mentioning that test2 was
repeated with SSM/I data and led to the same conclusions as
for TMI data.

[34] A more detailed insight into the limitations of the
presented retrieval is provided by those cases where the
retrieval did not converge during minimization. This occurs
in the control experiment where rather heavy precipitation
and large amounts of cloud water were present in the
background but no clouds in the observation (see spots
near 16�N and 128�E and 12�N and 128�E in Figures 7
and 8). Obviously, 19v, 19h, and 21v are nearly saturated
and show too little sensitivity to eliminate both clouds and
precipitation. This conclusion is supported by the fact that
adding 37v and 37h (Figure 8b) does not change the
situation significantly because both 37v and 37h are satu-
rated as well. However, from test1 already three out of
eleven cases are resolved for which the precipitation reduc-
tion was the major obstacle. It is likely that by adding 85v
and 85h, this number can be further reduced; however, the
observation errors are more difficult to quantify because of
the difference in spatial resolution and the rather uncertain
model ice microphysics.
[35] In test3, all retrievals worked more successfully

indicating that it takes complementary observational infor-
mation on cloud and rainwater as well as a proper treatment
of their inter-dependence by the constraints from the
cloud/convection scheme and background error covariance
matrices. Another case of non-convergence occurs in the
storm center which is always present except in the control
experiment. This is caused by the different spatial resolution
of the TMI channels. The 10.7 GHz channels perform a
spatial smoothing and reduce spatial gradients observed in
the other channels. During minimization the frequency
dependent spatial imaging is transferred into hydrometeor
profile modifications which may cause failures. This can
only be avoided by either convolution of all channels to
the same spatial resolution or by the explicit inclusion of
spatial inhomogeneities in the forward and inverse models
as a function of frequency. The problems associated with
sub-grid scale variability and frequency dependent imaging
will be the subject of a future study.

6. Conclusions

[36] For the first time, a methodology for the varia-
tional retrieval of cloud and precipitation profiles in the

Table 2. 1D-Var Statistics From Background and Analysis for Control and Test Experiments (see text

for details)a

10v 10h 19v 19h 21v 37v 37h

Root Mean Square of the Background Departures tbo � tbb

Background 16.6 30.5 17.2 33.6 9.2 19.7 40.9

Root Mean Square of the Analysis Departures tbo � tba

Test 1 4.3 8.4 2.1 6.0 2.7 – –
Test 2 – – 3.1 6.4 3.0 4.1 7.2
Test 3 4.1 8.1 3.2 6.6 3.1 4.3 7.3 \

Bias/Standard Deviation of Background Departures tbo � tbb

Background �7.1/16.2 �13.8/29.5 �5.1/18.3 �1.3/6.4 �2.8/9.4 �11.4/16.3 �24.0/34.2

Bias/Standard Deviation of Analysis Departures tbo � tbb

Test 1 �3.4/2.7 �6.9/4.9 0.4/2.1 �3.4/4.9 �0.1/2.7 – –
Test 2 – – 1.6/2.7 �1.1/6.3 0.6/3.0 �1.5/3.9 �4.7/5.5
Test 3 �2.8/3.0 �5.9/5.5 1.5/2.8 �1.3/6.4 0.6/3.0 �1.1/4.2 �4.3/5.8

aUnits are in Kelvin.
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context of a numerical weather prediction framework is
presented. This methodology is the basis for future efforts
on assimilation of rain-affected passive microwave bright-
ness temperatures measured by numerous operational

(SSM/I, AMSU) and research (TMI, AMSR) satellite
radiometers.
[37] A numerically efficient radiative transfer model and

its tangent-linear and adjoint versions have been developed

Figure 9. Vertical cross-section (see Figure 2) of rain water (solid lines) and cloud liquid water (dashed
line) profiles from (a) background, (b) control experiment analysis, (c) including 10.7 GHz, (d) including
37.0 GHz, and (e) including 10.7 and 37.0 GHz. All units are in gm�3.
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because computation time is a crucial limitation for an
operational implementation. The retrieval uses a variational
approach that takes as its starting point profiles of temper-
ature and humidity as well as hydrometeor profiles from a
short-range ECMWF model forecast. The minimization is
constrained by the errors associated with the first-guess state
and the observations. The first-guess errors were obtained
from a sensitivity study in which the operational first-guess
errors of temperature and humidity serve as perturbations to
the cloud and convection scheme. With a sufficient number
of perturbations per profile first-guess errors and auto-/cross-
correlations of the hydrometeors can be produced. The
observation errors were estimated from comparisons be-
tween the radiative transfer model and more accurate models
as well as the instrumental noise. The non-linear response of
brightness temperatures to cloud and rain hydrometeor
contents also required the introduction of a convergence
criterion to be applied after termination of the minimization.
[38] The methodology was tested on TMI data over a

tropical cyclone (MITAG) which occurred in the Western
Pacific Ocean on March 5, 2002. The calculation of Jaco-
bians was used to demonstrate the sensitivity of different
microwave frequencies to changes in hydrometeor contents.
The retrieval method was applied using different microwave
channel combinations. It could be shown that the optimum
configuration was obtained by using all lower TMI channels,
that is 10.7, 19.35, 21.3, and 37.0 GHz. In this case, those
profiles where a sub-selection of channels was leading to a
failure in the minimization could be reduced and the differ-
ential sensitivity to clouds and precipitation could be max-
imized. By using either lower frequency (10.7 GHz) or
higher frequency (37.0 GHz) channels a potential for alias-
ing cloud information into the rain analysis (37.0 GHz) or
vice versa (10.7 GHz) was identified. Once all channels were
used, only a single observation lead to a failed minimization.
This was due to the different spatial resolution of the
channels which can cause inconsistent observations. This
problem will have to be further investigated.
[39] At this stage, the retrieval is limited to a one-

dimensional application. However, applied to three-dimen-
sional fields the analyzed rainfall distributions resembled
very closely those from an independent retrieval method.
Despite the large difference between the model’s first-guess
fields and the analysis, the one-dimensional variational
retrieval was able to eliminate and generate precipitation
where there was too much or none in the observations. This
way, the method was capable of ’moving’ precipitation

systems. The new feature of our approach with respect to
conventional methods is to constrain the retrieval with
forecast information, a consistent physical framework for
convection and cloud formation as well as their uncertain-
ties. This was made possible by the implementation of the
numerically efficient radiative transfer modeling system. It
has to be mentioned that there are large systematic model-
observation differences which mainly originate from too
much cloud and precipitation in the model’s first-guess
[Chevalier and Bauer, 2003]. While the 1D-Var assimila-
tion of radiances may correct these differences, their impact
on the 4D-Var framework is not yet known. It is planned
to develop a quality-control scheme that can account for
(1) those observation for which the minimization will most
likely fail and (2) reduce the number of observations to
reduce the biases and therefore facilitate the four-dimen-
sional assimilation of moisture increments.
[40] Open issues are whether the method can be imple-

mented in the four-dimensional variational framework in the
current configuration at ECMWF. For this, temperature and
humidity have to represent the control vector and the
sensitivities of brightness temperatures to hydrometeor
contents and those of hydrometeor contents to temperature
and moisture changes are combined. This requires efficient
linearized models of convection and cloud schemes as well
as their tangent-linear and adjoint versions. The utilization
of a similar approach for precipitation as is used for clear-
sky radiances, i.e., a direct assimilation of radiances with an
incremental formulation [Rabier et al., 2000] would require
the reduction of sources of non-linearities in the minimiza-
tion. This would lead to a reduction of channels at the
expense of sensitivity to both clouds and precipitation.
Following Marécal and Mahfouf [2002] a trade-off may
be found by using a non-linear 1D-Var retrieval (as pre-
sented here) as a pre-processor for the 4D-Var assimilation
system.

[41] Acknowledgments. The authors are grateful to the Numerical
Weather Prediction Satellite Application Facility (NWP-SAF) for support-
ing the work on the fast radiative transfer model and to the European Space
Agency for funding the EuroTRMM-2 project (contract 15418/01/NL/SE)
in which the operational assimilation of rain information at ECMWF is
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