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Abstract. Since September 2014, NASA’s Orbiting Carbon
Observatory-2 (OCO-2) satellite has been taking measure-
ments of reflected solar spectra and using them to infer at-
mospheric carbon dioxide levels. This work provides details
of the OCO-2 retrieval algorithm, versions 7 and 8, used to
derive the column-averaged dry air mole fraction of atmo-
spheric CO2 (XCO2 ) for the roughly 100 000 cloud-free mea-
surements recorded by OCO-2 each day. The algorithm is
based on the Atmospheric Carbon Observations from Space
(ACOS) algorithm which has been applied to observations
from the Greenhouse Gases Observing SATellite (GOSAT)
since 2009, with modifications necessary for OCO-2. Be-
cause high accuracy, better than 0.25 %, is required in or-
der to accurately infer carbon sources and sinks from XCO2 ,
significant errors and regional-scale biases in the measure-
ments must be minimized. We discuss efforts to filter out
poor-quality measurements, and correct the remaining good-
quality measurements to minimize regional-scale biases. Up-
dates to the radiance calibration and retrieval forward model
in version 8 have improved many aspects of the retrieved data
products. The version 8 data appear to have reduced regional-
scale biases overall, and demonstrate a clear improvement
over the version 7 data. In particular, error variance with re-
spect to TCCON was reduced by 20 % over land and 40 %
over ocean between versions 7 and 8, and nadir and glint
observations over land are now more consistent. While this
paper documents the significant improvements in the ACOS
algorithm, it will continue to evolve and improve as the CO2
data record continues to expand.

1 Introduction

Bias-free measurement of atmospheric CO2 concentrations
from space is a long-pursued goal in the carbon cycle com-
munity. Such measurements are critical for inferring sources
and sinks of carbon, and how these sources and sinks change
over time due to both anthropogenic and natural causes (e.g.,
Rayner and O’Brien, 2001; Chevallier et al., 2007; Baker
et al., 2010). The first instrument capable of CO2 measure-
ments from space using the near- and short-wavelength in-
frared was SCIAMACHY, the SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CHartographY (Buch-
witz et al., 2005; Reuter et al., 2011), which operated from
2002 to 2012. This was followed by the first dedicated green-
house gas satellite, the Japanese Greenhouse gases Observ-
ing SATellite (GOSAT), which launched in January 2009
(Yokota et al., 2009). The Orbiting Carbon Observatory-2
(OCO-2) followed on 2 July 2014, with the goal of measuring
the column-averaged dry air mole fraction of carbon diox-
ide (XCO2 ) with sufficient precision and accuracy to enable
greatly enhanced understanding of the surface–atmosphere
exchange of CO2 on regional scales (Crisp et al., 2008; Crisp,
2015). OCO-2 was preceded by the original OCO mission,

which failed due to a launch vehicle malfunction in 2009.
Retrieval algorithms originally developed for OCO (Con-
nor et al., 2008) have been continuously refined since 2009
(O’Dell et al., 2012), by application to data from GOSAT.

XCO2 measurements from the OCO-2 version 7 data prod-
uct (Eldering et al., 2017a) have recently been used to esti-
mate CO2 fluxes from both natural (Liu et al., 2017; Chat-
terjee et al., 2017; Crowell et al., 2018a) and anthropogenic
(Hakkarainen et al., 2016; Schwandner et al., 2017; Nassar
et al., 2017) sources; see Eldering et al. (2017b) for a com-
plete review of these findings. However, XCO2 measurements
must be both extremely accurate and precise in order to accu-
rately determine fluxes (Miller et al., 2007), since fluxes are
determined from small (< 2.5 %) spatial and temporal gradi-
ents in the XCO2 field. Spatially coherent biases in XCO2 on
regional scales as small as a few tenths of a part-per-million
(ppm) in XCO2 can lead to spurious values of inferred fluxes
(Chevallier et al., 2014).

The ACOS algorithm was originally developed for OCO.
It was first applied to GOSAT data in 2009 and has con-
tinuously evolved and improved in the intervening years.
Generally, good error statistics were shown for GOSAT ob-
servations over both land and water, with typical biases
below 1 ppm based on comparisons to both ground-based
(Lindqvist et al., 2015; Kulawik et al., 2016) and aircraft
(Frankenberg et al., 2016) validation data. After the success-
ful launch of OCO-2, the ACOS algorithm was further mod-
ified and tuned for application to the OCO-2 spectra. XCO2

error statistics are similar to those from GOSAT, with rms er-
rors less than 1.5 ppm when compared against most ground-
based Total Carbon Column Observing Network (TCCON,
Wunch et al., 2010) stations (Wunch et al., 2017). How-
ever, Wunch et al. (2017) noted that important biases re-
main, in particular related to latitude, surface properties, and
atmospheric scattering by clouds and aerosols. A particu-
larly troubling bias evident in the Southern Hemisphere mid-
latitude ocean in austral winter had amplitudes as large as
several ppm. This bias was not seen in ACOS retrievals using
GOSAT data, though GOSAT’s ocean glint viewing geome-
try was restricted and could not typically see this far south,
potentially masking the problem.

The primary purpose of this paper is to describe the details
of the ACOS XCO2 retrieval algorithm as applied to OCO-2
data (Gunson and Eldering, 2017), in particular the latest ver-
sion 8 (also referred to as build 8 or B8). Because science
results have already been published with version 7 (also re-
ferred to as build 7 or B7) as discussed above, we also discuss
the differences between versions 7 and 8. This paper is orga-
nized as follows: Sect. 2 discusses prescreening of the data to
remove cloudy and difficult-to-retrieve soundings. Section 3
lists the details of the retrieval algorithm and its evolution
since O’Dell et al. (2012). Section 4 discusses the methodol-
ogy and results of the post-retrieval filtering and bias correc-
tion. Section 5 provides a brief evaluation of XCO2 from both
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Table 1. Prescreening filter criteria.

Category Land criterion Ocean criterion

Successful measurement Sounding_Qual_Flag = 0 Same as land
A-Band preprocessor Cloud_Flag = 0 Same as land
Solar geometry SZA < 85◦ (nadir), < 80◦ (glint) Same as land
IMAP preprocessor 0.985< co2_ratio < 1.045 Same as land
Band 1 SNR SNR1 ≥ 100 Same as land
Band 3 SNR SNR3 ≥ 75 Same as land
Land fraction fland ≥ 80% fland ≤ 20%

Figure 1. Fraction of soundings passing the OCO-2 B8 prescreening filter in December 2015 (a, c) and June 2016 (b, d), for both nadir
mode (a, b) and glint mode (c, d). Starting in November 2015, about one-third of all orbits are performed in nadir mode, and two-thirds are
performed in glint mode.

versions 7 and 8, and the discussion in Sect. 6 concludes the
paper.

2 Data and prescreening

Because only scenes with sufficient signal and nearly de-
void of cloud and aerosol contamination can yield success-
ful XCO2 retrievals, a prescreener is used for OCO-2 sound-
ings before processing by the Level-2 “Full-Physics” (L2FP)
XCO2 retrieval algorithm. Our prescreening module requires
outputs from two fast algorithms, described in detail in Tay-
lor et al. (2016). First, the “A-band Preprocessor” (ABP) per-
forms a fast retrieval of surface pressure using the O2A band
only, assuming that no clouds or aerosols are present. Poor
spectral fits and differences between the retrieved and a pri-
ori surface pressure greater than 25 hPa are used to identify
the presence of cloud or aerosol contamination. Scenes with-

out sufficient signal to noise in the O2A band are skipped al-
together. Second, the “IMAP-DOAS” preprocessor performs
fast, clear-sky fits to the weak and strong CO2 bands at 1.61
and 2.06 µm, respectively. While this preprocessor solves for
a number of variables, the CO2 and H2O columns, which are
fit independently of each of these two bands, are most rele-
vant for cloud screening. From these spectral fits, the strong-
to-weak ratios of the column-integrated CO2 and H2O are
derived. The CO2 ratio must be within a certain range (near
unity) for the scene to be deemed sufficiently clear to warrant
a Full-Physics retrieval. Other screens are used to remove
soundings unlikely to yield successful XCO2 , such as those at
high solar zenith angle or for which the continuum SNR lev-
els are too low. Unlike in version 7 of the OCO-2 algorithm,
there is no explicit screen for snow- and ice-covered surfaces.
However, the surface albedo in the strong CO2 band is low
over snow and ice, and therefore the strong CO2 band SNR
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filter will remove many of those scenes. The full prescreen-
ing criteria for OCO-2 B8 are given in Table 1.

In total, roughly 26 % of land soundings pass our pre-
screener (28 % land nadir, 25 % land glint) and 27 % of ocean
glint soundings pass it as well. Generally these fractions are
strong functions of both location and time of year. To illus-
trate this, the fractions of soundings passing the prescreen-
ing criteria for December 2015 and June 2016 are shown in
Fig. 1. A number of features are observed. A higher frac-
tion of soundings are passed in the tropics than at higher lati-
tudes relative to the sub-solar latitude (∼−23◦ in December
and +23◦ in June), and the passing rates tend to be higher
over bright versus dark surfaces. Also, few soundings survive
over the tropical rainforests in South America and Africa,
which are often cloudy. A significant number of soundings
survive prescreening over the Greenland and Antarctic ice
sheets during their summer season (this was not the case in
version 7), though it is shown later that most of these fail
the post-retrieval quality screening (Sect. 4.2). About 10 %
of nadir soundings over ocean pass the prescreening criteria;
this occurs in regions where the nadir view is relatively close
to the glint geometry, typically near the sub-solar latitude.
These nadir ocean soundings are currently removed by post-
retrieval filtering, as their quality relative to the glint ocean
observations has not yet been evaluated. A final obvious fea-
ture is that fewer soundings are available in nadir mode than
in glint – this is because many orbits over the Atlantic and
Pacific oceans became “full-time” glint-mode orbits begin-
ning in November 2015 (Crisp et al., 2017). Prior to that,
there were equal numbers of nadir and glint orbits, but after
that change, approximately one-third of all orbits are nadir
and two-thirds are glint.

3 The NASA ACOS XCO2 retrieval algorithm as
applied to OCO-2

The original ACOS XCO2 retrieval algorithm over land (ver-
sion 2.9) was described in O’Dell et al. (2012), with details
specific to GOSAT given in Crisp et al. (2012). Details of the
spectroscopy used at that time were published in Thompson
et al. (2012). In this section, we give an overview of the evo-
lution from ACOS version 2.9 to OCO-2 versions 7 and 8,
including spectroscopy, aerosol treatment, and a number of
other changes.

Briefly, the NASA ACOS algorithm uses optimal estima-
tion to solve for parameters of a state vector to obtain the
best match to spectra from the three GOSAT or OCO-2 near-
infrared bands and consistent with a prior constraint. These
bands are the O2A band at 0.76 µm (band 1), the weak CO2
band at 1.61 µm (band 2), and the strong CO2 band at 2.06 µm
(band 3). The state vector parameters, listed in Table 2, in-
clude the profile of CO2 at twenty atmospheric levels along
with a number of ancillary parameters to which the GOSAT
and OCO-2 near-infrared spectra are sensitive. These include

surface pressure, surface albedo parameters (over land only),
a temperature profile offset and water vapor profile multi-
plier, and parameters related to the wavelength scale of the
spectra (dispersion shift and stretch). The latter are relative
to the preflight values of these parameters, described in Lee
et al. (2017). Because telluric line positions are known with
high accuracy, the retrieval solves for them with virtually no
dependence on the prior. To account for scattering effects of
thin cloud or aerosol, the retrieval also solves simultaneously
for amounts and Gaussian vertical profiles (as described in
Sect. 3.1) of five different kinds of scatterers with fixed opti-
cal properties: a water cloud type, an ice cloud type, two fixed
aerosol types, and beginning in version 8, an Upper Tropo-
spheric/Lower Stratospheric (UTLS) sulfate aerosol layer. In
addition, the retrieval also fits scaling factors for three spec-
tral patterns per band, to account for imperfections in the
spectroscopy, solar model, and instrument model, and deter-
mined using singular value decomposition of our fit residu-
als run on clear-sky soundings (Sect. 3.3). For solar-induced
fluorescence (SIF) emission from plants on land, we fit for
two SIF parameters which are needed to account for this flu-
orescence in the L2 spectra (Sect. 3.5). These SIF parame-
ters are not the official SIF data product; that product is de-
rived from the IMAP prescreener through a dedicated fit (Sun
et al., 2018). In total, there are typically 55 fitted parameters
for land retrievals and 53 for ocean1. With the exception of
CO2, the a priori covariance matrix is diagonal, with the 1σ
uncertainties as given in Table 2.

The first documented algorithm version, B2.9 as described
in O’Dell et al. (2012), had several deficiencies which occa-
sionally produced large biases in the retrieved XCO2 (Wunch
et al., 2011a). This early version of the algorithm also con-
tained some cumbersome traits, such as a variable number of
vertical levels from sounding to sounding, which made the
output difficult to use. The observed XCO2 biases were par-
tially related to the aerosol parameterization, demonstrated
by the fact that clear-sky retrievals of clear-sky simulations
did not exhibit substantial biases (O’Dell et al., 2012). Fur-
thermore, errors in the O2 and CO2 spectroscopy were sus-
pected to be an additional source of bias. Over the course
of several years, a number of changes to the algorithm were
therefore implemented to yield the present version, B8. The
changes are too numerous to fully describe here, but the most
important ones are listed in Table 3. The changes fall into
several major categories, with spectroscopy, aerosol treat-
ment, treatment of the ocean surface, and chlorophyll fluo-
rescence being the most important. In B8, the meteorology
used to prescribe the a priori temperature profile, water vapor
profile, and surface pressure was also changed (Sect. 3.5).

Further, as listed in Table 4, some minor retrieval differ-
ences exist between the GOSAT and OCO-2 versions of the
algorithm. Besides using instrument models specific to each

1This excludes parameters in our state vector with prior uncer-
tainties close to zero, such as cloud and aerosol layer widths.
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Table 2. General setup of the ACOS state vector.

Element No. of elements Prior value Prior uncertainty (1σ ) Notes

CO2 values 20 Same as TCCON Same as ACOS B2.9 Defined on sigma pressure levels
Temperature offset 1 0 K 5 K Rel. to prior profile
Surface pressure 1 From prior meteorology 4 hPa Prior unc. 1 hPa for B3.5
H2O scale factor 1 1.0 0.5 Multiplier on prior profile
Aerosol type 1,2 OD755 2 From MERRA ± factor of 7.39
Water, ice cloud OD755 2 0.0125 ± factor of 6.05
Aerosol type 1,2 x0 2 0.9 0.2
Water cloud x0 1 0.75 0.4
Ice cloud x0 1 Just below tropopause 0.2
Aerosol type 1,2 σa 2 0.05 0.01
Water cloud σa 1 0.1 0.01
Ice cloud σa 1 0.04 0.01
UTLS aerosol OD755 1 0.006 ± factor of 6.05 Introduced in B8
Albedo mean land 1 per band Prior calc. 1.0 Land
Albedo slope land 1 per band 0.0 0.0005 Land; units of 1/cm−1

Albedo mean ocean 1 per band 0.02 {0.2,0.2,1e− 3} Ocean
Albedo slope ocean 1 per band 0.0 1.0 Ocean; units of 1/cm−1

SIF mean 1 Prior calc. 0.008 Land
SIF slope 1 0.0018 0.0007 Land; units of 1/cm−1

Wind speed 1 From prior meteorology 5 m s−1 Ocean
Dispersion shift 1 per band 0.0 0.4 of channel FWHM
Dispersion stretch 1 per band 0.0 1 pm/channel OCO-2 only
EOF amplitudes 3 per band 0.0 10.0 1 per band for B3.5 & earlier

Table 3. Significant ACOS retrieval algorithm changes.

GOSAT B2.10 GOSAT B3.3 GOSAT B3.4 GOSAT B3.5

Gaussian aerosol profiles Residual fitting Updated ocean surface MERRA aerosol types
Sigma pressure levels 1 hPa Psurf prior uncertainty Band 2 spectral range
Prior CO2 profile change Prior OD755 = 0.05 Spectroscopy update
Spectroscopy update Spectroscopy update
Corrected XCO2 AK Fluorescence fit land gain H

GOSAT B7.3 OCO-2 B7 OCO-2 B8

3 EOFs per band Restricted band ranges Spectroscopy update BRDF over land
2 hPa Psurf prior uncertainty 4 hPa Psurf prior uncertainty UTLS aerosol GEOS5-FP-IT meteorology
Updated cloud ice properties L1B improvements Numerous small changes

instrument (such as wavelengths of the various channels,
noise model, and instrument line shape functions), slightly
different spectral ranges are fit for each instrument. Gener-
ally, this is because the trusted calibrated range of OCO-2
spectra is slightly smaller than that of GOSAT, due to the dif-
ferences in design of the OCO-2 grating spectrometer versus
the GOSAT Fourier transform spectrometers. Additionally,
while all channels in each band in the given spectral ranges
are used for GOSAT, some band channels are masked out
for OCO-2. This is due to either underlying bad pixels in the
detector arrays or to transient cosmic rays that induce tem-

porary spurious readings in random channels. Both of these
processes are described in detail in Crisp et al. (2017).

3.1 Aerosol-related changes

Starting with version B2.10, the 20-layer optical depth re-
trieval used for clouds and aerosols was replaced with a
Gaussian-shaped vertical profile for each of the retrieved
scattering particle types. As of version 8, two cloud types,
two lower-atmosphere aerosol types, and one stratospheric
aerosol are used. The new cloud and aerosol profile treatment
is similar to that of Butz et al. (2009) but specifies the aerosol
concentration ρaer as a function of x, the pressure relative to

www.atmos-meas-tech.net/11/6539/2018/ Atmos. Meas. Tech., 11, 6539–6576, 2018
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Table 4. ACOS retrieval differences between GOSAT and OCO-2.

Category GOSAT OCO-2

Radiance used Estimated total intensity OCO-2 single polarization
EOFs, band ranges Wavenumber space Channel space
Fit O2A band offset ? Yes No
SIF prior 0 From IMAP retrieval
Per-band dispersion parameters Offset only Offset, slope
Band 1 fitted range 758.1–772.2 nm 759.2–771.5 nm
Band 2 fitted range 1597.4–1618.1 nm 1598.1–1617.9 nm
Band 3 fitted range 2042.1–2079.0 nm 2047.8–2079.9 nm
Channel mask None Bad samples, spikes

the surface pressure. Therefore, x ranges from zero at the top
of the atmosphere to one at the surface. The functional form
is simply

ρaer(x)= C exp
(
−
(x− x0)

2

2σ 2
a

)
, (1)

where for each aerosol type x0 is the vertical location at peak
aerosol density and σa is the Gaussian 1σ profile width. Both
of the latter variables are specified in units of relative pres-
sure x. The prefactor C is defined such that the aerosol or
cloud optical depth at 755 nm, hereafter OD755, equals the
desired value. In the retrieval algorithm, the fitted quanti-
ties are lnOD755 and peak height pr,0 for each aerosol type,
with the exception of the stratospheric aerosol (described in
Sect. 3.1.1) for which only the optical depth is retrieved. Be-
cause it has been shown that GOSAT and OCO-2-like spec-
tra have little sensitivity to the Gaussian profile width (Butz
et al., 2009), this parameter is fixed in both the GOSAT and
OCO-2 retrievals for all particle types. The prior profiles for
each fitted type are shown in Fig. 2.

The change to a sigma-level pressure system was incorpo-
rated at about the same time as the shift to Gaussian aerosol
profiles. Instead of fixed pressure levels, the pressure levels
scale with the surface pressure:

pi = ai psurf, (2)

where the ai are chosen such that the total number of pressure
boundaries is 20, and the layers have roughly equal pressure
widths. The top-most model level is set to 0.01 hPa.

The optical properties of the four scattering types re-
mained unchanged from versions B2.9 to B3.4 and are de-
scribed in O’Dell et al. (2012). However, the use of two
fixed aerosol types, types “2b” and “3b” from the Kahn
et al. (2001) climatology, did not accurately represent the
true global variability of aerosol on the length scales and
timescales probed by GOSAT and OCO-2. Beginning with
build 3.5, the aerosol types were changed to be location- and
time-dependent, with the prior type information coming from
the aerosol climatology of the Modern-Era Retrospective
analysis for Research and Applications (MERRA, Rienecker

Figure 2. Prior Gaussian profiles of the lower tropospheric aerosol
types (red), water cloud (blue), ice cloud (purple), and stratospheric
aerosol (green). The local aerosol optical depth (AOD) per unit pres-
sure at 755 nm is plotted as a function of the relative pressure. The
lower tropospheric aerosol prior optical depth is not fixed as for the
other types, but rather is taken from a climatology described in the
text.

et al., 2011). The MERRA aerosol field is driven by the Geor-
gia Tech/Goddard Global Ozone Chemistry Aerosol Radi-
ation and Transport (GOCART) model (Chin et al., 2002),
and modified by assimilating aerosol optical depth from the
MODIS instruments onboard the Terra and Aqua satellites
(Colarco et al., 2010). MERRA contains five broad aerosol
types: dust (DU), sea salt (SS), sulfate (SO), and black and

Atmos. Meas. Tech., 11, 6539–6576, 2018 www.atmos-meas-tech.net/11/6539/2018/
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Figure 3. Optical properties of aerosols and clouds used in the L2FP code as a function of wavelength. (a) Extinction efficiency relative to
that at 755 nm. (b) Single scattering albedo. (c) Asymmetry parameter. DU: dust, SS: sea salt, BC: black carbon, OC: organic carbon, SO:
sulfate, WC: water cloud, IC: ice cloud. The spectral ranges of the three OCO-2 bands are demarcated by the dashed vertical lines.

organic carbon (BC and OC, respectively). Dust and sea salt
are each tracked in five separate size bins. Organic carbon
and black carbon are tracked in both hydrophobic and hy-
drophilic categories. In addition to the carbonaceous types,
sulfate aerosol and sea salt are also hydrophilic and hence
have optical properties that depend on the local relative hu-
midity (RH).

For the aerosol prior in the ACOS retrieval, we primarily
sought to specify the typical dominant aerosol types present
(in terms of their contribution to the optical depth in the
OCO-2 bands) in a given location at a given time of year.
Monthly aerosol fields were derived from the MERRA model
for the year 2010, and are used for all years in the ACOS re-
trieval. We aggregated the 15 MERRA types, eight of which
have RH-dependent optical properties, into the five aggre-
gated types listed above. We used typical density weightings
and relative humidity values to create the optical properties
for these aggregated types, as described in Crisp et al. (2017).
Their optical properties, including extinction efficiency, sin-
gle scattering albedo, and asymmetry parameter, are shown
in Fig. 3. The organic carbon and sulfate aerosol are gen-
erally similar in their optical properties, though their single
scattering albedos diverge somewhat in the CO2 bands. The
sea salt, water cloud, and dust optical properties are relatively
similar across the OCO-2 spectral range.

At each sounding location, the two aggregated aerosol
types with the highest mean monthly values of the OD755
are selected to be retrieved by the L2FP algorithm. In pre-
vious algorithm versions, the total prior OD755 was set to
0.15, apportioned equally among four scattering types (water
cloud, ice cloud, and two tropospheric aerosol types). How-
ever, it was found this was generally too high to allow a fit
near OD755 = 0 for scenes that were almost entirely free of
aerosol. This “clear-sky bias” was seen in early simulation

Figure 4. Comparison of XCO2 time series for OCO-2 version 7 and
TCCON, over several years at the station in Wollongong, Australia
(Griffith et al., 2014b). Each OCO-2 symbol represents an overpass
average. A simple geometric colocation strategy was used in which
OCO-2 soundings within ±7.5◦ latitude and ±30◦ longitude of the
TCCON station were retained. Large positive biases occur in the
ocean glint soundings in the Southern Hemisphere winter (blue ar-
rows). As seen in Fig. 19, these large biases primarily occur in the
southern oceans.

tests (O’Dell et al., 2012). The prior OD755 is now set to
0.0125 for each cloud type, and set from the MERRA aerosol
climatology for each tropospheric aerosol type as the average
OD755 of that type (at a particular location and month). There
is some evidence that the tropospheric aerosol priors are oc-
casionally still too high; methods for specifying the aerosol
prior are a continuing topic of investigation.

The cloud ice optical properties were updated in version
7. Before that, they were based on the band-averaged model
developed by Baum et al. (2005) primarily for the MODIS in-
strument and known as the MODIS Collection 5 model. This
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cloud ice model considered an ensemble of size-dependent
non-spherical ice crystal habits in random orientation. As ice
crystal surface roughness was later shown to significantly af-
fect scattering by ice crystals, and simulations with rough-
ened model particles were more consistent with satellite ob-
servations of ice cloud polarized reflectances (Yang et al.,
2013), we updated the cloud ice optical properties to cor-
respond to the MODIS Collection 6 model, which describes
scattering by severely roughened hexagonal column ice crys-
tal aggregates (Baum et al., 2014). This update also fixed sev-
eral minor issues in the previous cloud ice model, such as
those resulting from linear interpolation of the optical prop-
erties from MODIS wavelength bands to OCO-2, and those
relating to truncation of the phase function.

3.1.1 The need for a stratospheric aerosol

When validating version 7 XCO2 retrievals, it was discov-
ered via comparisons to both TCCON and models that most
ocean soundings in the most southerly ∼ 10 degrees of lati-
tude exhibited a high bias of 1–3 ppm during the austral win-
ter (Wunch et al., 2017). Figure 4 shows the bias appears in
the Southern Hemisphere winter over the Wollongong TC-
CON station. The bias is seen in soundings over ocean but not
land. The bias is also apparent relative to the Lauder TCCON
station (Figs. 11 and A1 from Wunch et al., 2017). Compar-
isons of OCO-2 soundings to models (Fig. 19) show the bias
as a quasi-zonal band over the Southern Hemisphere oceans,
again with the larger bias occurring in the Southern Hemi-
sphere winter. There is also evidence of a similar but weaker
band of high bias in the Northern Hemisphere. For 2015, it
was hypothesized that small aerosol particles may have been
injected into the UTLS by the explosive eruptions of the Cal-
buco (22–30 April 2015) and Wolf (late May 2015) volcanos
in southern–central Chile and the Galapagos Islands, respec-
tively. The presence of an aerosol layer with visible optical
depths around 0.01 was later confirmed with observations
from the Cloud-Aerosol Lidar and Infrared Pathfinder Satel-
lite Observatory (CALIPSO) and the Ozone Mapping Profile
Suite (OMPS) satellites (Bègue et al., 2017). These optical
depths are small, but have a large impact on the radiances,
especially in the O2A band, due to their high altitude.

It was recognized that our version 7 retrieval algorithm
had no way to accommodate the spectral signature of small
stratospheric aerosol particles, which have a significantly
larger effect on the O2A band than either of the CO2 bands
due to the small size parameter, i.e, the ratio of the size of
the scattering particle to the spectral wavelength. The spec-
tral signature would essentially appear as a radiance offset in
the O2A band. As a first test, we ran hundreds of retrievals
on a single sounding that had a large positive bias in the op-
erational retrieval, using slightly different first-guess values
for each retrieval. Essentially, a continuum of solutions was
found (Fig. 5). On one end of retrieval space, an approxi-
mately correct value of surface pressure was found by in-

Figure 5. Results of several hundred retrievals of a single ocean
glint sounding (28.5◦ S, 52.3◦W) measured on 26 June 2015. Each
retrieval is identical except that each has a different first guess state,
consistent with the prior uncertainty distribution. The retrieved rela-
tive sulfate height (0= top-of-atmosphere; 1= surface) is shown on
the ordinate, the reduced χ2 from the strong (2.06 µm) CO2 band re-
trieval is shown on the abscissa, and the retrieved XCO2 is indicated
by color. For reference, the result from the operational retrieval (ver-
sion 7) is shown as the large filled circle. When the retrieval places
the sulfate near the surface, as in the version 7 case, both the strong
CO2 band χ2 value and XCO2 tend to be higher. Conversely, when
the retrieval pushes the sulfate closer to the top-of-atmosphere, the
strong CO2 band χ2 values and XCO2 tend toward lower values, a
result that is more physically plausible.

serting a thicker ice cloud, which contains larger particles
starting in the stratosphere, and therefore has a strong effect
on all three bands (see Fig. 3). This type of solution pro-
duced a poor χ2 in the strong CO2 band, typically > 2. On
the other end of the continuum were solutions where the sul-
fate layer, which was placed near the surface in the prior, was
moved high up into the atmosphere. This solution regime had
a much lower reduced χ2 (around 1.5) in the strong CO2
band and an XCO2 that was typically 3–4 ppm lower, and
much more in line with TCCON and model estimates. In
these cases, the amount of upper atmosphere cloud ice re-
trieved was also reduced, as its role was taken over by the
sulfate.

These tests indicated that a more realistic solution would
often be found if the retrieval could push the prior sulfate
into the upper atmosphere, though this seldom occurred. The
amount of sulfate needed in the upper atmosphere in these
cases is small, approximately 0.01 optical depth at 755 nm.
That value is consistent with other observations (Bègue et al.,
2017). In addition to actual small particles in the UTLS, the
OCO-2 instrument has a documented problem which pro-
duces a similar impact on the O2A and spectrum. As de-
scribed in Crisp et al. (2017, Sect. 6.5), a very thin layer
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of ice appears to build up on the OCO-2 Focal Plane Ar-
rays (FPAs) over time. As this ice layer grows to a thick-
ness similar to the anti-reflective coating thickness (tens of
nanometers), it enhances the surface reflectance on the O2A
band FPA, producing a scattered light contribution of 0.1 to
0.2 %. Much smaller effects are seen on the CO2 detectors.
The ice layer is sublimed off every 3–6 months when the
instrument goes through a decontamination cycle. While at-
tempts have been made to remove this scattered light con-
tribution in the version 8 calibrated radiance (L1B) product,
it is likely that some residual signal remains. Because this
is primarily a radiance offset in the O2A band alone, it pro-
duces a signal similar to a small UTLS aerosol, and hence
would also be mitigated by including a stratospheric aerosol
in the retrieval. During algorithm testing of the stratospheric
aerosol using version 7 L1B radiances (which contained the
scattered light signature), we found that the amount of UTLS
aerosol retrieved indeed correlated with the decontamination
cycles, lending credence to this hypothesis.

Thus, in version 8 an additional sulfate aerosol was in-
cluded in the retrieval state vector. For simplicity, a sulfate
type identical to the lower-atmosphere type in terms of op-
tical properties was used. Only the total optical depth of the
stratospheric sulfate is retrieved, while its Gaussian height
and width are kept fixed. This solution treats both actual
small particles in the UTLS as well as the radiometric offsets
that accompany the real O2A band scattered light signal. Our
testing of the version 8 algorithm showed that including this
state vector element not only reduced the Southern Ocean
bias, but also reduced the negative tropical ocean bias and
positive bias over higher northern-latitude lands that were
also apparent in Fig. 19. A more complete comparison of ver-
sion 7 and version 8 validation statistics is given in Sect. 5.

3.2 Spectroscopy-related changes

There have been substantial changes between the molecular
cross sections used in the earliest ACOS versions and those
used in B8. We continue to use in-house lookup tables of ab-
sorption coefficients (ABSCO) parameterized as a function
of temperature, pressure, wavelength, and water vapor mix-
ing ratio for each of the main absorbing gases in the OCO-2
bands: O2, CO2, and water vapor (H2O). Successive versions
of these tables have been refined by incorporating new lab-
oratory results and theoretical models for increasingly accu-
rate absorption coefficients. The ABSCO version used in the
B8 algorithm is ABSCO v5.0 (Drouin et al., 2017; Oyafuso
et al., 2017); B7 used the previous ABSCO version, v4.2.

The ABSCO v5.0 O2A band tables represent a major step
forward from previous ABSCO versions. Earlier ABSCO
versions integrated the highest-quality spectroscopic input
from a range of studies that had focused on fitting differ-
ent parameters independently. (See, for example, Thompson
et al., 2012, and references therein.) The ABSCO v5.0 tables
are based on self-consistent multispectral fits to laboratory

Figure 6. Retrieved minus prior surface pressure for a large selec-
tion of OCO-2 soundings, using the oxygen-A band spectroscopy
model from both (a) ABSCO v4.2 and (b) ABSCO v5.0, as de-
scribed in the text. ABSCO v5.0 spectroscopy leads to a more con-
sistent retrieval of surface pressure over both land and ocean sur-
faces.

spectra that include line mixing, speed-dependent Voigt line
shape parameters, and collision-induced absorption (CIA).
This self-consistency, and the use of laboratory spectra cov-
ering a range of pressures, temperatures, and measurement
techniques, are key features of the approach. The O2 spectral
line parameters, line mixing, and CIA used in ABSCO v5.0
are described in Drouin et al. (2017). Parameters for broaden-
ing of O2 by H2O are from the study by Drouin et al. (2014).

The impact of the latest multi-spectrum fitting update in
the O2A band is shown in terms of the accuracy of the re-
trieved surface pressure in Fig. 6. Panel (a) shows the re-
trieved surface pressure minus the prior for ABSCO version
4.2, which was used in version 7 of the algorithm, while
panel (b) shows the same for ABSCO v5.0, used in version
8. The main improvements seen are that the retrieved surface
pressures in version 8 are essentially unbiased with respect
to the meteorological prior over land, and that the land and
ocean differences are reduced and centered closer to zero.
We also note that for OCO-2, no additional line strength scal-
ing was required in the O2A band, as has been necessary for
all previous ACOS/GOSAT versions (see, e.g., Crisp et al.,
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2012). For ACOS-GOSAT B3.5 retrievals, an O2 scaling fac-
tor of 1.0125 was found to be beneficial, perhaps because of
slight instrumental differences between OCO-2 and GOSAT.

The ABSCO v5.0 tables for the 1.61 and 2.06 µm CO2
bands use line parameters and line mixing models derived
from self-consistent, multispectral fits by Devi et al. (2016)
and Benner et al. (2016), respectively. The parameters are
derived from fits to laboratory spectra at multiple pressures
and temperatures and the computation incorporates a speed-
dependent Voigt line profile with nearest-neighbor line mix-
ing. Earlier versions of the ABSCO tables (Benner et al.,
1995; Devi et al., 2007) were based entirely on room temper-
ature multi-spectrum fitting, with theoretical temperature de-
pendences of the line shape and line mixing parameters. The
updated spectroscopy includes analyses of spectra recorded
at temperatures from 170 to 296 K, representing a significant
advance. Parameters for broadening of CO2 by H2O are from
Sung et al. (2009) for the 4.3 µm CO2 band and extrapolated
to OCO-2’s CO2 bands. Validation of the ABSCO v5.0 ta-
bles using up-looking TCCON spectra is described in Drouin
et al. (2017) and Oyafuso et al. (2017). We note one impor-
tant difference between the reference databases and our CO2
absorption coefficients. We found it necessary to incorporate
additional absorption in the center of the 2.06 µm band. This
additional absorption was parameterized in order to reduce
errors in retrievals with TCCON up-looking spectra. Further
details can be found in Thompson et al. (2012) and Oyafuso
et al. (2017).

Because the laboratory spectra underlying ABSCO cur-
rently are only good to roughly 1 % absolute accuracy of
line intensities, the algorithm allows for overall scaling fac-
tors for each of the two CO2 bands. For the 1.61 µm band,
the ABSCO v5.0 tables include a uniform scaling to bring
the intensities from the Devi et al. (2016) multispectrum fit
into line with reference intensity measurements (estimated
accuracy ∼ 0.2 %) from Polyansky et al. (2015). Oyafuso
et al. (2017) show that this pre-scaling of the ABSCO using
reference laboratory measurements results in good consis-
tency between single-band up-looking XCO2 retrievals from
ground-based FTS spectra and the XCO2 values reported by
TCCON (which are themselves calibrated to agree with ref-
erence airborne profiles). Reference intensity measurements
are not available for the 2.06 µm band at the current time.
In tests within the OCO-2 Level 2 algorithm, using OCO-2
radiances, a scaling of 1.004 for the 2.06 µm ABSCO table
was found to yield the best agreement between single-band
retrievals performed using this band compared with single-
band retrievals performed using the 1.61 µm ABSCO table
as described above.

Finally, ABSCO v5.0 tables incorporate H2O line pa-
rameters from the HITRAN 2012 compilation (Rothman
et al., 2013). We use an unofficial, modified version of the
MT_CKD continuum, supplied by Eli Mlawer (Mlawer et al.,
2012). This continuum version offers a compromise between
previous versions of MT_CKD and measurements by Ptash-

nik et al. (2011), and falls relatively close to measurements
by Mondelain et al. (2013). The subsequently released MT-
CKD 3.2 has been tested and shown to be a modest improve-
ment over the unofficial version incorporated into ABSCO
v5.0, with negligible changes to XCO2 but noteworthy im-
provements to the water column determination. Methane is
not currently included in the B8 (or previous versions) of
the forward model, as the impact of methane absorption was
found to be negligible for XCO2 retrievals performed using
the OCO-2 spectral ranges.

3.3 Residual fitting using empirical orthogonal
functions (EOFs)

ACOS B3.3 introduced a new way to deal with large spec-
tral residuals caused by imperfect spectroscopy, and solar
model and instrument characterization, which were previ-
ously treated using a simple “empirical noise” parameter-
ization (Crisp et al., 2012). In contrast, the new approach
fits scaling factors to fixed spectral residual patterns for each
band.

These patterns are the EOFs that result from a singular
value decomposition of spectral residuals from training re-
trievals. Training scenes were selected to be largely devoid
of cloud and aerosol effects, such that residual patterns due
to unfitted clouds and aerosols are not a large contributor to
the resulting EOF patterns. The EOFs are constructed such
that the residuals rs,b of each sounding s and band b can
be approximately represented as a linear combination of the
EOF patterns:

rs,b =

Neof∑
j=1

cj,s,b ej,b, (3)

where the vectors ej,b are the EOFs for each band. For a di-
verse set of training retrievals, a matrix M is created for each
spectral band and populated by the residuals of the spectral
fits within that band. Training sets typically included more
than 10 000 soundings.

Each matrix M is then decomposed into its eigenvectors
using traditional singular value decomposition:

M= UWVT, (4)

with the columns of U spanning an orthonormal basis of
the most persistent spectral residual vectors observed in the
training data set. By convention, the first eigenvector explains
the largest fraction of the total variance, as indicated by de-
scending order of singular values (the diagonal elements of
W).

Application of this EOF technique substantially reduces
the spectral residuals, yielding values of the relative rms of
the residuals of ∼ 0.1 % for each band, and reduced χ2 val-
ues near unity. For GOSAT, only the first EOF was found
to be necessary. For OCO-2 B7 (and B8) target-mode ob-
servations, better agreement with TCCON XCO2 was found
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when the largest three EOFs were employed. The first two
EOFs for GOSAT, as well as the first three EOFs for OCO-2,
are shown in Fig. 7 for each spectral band. The EOFs for
each of the eight spatial footprints sampled by OCO-2 are ex-
tremely similar, though they are solved for independently due
to the slightly different spectroscopic response of each. The
first EOFs for OCO-2 and GOSAT are very similar for each
band, indicating that common forward model errors such as
spectroscopy and top-of-atmosphere solar flux, rather than
instrument-specific effects, are driving the EOF patterns. The
first EOF is also very similar to the mean residual pattern, and
typically accounts for 50 %–60 % of the variance in the resid-
uals. The second and third EOFs typically account for only
1 %–3 % of the variance in the residuals, with higher-order
EOFs accounting for even less. For the O2A band, the sec-
ond EOF appears as a Doppler shift of the first. In the weak
CO2 band, the second EOF appears to be due to water vapor
lines, while the third EOF appears to be a Doppler shift of
the first. Higher-order EOFs often exhibit additional instru-
ment artifacts (such as unidentified bad spectral samples) and
forward model errors related to water vapor, as well as other
effects that are difficult to interpret.

The EOF formulation was modified in B8 in several ways.
First, the EOFs were defined in terms of radiance per unit
noise rather than pure radiance, in order to be consistent with
the cost function metric that is minimized during the retrieval
itself. However, the structure of the EOFs in B8 was much the
same as in B7. Second, improved filtering of spectral samples
that are contaminated by noisy or dead detector pixels greatly
reduced their impact on the EOF patterns. Finally, a manual
re-ordering of the EOFs was performed for each of OCO-
2’s eight spatial footprints, because the standard ranking by
variance would occasionally flip the EOF patterns in different
footprints. This mattered because sometimes the third and
fourth EOFs would change places (and the current algorithm
only fits the first three EOFs). This ensured that, to the extent
that the EOFs of each footprint roughly matched, the same
three EOF patterns for each footprint are fit within the L2FP
retrieval.

3.4 Surface model

The forward model for ACOS L2FP retrievals uses one of
two surface models, depending on the location of the foot-
print. Water surfaces are simulated as a linear combination of
a Cox–Munk ocean surface (Cox and Munk, 1954) and Lam-
bertian reflector. This surface has seven parameters: wind
speed, and a Lambertian albedo at a reference wavenumber
with a linear spectral slope term in each of the three spectral
bands. The prior wind speed is taken from the resampled me-
teorology (either ECMWF or GEOS5 FP-IT, as discussed in
the next section), as for the other meteorological parameters.
The strong CO2 band Lambertian albedo is fixed to 0.02; the
other six terms are fit in an essentially unconstrained fashion.
This approach leads to the fitted Lambertian albedos gener-

Figure 7. Spectral patterns of the EOFs for the O2A band (a), weak
CO2 band (b), and strong CO2 band (c), for both GOSAT B3.5
(green) and OCO-2 B7 footprint 4 (black). For reference, the light
gray trace in each panel shows the modeled spectrum (not to scale).
Some stronger water vapor absorption lines (blue vertical lines) in
the weak and strong CO2 bands correlate with features in the second
and third EOFs.
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ally staying small and positive, the latter of which is currently
required by our radiative transfer module.

Through ACOS B7, land surfaces were assumed to be
purely Lambertian, with an albedo and albedo spectral slope
retrieved for each band. The Lambertian surface assumes that
the bidirectional reflectance distribution function (BRDF; the
ratio of the radiance in the reflected direction to the irradiance
from the incident direction; Schaepman-Strub et al., 2006) is
a constant that is often specified as a scalar albedo. Since in-
dependent fits are done within each of the three OCO-2 spec-
tral bands, this yields six state variables for land footprints.

Analysis of B7 OCO-2 target-mode observations showed
that the retrieved Lambertian albedo and aerosol optical
depth sometimes exhibited dependence on the sensor zenith
angle for observations of the same surface location. This
indicated that the true surface BRDF has dependence on
the observation angles. A more physically justified approach
would use a non-Lambertian model for the surface BRDF.
For trace gas retrievals, a Lambertian surface assumption in-
troduces no errors in the absence of multiple scattering be-
tween the surface and atmosphere; in this case, the retrieved
albedo is interpreted as the surface reflectance at the primary
scattering geometry (Sun–surface–satellite). However, over
brighter surfaces with some atmospheric scattering, the as-
sumed BRDF could in principle affect the retrieval via the
interaction of the retrieved aerosol, surface pressure, and gas
concentrations. Therefore, in B8 it was decided to change
the surface model for land footprints to a non-Lambertian
surface model. This model assumes a fixed BRDF shape
and assumes the surface is azimuthally symmetric, but al-
lows for spectral dependence of the amplitude between and
within each of our three bands; full details of the BRDF
model are given in Appendix B. While this model does often
show reduced correlation between view zenith and the re-
trieved BRDF amplitude, the retrieved XCO2 (as well as most
other state vector parameters) shows very little change versus
a version of the B8 retrieval run with a Lambertian surface.
Therefore, while B8 does use a non-Lambertian BRDF pa-
rameterization, a Lambertian surface appears to work equally
well. This fact may be a consequence of the strong filtering
used in B8, which tends to remove soundings with multiple
scattering. Future applications of the ACOS L2FP algorithm
to cases with higher AOD may be more strongly impacted by
the non-Lambertian BRDF.

3.5 Additional retrieval algorithm changes

In addition to these changes, a number of additional (mostly
minor) changes have also been made to the ACOS L2FP
algorithm since B2.9. In B2.10, the prior CO2 profile was
changed to match that used by TCCON, which was more
realistic than our previous prior formulation; as of B8, this
corresponds to the GGG2014 version (Toon and Wunch,
2014). Generally speaking the TCCON CO2 prior profile
is relatively simple: it is a function of latitude, altitude,

Table 5. Median ±1σ of GEOS5 FP-IT–ECMWF differences for
GOSAT soundings passing the ABP cloud filter.

Variable Land Ocean

Surface pressure (hPa) 0.07± 0.73 0.05± 0.43
T2m (K) 0.4 ± 2.7 0.3± 0.6
T@700 hPa (K) 0.0± 0.8 −0.2± 0.8
TCWV (kg m−2) 0.1± 1.8 0.4± 2.4
Surface wind speed (m s−1) 0.4± 1.3 −0.4± 0.9

and date only. It includes a simple formulation of the sea-
sonal cycle and currently assumes a fixed secular increase of
0.52 % yr−1 (or 2.08 ppm yr−1 at 400 ppm). There is no land–
ocean or other meridional dependence. It requires specifying
the tropopause height, and has simple formulations for the
profile in the boundary layer, free troposphere, and strato-
sphere. A small mistake in the XCO2 averaging kernel was
also fixed in B2.10; this was caused by inconsistent assump-
tions regarding the pressure-dependent gas absorption cross
sections throughout our retrieval code, which led to an obvi-
ous “kink” in the averaging kernel that had long been visu-
ally evident (see, e.g., Fig. 2 of Connor et al., 2008). We use
the 2016 version of the Toon solar transmittance spectrum
(available at https://mark4sun.jpl.nasa.gov/toon/solar/solar_
spectrum.html, last access: 4 December 2018) (Toon, 2014).
Changes in the prior covariance matrix for CO2 (O’Dell
et al., 2012) were also considered, but rejected, as tests us-
ing alternate covariance matrices showed insignificant per-
formance improvements.

In B3.3, solar-induced chlorophyll fluorescence (SIF) fit-
ting over land surfaces was introduced. This change was in-
troduced to combat a bias in XCO2 that results from not fit-
ting for fluorescence when it is present, due to its impact
on the O2A band. This problem and our fluorescence fitting
scheme are described in detail in Frankenberg et al. (2012).
Briefly, we fit for the mean and slope of the fluorescence at
the top-of-canopy as a function of wavelength; the mean is
expressed as a fraction of the continuum radiance level at a
wavelength of 755 nm. The spectral dependence of the flu-
orescence is taken to be linear. Additional minor algorithm
changes to B3.3 included reducing the prior surface pressure
uncertainty from 4 to 1 hPa for GOSAT, which is likely to be
a more accurate representation of the true prior surface pres-
sure uncertainty for the majority of scenes (see, e.g., Salstein
et al., 2008). This has the added benefit of reducing the in-
terference error between SIF, aerosols, zero-level offset, and
surface pressure. In B3.4, fitting for SIF was turned off for
GOSAT medium gain observations over land, as these re-
gions are nearly all desert with very little biological activ-
ity. For OCO-2, the SIF prior is taken from the official SIF
retrieval, as described in Sun et al. (2018), because SIF re-
trievals from individual soundings are meaningful for OCO-2
due to its relatively high SNR.
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In B8, the prior height of the cirrus cloud layer relative to
the surface pressure was moved slightly, from the fixed value
of x = 0.3 to just below the tropopause height (which is a
relatively strong function of latitude). The calculation of the
tropopause height itself was also refined in B8, which also
improved the calculation of the prior CO2 profile. Finally,
the prior meteorology was changed in B8 from ECMWF to
GEOS5-FP-IT (Suarez et al., 2008; Lucchesi, 2013). Some
statistics regarding differences in surface pressure, tempera-
ture, water vapor, and surface wind speed between the two
models for retrieved GOSAT soundings are given in Table 5;
the corresponding difference statistics for OCO-2 soundings
are nearly identical. Only soundings passing the O2A band
prescreener are included. In general, the two models are very
similar, with for instance 95 % of all soundings having a sur-
face pressure difference of less than 1.5 hPa. Surface pres-
sure probably affects our retrieved XCO2 the most, as it is
used not only in the retrieval, but also in the bias correction,
where differences in the prior surface pressure will lead to
a first-order change in the bias-corrected XCO2 . Currently
then, the “noise” from the surface pressure difference be-
tween these two models would amount to roughly 0.6 hPa,
or about 0.25 ppm in XCO2 , which is quite a bit less than our
noise-driven error (∼ 1.4 hPa on average) and regional biases
(∼ 2.4 hPa on average). Retrieved surface pressure errors are
discussed in more detail in Sect. 4.3.4.

4 Retrieval filtering and bias correction

All soundings passing the prescreening criteria (Table 1) are
processed with the L2FP retrieval algorithm. Of these, some
10 %–20 % fail to converge to a solution, typically because
of unscreened clouds or other factors that cannot properly
be modeled in the retrieval. Some fail simply because of the
nonlinear nature of the problem – in general, there is no per-
fect way to minimize the cost function. Of the 80 %–90 % of
soundings that do converge to a minimum in the cost func-
tion, typically three to six iterations are required.

Despite our best efforts to prefilter problematic soundings,
there are inevitably some retrievals with XCO2 errors that
exceed those predicted by theory. Ideally, the XCO2 errors
would be normally distributed, with errors consistent with
the 1σ a posteriori uncertainty on XCO2 from the retrieval
(see, e.g., Rodgers, 2000), but often there are retrievals with
systematically biased XCO2 and/or larger-than-expected scat-
ter. This problem is partially mitigated by applying a bias
correction, which can reduce both scatter on smaller spatial
scales and biases on larger spatial scales. However, prob-
lematic soundings still remain. A quality-filtering procedure
then attempts to remove these soundings with larger-than-
expected differences from our truth metrics. For GOSAT, this
process was described in O’Dell et al. (2012) and Crisp et al.
(2012). The problem of biases is dealt with via a linear bias
correction (Wunch et al., 2011a). In this section, we describe

Figure 8. Sounding density of the truth proxy data in 4◦× 4◦ bins
used in the OCO-2 version 8 XCO2 filtering and bias correction.
(b) shows both the full global model-based truth proxy and the
Southern Hemisphere truth proxy as the portion below the dashed
black line.

both filtering and bias-correction procedures for XCO2 for B8
retrievals only, unless otherwise noted. A similar procedure
was used for GOSAT data as well as OCO-2 B7, but the pro-
cedures were more mature and robust for B8.

4.1 Truth proxy training data sets

Both filtering and bias correction require a training data set,
which consists of soundings for which we have both the
OCO-2 retrieved XCO2 as well as a reliable, independent es-
timate of XCO2 . The latter we call a “truth proxy”. We used
four such data sets: TCCON, models, models in the Southern
Hemisphere only, and a new validation method for OCO-2
called the “small-area approximation”. Table 6 lists the truth
proxies used in version 8, while Fig. 8 shows the spatial
distribution of the truth proxy data sets matched to actual
OCO-2 soundings.
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Table 6. XCO2 truth proxies for retrieval evaluation.

Name Ns land Ns ocean glint Details

TCCON 228k 88k Geometric colocation requirement, GGG2014
Multi-model median 1132k 861k Median of six models (see text)
Models_SHA 260k 251k Same as above for lat< 20 S
Small-area approximation (SAA) 795k 505k Areas < 100 km along-track

4.1.1 TCCON-based truth proxy

The most direct truth proxy is the comparison to TCCON,
which currently has 25 operational stations globally, but with
heavy representation in North America, Europe, Asia, and
Oceania. For the OCO-2 B8 evaluation, the latest version of
TCCON retrievals was employed (GGG2014, Wunch et al.,
2015). Many schemes have been used to match air masses
observed by satellites to those viewed from TCCON stations.
Examples include a geographic-centric scheme (Cogan et al.,
2012; Inoue et al., 2013; Oshchepkov et al., 2013; Kulawik
et al., 2016), a scheme based on the potential temperature
at 700 hPa (Keppel-Aleks et al., 2011; Wunch et al., 2011b),
model-based selection (Guerlet et al., 2013), and geostatisti-
cal selection (Nguyen et al., 2014). These more sophisticated
techniques were primarily used because GOSAT had fairly
sparse data and required relatively loose matching criteria to
yield sufficient numbers of matched observations. This is less
of a problem with OCO-2 at lower and mid latitudes, with
its higher spatial sampling density. High-latitude validation
with TCCON remains challenging, where OCO-2 data are
still sparse.

Table 7 lists the TCCON sites used as truth proxies in this
work. Training data ranges correspond to the quality-filtering
and bias-correction procedures described in Sect. 4.2 and 4.3,
respectively. Validation data ranges correspond to the basic
validation described in Sect. 5. Our colocation requirements
for B8 were similar to those used for Wunch et al. (2017), in
which we required that OCO-2 footprints were within 2.5◦

latitude and 5.0◦ longitude of the TCCON station, and that
the observations occurred within 2 h of each other. These
requirements were modified slightly for the Caltech, Arm-
strong, and Tsukuba stations in order to discriminate satellite
observations taken over the nearby megacities of Los An-
geles and Tokyo. Because of additional station data and a
longer training period, there were roughly twice as many sta-
tion months of valid colocations for B8 as compared to our
B7 training (roughly 400 versus 190 station months).

We estimate TCCON colocation errors to be on the or-
der of 0.5 ppm, due to both colocation errors and TCCON
station-level biases (Hedelius et al., 2017). Even with these
small errors, TCCON is an incomplete validation source due
to its limited spatial coverage. For example, there are few sta-
tions in the tropics, none in the central Pacific or central Asia,
and, with the exception of Armstrong, none in bright desert

regions. Except when specifically stated, we employed the
OCO-2 averaging kernel correction. A general treatment of
averaging kernel corrections was first given in Wunch et al.
(2011a). The specific correction we employ is taken from
Nguyen et al. (2014), in which the TCCON-retrieved profile
is convolved with the OCO-2 column averaging kernel be-
fore it is compared to OCO-2. This effect is generally smaller
than 0.3 ppm in the column.

4.1.2 Small-area approximation truth proxy

To supplement TCCON, we used a method new for OCO-2
called the “small area approximation”, or SAA2. The SAA
relies on the high spatial resolution of OCO-2 footprints
(1.3× 2.3 km2), and the relatively long decorrelation length
of CO2 concentration in the atmosphere (500–1000 km; see,
e.g., Chevallier et al., 2017, Fig. 1). Specifically, this approxi-
mation assumes that for a given overpass of an area not larger
than 100 km in spatial extent, XCO2 can be considered uni-
form over the area. True XCO2 variability was evaluated by
Worden et al. (2017) by examining output from the GEOS-5
7×7 km2 “nature run”. It was found to be typically less than
0.1 ppm per 100 km areas away from strong known sources,
thus justifying our small area assumption. In fact, this error is
considerably lower than can be obtained by any of the other
truth metrics. The major drawback of this method is that it
is insensitive to biases due to variables that vary slowly on
these small scales, such as those related to viewing geometry
and some surface and aerosol parameters.

4.1.3 Model-based truth proxies

The third validation data set is based on results from global
carbon flux inverse models, and is referred to as the “multi-
model median”. In order to evaluate OCO-2 retrievals against
a posteriori results from an array of models, and to avoid the
biases in one particular model, a suite of six models sampled
at the OCO-2 sounding locations and times was used. Table 8
provides a summary of the models that were used. The mod-
els generally differed in their prior flux assumptions, prior
flux uncertainty, transport model, initial conditions, spatial
resolution, and inverse method, but had one commonality
in that all assimilated in situ CO2 concentration data. Be-
cause of these differences, the models often yielded a poste-

2Not to be confused with the South Atlantic Anomaly.
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Table 7. TCCON stations used in this work.

TCCON station Training date range Validation date range Reference

Anmyeondo, South Korea May 2015–Sep 2015 May 2015–Aug 2016 Goo et al. (2014)
Ascension Island Sep 2014–Dec 2016 Dec 2014–Feb 2017 Feist et al. (2014)
Bialystok, Poland Sep 2014–Jun 2016 Sep 2014–Apr 2017 Deutscher et al. (2015)
Burgos, Philippines Jan 2017 Mar 2017–Apr 2017 Velazco et al. (2017)
Bremen, Germany Sep 2014–Jul 2016 Sep 2014–Mar 2017 Notholt et al. (2014)
Caltech, Pasadena, CA, USA Sep 2014–Nov 2016 Sep 2014–Feb 2017 Wennberg et al. (2015)
Darwin, Australia Sep 2014–Sep 2016 Sep 2014–Oct 2016 Griffith et al. (2014a)
Edwards (Armstrong), CA, USA Sep 2014–Jun 2016 Sep 2014–Aug 2016 Iraci et al. (2016)
East Trout Lake, Canada Jan 2017 Oct 2016–May 2017 Wunch et al. (2016)
Eureka, Canada Jun 2015 Aug 2015 Strong et al. (2016)
Garmisch, Germany Sep 2014–Aug 2016 Sep 2014–May 2017 Sussmann and Rettinger (2014)
Izaña, Tenerife, Spain Dec 2015–Mar 2016 Dec 2015–Jul 2016 Blumenstock et al. (2014)
Karlsruhe, Germany Sep 2014–Jun 2016 Sep 2014–May 2017 Hase et al. (2015)
Lamont, OK, USA Sep 2014–Feb 2017 Sep 2014–May 2017 Wennberg et al. (2016)
Lauder, New Zealand Sep 2014–Mar 2017 Sep 2014–May 2017 Sherlock et al. (2014)
Manaus, Brazil April 2015–May 2015 Nov 2014–Jun 2015 Dubey et al. (2014)
Ny Ålesund, Spitzbergen, Norway Not used May 2015–May 2017 Notholt et al. (2017)
Orléans, France Sep 2014–Oct 2016 Sep 2014–May 2017 Warneke et al. (2014)
Paris, France Apr 2015–Mar 2016 Oct 2014–Oct 2016 Te et al. (2014)
Park Falls, WI, USA Sep 2014–Dec 2016 Sep 2014–May 2017 Wennberg et al. (2014)
Réunion Island Sep 2014–Nov 2016 Sep 2014–May 2017 De Mazière et al. (2014)
Rikubetsu, Japan Oct 2014–Oct 2016 Oct 2014–Feb 2017 Morino et al. (2016b)
Saga, Japan Sep 2014–Mar 2016 Sep 2014–May 2017 Kawakami et al. (2014)
Sodankylä, Finland Oct 2014–Jul 2016 May 2015–May 2017 Kivi and Heikkinen (2016)
Tsukuba, Japan Sep 2014–Feb 2017 Sep 2014–May 2017 Morino et al. (2016a)
Wollongong, Australia Sep 2014–Nov 2016 Sep 2014–May 2017 Griffith et al. (2014b)

Table 8. Models used in this work.

Name Version Land biosphere Inverse method Transport Reference

CAMS 15r2 ORCHIDEE 4D-Var LMDZ Chevallier et al. (2010)
Univ. Edinburgh v2.1 CASA EnKF GEOS-Chem Feng et al. (2009)
Jena CarboScope s04_v3.8 Special 4D-Var TM3 Rödenbeck (2005)
CarbonTracker CT2015, CASA EnKF TM5 Peters et al. (2007), with updates

CT-NRT.v2016-1 documented at https://carbontracker.noaa.gov
(last access: 4 December 2018)

TM5-4DVar 2016 CASA 4D-Var TM5 Basu et al. (2013)
OU 2016 CASA 4D-Var TM5 Crowell et al. (2018b)

riori XCO2 fields that disagreed to some extent, with differ-
ences ranging from a few tenths of a ppm to several ppm
as discussed below. We used model output that covered a
minimum period from September 2014 through December
2015, though a few models (CarbonTracker, TM5-4DVar)
extended into March 2016. To compare against the models,
for simplicity we computed only true XCO2 values from the a
posteriori CO2 concentrations, rather than averaging-kernel-
corrected values. Previous authors have shown that this ef-
fect is typically small, on the order of a few tenths of a ppm
(Wunch et al., 2011a; Inoue et al., 2013; Lindqvist et al.,
2015).

For each matched OCO-2 sounding, the model median
was computed from all available models for that sounding.
If any model XCO2 value differed by more than 1.5 ppm
from the model median, that sounding was excluded from
our training data set. This requirement helped ensure that at
the very least, all the models were generally consistent with
each other for a given sounding in our training set. Generally
the root-mean-squared difference of the model XCO2 values
was less than 0.7 ppm for any given sounding satisfying this
requirement. The median of the model-predicted XCO2 for
soundings satisfying this criterion was then taken as the truth
estimate.
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Figure 9. Maximum difference between each model and the model median in ppm, averaged over 4◦×4◦ grid boxes. Two seasons are shown:
DJF (a) and JJA (b). Soundings for which all models are within 1.5 ppm of the model median are retained in the model-based truth proxy.

Figure 9 shows maximum difference from the model me-
dian for both the Northern Hemisphere winter (December,
January, February; DJF) and summer (June, July, August;
JJA). Most soundings passed our “model-agreement” re-
quirement over ocean at all times and over land in DJF, where
the bulk of the land biosphere is quiet and hence XCO2 is
more robustly modeled. In JJA, however, a substantial frac-
tion of land soundings fail this test, in particular over North-
ern Hemisphere regions such as Asia. Tests showed that our
results were not strongly sensitive to the agreement threshold
chosen.

Finally, Wunch et al. (2011a) used a truth proxy called
the “Southern Hemisphere Approximation” (SHA) in which
it was assumed that the Southern Hemisphere (25–55◦ S)
could be taken to be meridionally uniform in XCO2 at any
given time, with a latitudinal gradient of −1 ppm from 25 to
55◦ S, and the change in mean XCO2 over time could be pre-
scribed with a linear secular trend (taken to be 1.9 ppm yr−1).
This served reasonably well for the GOSAT retrievals at that
time, which exhibited rather large errors. However, the SHA
has the primary shortcoming that meridional anomalies can
sometimes exceed 0.5–1.0 ppm and are typically larger over
land versus ocean. We find that substituting the model me-
dian instead of the zonally corrected mean used in Wunch
et al. (2011a) results in error variances of the approxima-
tion 3–4 times lower, when comparing against any particular
model as truth. Therefore, in order to maintain a connection
to the truth metric of Wunch et al. (2011a), in this work we
adopt the modified SHA called “Model_SHA”. This is sim-
ply the model median, discussed above but only used in the
Southern Hemisphere below a latitude of 20◦ S.

4.2 Quality filtering

The construction of the operational OCO-2 filtering and bias
correction for B7 is described in detail in Mandrake et al.
(2015), with updates for B8 described in an online user’s
guide (Eldering et al., 2017b). The training procedure for
both filtering and bias correction for these two versions fol-

lowed a similar approach. Below, we discuss the filtering and
bias correction for version 8 only, and make notes where ver-
sion 7 differed significantly. The filtering procedure yields
two quantities. The first is a binary flag denoted the XCO2

quality flag, which requires that a series of parameter-based
tests are all passed. The second is a graded set of “warn
levels”, which assigns each retrieval an integer value from
0 (most likely to yield accurate XCO2 ) to 5 (least likely to
yield accurate XCO2 ). A genetic algorithm (Mandrake et al.,
2013) finds combinations of variables that are best at pre-
dicting variance reduction in XCO2 over both small areas
(.10× 80 km2) and in the Southern Hemisphere (south of
25◦ S). In this document, we focus only on the quality flag
filtering.

Filtering is accomplished by first identifying variables that
cause the largest δXCO2 , where δXCO2 is defined as the
retrieved–true XCO2 , the latter of which is evaluated for a
given truth proxy. This was done sequentially, by identify-
ing the single variable responsible for the largest fraction of
the variance in δXCO2 . We then created a simple threshold-
based filter for this variable. After application of the filter,
this process was repeated multiple times until it appeared
that the majority of problematic data were removed. Because
bias correction affected this procedure, a preliminary filter
set was first created, after which a preliminary bias correction
was developed. The preliminary bias correction was then ap-
plied, δXCO2 was updated accordingly, and the filters were
re-derived using this bias-corrected δXCO2 . Generally this
had only a minor effect on the filters, and often served to
increase the fraction of data passed through filtering.

Selection of thresholds for particular filters was somewhat
subjective: generally bias was regarded as more problem-
atic than scatter, but both were considered. Variables were
typically selected as filters if they were correlated with bias
greater than about 0.5 ppm, or significant scatter (greater than
about 2 ppm). The filtering variables and thresholds were
derived separately for land (combined nadir and glint) and
ocean soundings. The final values of the filtering thresholds
for the XCO2 quality flag are given in Appendix A. Filter-
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Figure 10. δXCO2 versus select filtering variables for land (nadir+ glint) data, using TCCON as a truth proxy. Shown are the mean bias in
each parameter bin for both raw (black circles) and bias-corrected (light blue circles) XCO2 as well as the standard deviation of the bias-
corrected δXCO2 (dark blue diamonds). The histogram of each parameter is shown in gray. The vertical black dashed lines denote filtering
thresholds for the XCO2 quality flag, while the thin red solid lines show filtering thresholds for the warn levels. The quality flag filters are
applied cumulatively from left to right and top to bottom. The fraction passing at each step, as well as the rms error of the bias-corrected
XCO2 , are shown in the upper right corner of each panel. Please see Table A1 for a complete definition of all of the filter variables.
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Figure 11. Same as Fig. 10 but for ocean glint measurements, where the truth proxy is the multi-model median.

ing variables selected and their thresholds were the same or
similar, regardless of the particular truth proxy used.

An example of this sequential filtering approach is shown
in Fig. 10, which shows the XCO2 error versus filtering pa-
rameters for nadir and glint land soundings, using TCCON
as the truth proxy. Overall, the results were found to be ro-
bust for all our truth proxies. Just a few variables do the bulk
of the filtering. For both land and ocean, the CO2 and H2O
ratios computed by the IMAP-DOAS preprocessor account
for a significant fraction of the total filtering. These variables
represent the ratio of the total column CO2 (H2O) as derived
from the weak CO2 band to that from the strong CO2 band.
As discussed at length in Taylor et al. (2016), values of these
gas ratios that deviate significantly from unity indicate the
presence of significant atmospheric scattering. As shown in
Fig. 10, ratios significantly away from the median values can
result in both large scatter and large biases. Another robust
finding is that biases are associated with large absolute val-
ues of the retrieved–prior surface pressure (dP ) for both the
Level-2 and ABP preprocessor retrievals. All of these vari-
ables (CO2 and H2O ratios and surface pressure) are most

likely diagnosing scattering-induced errors due to improp-
erly modeled clouds and aerosols.

Two variables associated with small-scale variability are
also associated with increased scatter: the standard deviation
of the surface altitude within OCO-2’s field-of-view, and an-
other parameter called “Max_Declocking”, which is deter-
mined independently for each of the three OCO-2 bands. The
latter is related to a slope in the observed radiance within an
individual sounding’s field-of-view, and is determined from
OCO-2’s color slices as discussed in Crisp et al. (2017). The
scatter associated with surface elevation appears to be re-
lated to an instrument-to-spacecraft offset specification error,
which results in small (several hundred meters) pointing er-
rors, which is improved in the next data version (version 9)
and allows for relaxation of this filter (Kiel et al., 2018).

Another interesting variable that can result in both bias and
scatter is the tropospheric lapse rate of the retrieved CO2 pro-
file, called co2_grad_del. It is determined by the difference
in retrieved CO2 between the surface and the retrieval pres-
sure level at 0.7 times the surface pressure, minus this same
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quantity for the prior:

co2_grad_del= [c(1)− c(0.7)]−
[
cap(1)− cap(0.7)

]
, (5)

where c(x) and cap(x) respectively denote the retrieved and
a priori CO2 dry air mole fraction at relative pressure x.
The reason why this variable is strongly associated with bias
and scatter is still being investigated; it may be due to CO2
spectroscopy errors, or some other factor. There is also a fil-
ter associated with dark surfaces; scenes with a strong CO2
band albedo less than 0.05 consistently exhibit a bias in re-
trieved XCO2 and are thus excluded. Note this will tend to flag
most snow- and ice-covered surfaces (such as over Green-
land and Antarctica), which are highly absorbing at wave-
lengths longer than about 2 µm. It also tends to exclude dark
forests such as in the Amazon. There are also filters associ-
ated with the retrieved slope of the strong CO2 band albedo,
the fit quality in the CO2 bands, and a number of retrieved
aerosol variables. Of particular note is the total retrieved opti-
cal depth associated with our larger aerosol types: dust, water
cloud, and sea salt (DWS). High values of DWS are associ-
ated with negative biases in XCO2 over land, and it is used
as both a filter and bias-correction variable. Although ice is
also a large type, it is confined to the upper atmosphere in
our retrieval and has its own dedicated filter.

Similar variables are used for filtering over water surfaces
(Fig. 11), though note that almost no aerosol-related vari-
ables are used. This may be because water surfaces have
relatively uniform optical properties, such that the retrieved
variables indirectly associated with cloud and aerosol scat-
tering, such as the CO2 and H2O ratios and the slope of the
strong CO2 band albedo, are more effective than over land,
obviating the need for additional aerosol-related filtering. It
may also be because most downward-propagating, forward
scattered light is absorbed by the ocean surface, so the path-
ways for aerosol contamination are significantly less than
over land, as noted by Butz et al. (2013).

As seen in the upper left panel of Fig. 11, the dominant
filtering variable for water-glint soundings is the slope of
the strong CO2 band albedo. This is the slope of the re-
trieved Lambertian albedo in that band, which is generally
small and is added onto the reflectivity coming from the pri-
mary Cox and Munk surface, which is a function of wind
speed only. Negative slopes are strongly associated with
XCO2 bias, which appears indicative of either cloud ice or
sea salt aerosol scattering, both of which yield a negative
slope in these units3. Large positive values of this slope are
likely associated with contamination by sulfate aerosol or
other small particle types. The sensitivity of this variable to
cloud and aerosol scattering has been confirmed with simu-
lations. About 10 % of water-glint soundings are flagged by
this filter.

3The units of the albedo slope are in per unit wavenumber, in-
creasing with wavenumber.

After filtration, about 31 % of land soundings and 55 % of
water soundings pass the XCO2 quality flag4. As depicted in
Fig. 12, the pass rates are not uniformly distributed around
the globe. Over land, very bright and dark surfaces are pref-
erentially filtered out, as well as locations with many low
clouds such as the Amazon, which are sometimes missed by
our prefilters (Taylor et al., 2016). Nearly all soundings over
ice surfaces are filtered out, because the albedo of ice is very
low at 2 µm, hence yielding low signal-to-noise. The higher
quality of water soundings is likely due to higher uniformity
of water surfaces in glint mode, higher and more uniform
SNR in all three bands, and fewer surface–atmosphere scat-
tering mechanisms. Over both land and water, soundings at
higher solar zenith angles are also removed at a higher rate
by our quality flag. This is most likely due to the relatively
large effects of scattering on our retrievals for these geome-
tries, specifically when the fraction of the light received at
the detector from atmospheric scattering is a larger fraction
of the total. Over water, approximately 70 % of soundings
pass at lower viewing angles, while nearly all soundings fail
at high viewing angles.

4.3 Bias correction

After filtering, systematic biases remain in retrieved XCO2

which must be corrected in order to minimize errors. The
OCO-2 bias correction contains three main pieces: para-
metric, footprint-level, and global biases. Parametric bi-
ases are functionally related to a given parameter associ-
ated with a given sounding. Examples of this could be sur-
face pressure, albedo quantities, or retrieved aerosol quanti-
ties. Footprint-level biases are corrected to ensure that each
of OCO-2’s eight sensors, or “footprints”, yield the same
XCO2 value when observing similar scenes. This is not al-
ways the case due to small calibration errors in the eight in-
dividual footprints. The final step of the bias correction re-
moves any global mean bias that may remain. The overall
bias-correction equation is then written as

XCO2,bc =
XCO2,raw−CP(mode)−CF(j)

C0(mode)
, (6)

where CP is the mode-dependent parametric bias, CF is the
footprint-dependent bias for footprints j = 1. . .8, andC0 rep-
resents a mode-dependent global scaling factor. The follow-
ing subsections discuss each of these corrections in detail.

4.3.1 Bias correction: parametric biases

The most complex but most important of the three aspects of
the bias correction is inferring biases dependent upon differ-

4Note that these passing rates are lower than those in Figs. 10
and 11, which were based on a smaller training data set that included
more successful and clear-sky soundings, with fewer soundings in
difficult regions such as over heavy clouds or snow and ice-covered
surfaces.
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Figure 12. Fraction of L2FP processed soundings passing a quality filter (a, b) and total number of good-quality soundings per month per
6◦×6◦ boxes (c, d), for the Northern Hemisphere winter (DJF) and summer (JJA). The number plots have a logarithmic color scale, and grid
boxes with no data are shown in gray.

Table 9. Land bias-correction parameters, their coefficients, and percentage of the variance explained, for different truth proxies and observ-
ing modes.

Coefficient (% variance)

Truth proxy Mode N dP co2_grad_del DWS

TCCON Nadir 92k −0.38 (33 %) −0.028 (17 %) −8.8 (4 %)
Glint 68k −0.38 (38 %) −0.026 (14 %) −6.4 (2 %)
Target 245k −0.29 (22 %) −0.023 (24 %) −7.8 (6 %)

SAA Nadir 242k −0.37 (38 %) −0.031 (26 %) −9.5 (10 %)
Glint 251k −0.36 (41 %) −0.030 (24 %) −9.6 (9 %)

Models Nadir 281k −0.34 (28 %) −0.029 (21 %) −9.3 (8 %)
Glint 300k −0.34 (30 %) −0.027 (19 %) −9.0 (8 %)

Models_SHA Nadir 87k −0.35 (28 %) −0.032 (29 %) −8.8 (8 %)
Glint 87k −0.36 (29 %) −0.029 (25 %) −10.3 (12 %)

B8 adopted All −0.36± 0.028 −0.029± 0.0027 −8.5± 1.1
Reference value 0.0 15.0 0.0

B7 adopted All −0.30 −0.028 −7 to −11∗

∗ B7 used ln(DWS) rather than DWS in its bias correction.

ent retrieval parameters. Most near-infrared XCO2 retrievals
have required this, for both GOSAT (Wunch et al., 2011a;
Cogan et al., 2012; Guerlet et al., 2013) and OCO-2 (Reuter
et al., 2017; Wu et al., 2018) measurements. A nontrivial
fraction of the bias comes from the retrieval algorithm it-
self, as shown in the simulation-based study of O’Dell et al.
(2012), in which the instrument model and spectroscopy
were perfect yet biases still emerged in the retrievals. Previ-
ous versions of the ACOS algorithm applied to GOSAT have

shown dependencies on the surface albedo in the CO2 bands,
dP (retrieved minus prior surface pressure), co2_grad_del,
the retrieved ice cloud height, and other variables. The para-
metric bias correction has the form of a multiple linear re-
gression, following Wunch et al. (2011a):

CP =
∑
i

ci(pi −pi,ref), (7)
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Figure 13. Multi-linear bias-correction fit to the three variables used for land soundings. Here, land nadir and glint observations are shown,
with the multi-model median truth proxy. The circles show mean values in each parameter (x axis) bin, and the error bars are the 1σ standard
deviations within each bin. The histogram shows the distribution of the parameter. The legend in each panel shows the starting and ending
standard deviations after application of each variable, and the coefficient for that variable of the multiple regression using all three variables.

where ci are the regression coefficients, pi are the selected
parameters, and pi,ref are convenient reference values. We
note that the reference values are nontrivial in that they inter-
act with the last term in the bias correction, the global scaling
factor. Ideally, the reference value will be the value of the pa-
rameter at which that parameter does not bias the retrieved
XCO2 , but this is impossible to disentangle from the global
scaling factor. Wunch et al. (2011a) took the parameter ref-
erence values to be the estimated global mean value of each
parameter. Here we do not require this, though for some vari-
ables, the estimated global mean is used.

In order to identify the variables of interest, we used all
four truth proxies and identified combinations of one, two,
three, and four variables that removed the most variance, for
each observing mode and over both land and water. Variables
that remove less than 5 % of the variance are not included,
as overfitting is a potential danger here. Typically the differ-
ent truth proxies agree on the most important variables but
disagree on the variables that explain just a few percent of
the variance or less. As shown in Table 9, it was found that
three fit parameters were required over land, and that their
values did not strongly depend on observing mode. These
variables were dP (retrieved minus prior surface pressure),
co2_grad_del, and finally DWS, which as stated previously
is the combined retrieved optical depth of dust, water cloud,
and sea salt aerosol. DWS represents the retrieved optical
depth of large particles in the lower-to-middle troposphere
in the retrieval. While ice cloud particles are large, they are
placed in the upper troposphere in the retrieval, and all other
aerosol types in the retrieval are much smaller.

In Table 9, the coefficients of each parameter inferred
from each truth proxy and observing mode typically agree to
within 10 %–20 %. The final result represents a combination
of the average of these individual values, but was also driven
by consensus amongst the scientists involved. Table 9 also
gives the approximate uncertainty on each parameter, which

Table 10. Ocean glint bias-correction parameters for different truth
proxies.

Coefficient (% variance)

Truth proxy N dP max
(co2_grad_del, −6)

TCCON 72k −0.24 (30 %) 0.078 (5 %)
SAA 385k −0.22 (60 %) 0.092 (10 %)
Models 610k −0.25 (35 %) 0.105 (8 %)
Models_SHA 157k −0.12 (16 %) 0.134 (21 %)

B8 adopted −0.23± 0.06 0.090± 0.024
Reference value 0.0 −6.0

B7 Adopted −0.08 0.077

Figure 14. Same as Fig. 13 but for ocean glint measurements again
using the model mean truth proxy.

is estimated as the standard deviation of the estimates from
the different truth proxies and viewing modes. Also shown
is the B7 bias correction, which was very similar, though it
used ln(DWS) instead of DWS. Figure 13 shows the result of
the multiple regression for these three variables against the
model-based truth proxy, for all nadir and glint soundings
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Figure 15. Estimates of the OCO-2 footprint biases, estimated sep-
arately for each observing mode and surface type. Because of their
similarity, a single set of biases was used in the end.

over land. In general, dP explains about 30 % of the vari-
ance over land, co2_grad_del about 20 %, and DWS roughly
5 %–10 %.

A similar procedure was followed for glint soundings over
water. For this observing mode, only dP and co2_grad_del
were needed; all other variables explained only a very small
fraction of the variance, and were not consistent among truth
proxies. The fit to these two variables for the model-based
truth proxy is shown in Fig. 14. A true linear regression
will not work for co2_grad_del. Instead of fitting a nonlinear
form, we instead fit against the variable max(co2_grad_del,
−6). This gives essentially the fit as shown in the figure,
where the best-fit line to the bias increases with increasing
co2_grad_del until a value of−6, above which the fitted bias
is held constant. As shown in Table 10, the different truth
proxies again yielded similar results to within about 20 %,
with the exception of “Models_SHA”, which was an out-
lier. The reason for this is unknown, though we speculate
that the actual parameter variability in the Southern Hemi-
sphere is too small to obtain sensible slopes. Therefore, this
truth proxy was excluded in the calculation of the final coeffi-
cients for glint soundings over water. Also, it is worth noting
that the dP coefficient in B7 was roughly 3 times smaller
than the value of −0.23 adopted for B8. This was driven by
inconsistencies in the B7 truth proxy data sets and a very
small training data set, which yielded an unrealistically small
value. Later analyses showed that B7 probably should have
used a higher value, more in line with the B8 result.

4.3.2 Bias correction: footprint biases

After fitting for the parametric biases, the dependence of the
XCO2 bias on footprint was evaluated. As with the parametric
biases, the footprint biases were evaluated using the suite of
truth proxies and for each observing mode separately (land
nadir, land glint, and ocean glint). For all frames that con-
tained all eight footprints, the difference of each footprint

Figure 16. Scatter plot of 130 OCO-2 B8 target-mode XCO2 obser-
vations versus colocated TCCON observations, used in the determi-
nation of the global scaling factor C0 from Eq. (6). OCO-2 values
have the parametric and footprint bias corrections applied.

from the mean of its frame was calculated, with the result be-
ing the estimated set of footprint biases for each truth proxy.
Note that this was done after application of the parametric
bias correction. The resulting biases were quite consistent
across truth proxies; thus, the results across truth proxies
were averaged. As shown in Fig. 15, there was virtually no
dependence on viewing mode, and no obvious land–water
differences. It appears that the footprint-level biases are truly
instrument-related, and thus do not seem to strongly depend
on other factors. Therefore, a single set of footprint-level bi-
ases was used. The adopted footprint biases for footprints
1–8 were (−0.36, −0.15, −0.16, −0.14, 0.02, 0.33, 0.13,
0.34) ppm, with an uncertainty of roughly ±0.03 ppm (1σ )
on each. The reason for the general increase in this bias with
increasing footprint is not known. Finally, while the fraction
of the variance explained by footprint-level biases (∼ 2 %) is
small compared to that explained by the parametric biases,
they are straightforward to evaluate and could have an effect
on local-scale analyses, and are therefore removed.

4.3.3 Bias correction: global scaling

Despite the corrections described above, there is still an over-
all XCO2 bias on the order of 1–2 ppm relative to the true
atmosphere. As shown in Eq. (6), the denominator term C0
represents a global bias correction, and is parametrized as a
function of viewing mode. As for the quality filtering and
parametric bias correction, we found that the land scaling
factor is roughly the same for nadir, glint, and target modes,
such that a single scaling can be used for all land soundings.
Ocean glint required a slightly different global scaling factor.
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Figure 17. Annual mean biases and changes from the prior for all quality-flag “good” soundings from September 2014 through Septem-
ber 2017. (a–c) Parametric biases for dP , co2_grad_del, and DWS. (d) Sum of the parametric bias terms – note the color scale change.
(e) Departure of the raw retrieved XCO2 , including the global scaling correction, from the prior, XCO2,raw/C0−XCO2,ap. (f) Departure of
the bias-corrected XCO2 from the prior, XCO2,bc−XCO2,ap.

Table 11. Global scaling factors (divisors) for OCO-2 version 8.

Data set Method N Divisor C0

Land target TCCON 138 0.9958
Land nadir TCCON 313 0.9962
Land glint TCCON 277 0.9960
Ocean glint TCCON 236 0.9956
Ocean glint Coastlines∗ 536 0.9955
Ocean glint Model bootstrap∗ 500 000 0.9954

Land (all) Adopted 0.9958
Ocean glint Adopted 0.9955

∗ Using a value of 0.9958 for land soundings.

The B8 global scaling was determined primarily from sev-
eral hundred direct OCO-2 overpasses of TCCON stations.
We followed the geometric colocation method of Wunch
et al. (2017), with the exception that sites in the Southern
Hemisphere required the same latitude and longitude colo-
cation thresholds as sites in the Northern Hemisphere. The
TCCON value for a given overpass was determined as the
mean of the observations within±2 h of the OCO-2 overpass.
At least 3 valid TCCON and 20 quality-flag “good” OCO-2
soundings were required per overpass. For each viewing
mode, the slope m of the best-fit line passing through the
origin was calculated with the method of York et al. (2004):

XCO2,tccon =
XCO2,OCO2

C0
, (8)
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which provides the best-fit value of C0. The results for each
viewing mode are shown in Table 11 under Method “TC-
CON”. It can be seen that the three sets of land overpasses
yielded a scaling factor C0 consistent with each other to
within their respective errors. The errors are representative
differences of the fitted slope due to both retrieval errors
as well as linear fit differences (for instance, using a least-
squares fit versus a least-absolute-deviation fit), and were
typically ±0.0003 (∼ 0.12 ppm). Because target-mode ob-
servations were better colocated, the target observation value
of 0.9958 was adopted for all land observations.

For ocean glint, the global scaling factor was estimated
with three methods: direct overpasses of TCCON stations
and two independent “bootstrap” methods, using coastline
crossings and models. Direct overpasses of TCCON stations
yielded a value of 0.9956, slightly lower than the adopted
land value but still consistent to within errors. For the coast-
line bootstrap method, a set of several hundred small ar-
eas centered on coastlines were identified in which it was
possible to ratio the mean value of XCO2 over water to the
mean value of XCO2 over land. This yielded a mean wa-
ter/land ratio of 0.9997± 0.0001, meaning that ocean values
were slightly lower than land values. Multiplying this wa-
ter/land ratio by the land scaling value yielded an ocean scal-
ing value of 0.9955. Finally, the multi-model median truth
proxy was used, wherein the slope of OCO-2 versus models
was calculated, sampled at good-quality OCO-2 sounding lo-
cations. It was found that land required a scaling of 0.9950
and ocean a scaling of 0.9946, suggesting a water/land ra-
tio for OCO-2 of roughly 0.9996± 0.0001, similar to that
of the coastline crossing value, and thus an ocean scaling
value of 0.9954. Note that the absolute comparison of mod-
els relative to OCO-2 was not used here, as spin-up issues
and averaging kernel corrections (ignored in this analysis)
could yield a spurious global offset between the models and
OCO-2. Therefore, only relative land–ocean differences were
used to infer C0 in this “Model Bootstrap” method. As seen
in Table 11, the “bootstrap” methods were remarkably con-
sistent with each other and with the direct TCCON overpass
method, all suggesting an ocean scaling of roughly 0.9955.

All of the methods described above for determining the
global scaling of XCO2 show remarkable consistency with
each other, giving confidence that the overall scale of OCO-2
data is known to within a few tenths of a ppm, and the land–
ocean difference is known to better than 0.2 ppm. One caveat
is that the direct TCCON overpass comparisons did not ac-
count for the averaging kernel correction in this analysis.
After the release of OCO-2 XCO2 B8, subsequent analysis
showed that this correction typically lowered the value of
TCCON by ∼ 0.1 ppm on average relative to OCO-2. There-
fore, there is additional possible uncertainty in the overall
magnitude of OCO-2 data by this amount.

4.3.4 Bias-correction evaluation

With all three sources of bias now characterized, the overall
role of the bias correction in the retrieval can be evaluated.
Figure 17 is an attempt to show this at the mean annual scale.
Panels (a)–(c) show the biases due to the three different bias
terms: dP , co2_grad_del, and DWS. Of these three, dP is
the strongest. This is apparent in panel (d), which shows the
sum of the parametric biases (note the scale change between
columns). Panel (e) shows the mean change from the prior
in the raw retrieval, after correcting for the global bias term
only (which is likely due to spectroscopic and instrumental
bias). The change from the prior to the bias-corrected XCO2

is shown in panel (f), which combines these two terms.
The parametric bias, while smaller than the difference be-

tween the raw retrieved and prior XCO2 , is of a comparable
order of magnitude. Ideally, the parametric bias would be
much smaller. As noted above, the parametric bias is domi-
nated by the dP term. This term reflects the fact that the error
in XCO2 is reduced using the prior rather than retrieved sur-
face pressure. That is, the ACOS-retrieved slant column of air
is dominated by systematic errors that are not reflected in the
estimated CO2 slant column. We have identified two easily
correctable sources of such error, both related to how the B8
surface pressure prior fields were derived. One of these was
caused by a slight error in the knowledge of the pointing of
the OCO-2 instrument that induces spurious small-scale er-
ror in the estimated prior surface pressure in regions of high
topographic variability. The second was caused by sampling
the GEOS5 FP-IT surface pressure at the wrong time of day,
by up to several hours. Both of these effects have been cor-
rected for in the version 9 OCO-2 XCO2 data, described in
detail in Kiel et al. (2018).

Even after correcting the prior, the OCO-2 surface pres-
sure retrievals still contain significant regional biases. These
biases have a largely zonal structure, with a negative bias of
up to ∼−5 hPa at the highest latitudes and a positive bias
of several hPa in the tropics, with an overall mean bias of
roughly +2 hPa. The standard deviation of the surface pres-
sure bias (relative to the GEOS5 FP-IT prior) for quality-
filtered soundings is roughly 2.8 hPa. By binning nearby
soundings, it is found that more than 2.4 hPa of this variation
comes from systematic error scales greater than 1◦. One pos-
sible hypothesis is that this systematic error is due to O2 ab-
sorption cross-sectional errors and how they manifest them-
selves in the retrieval. For instance, an incorrect parameter-
ization of the temperature dependence of absorption could
yield errors similar to those observed. Future updates to our
spectroscopy may reduce this bias, and are an active area of
research within the ACOS team.

Currently, however, these multi-hPa systematic errors in
the retrieved surface pressure are likely larger than errors in
the GEOS5 FP-IT prior, which are believed to be on the or-
der of 1–2 hPa. For instance, three reanalysis surface pres-
sure sets were recently compared, and it was found that the
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Figure 18. TCCON validation for OCO-2 XCO2 , versions B7 (a, c, e) and B8 (b, d, f), for land nadir (a, b), land glint (c, d), and ocean
glint (e, f) observations. Each symbol represents the overpass–mean comparison for one site overpass, with the total number of overpasses
per site given in parentheses. Thus each symbol represents tens to hundreds of OCO-2 observations co-averaged. Quality-filtered and bias-
corrected XCO2 is shown for OCO-2, along with the averaging-kernel correction. The solid line denotes the one-to-one line, and the dashed
line is the line of best fit. The colocation strategy is described in the text. Shown in the upper left of each panel are the total number of
overpasses (N ), the mean, standard deviation (σ ), and rms of the OCO-2 minus TCCON differences, the slope of best fit, and the R2 of the
two data sets.
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differences were as small as 0.5 hPa in the tropical oceans
and became larger at higher latitudes, such as in the South-
ern Ocean, where rms differences were on the order of 2 hPa
(Jucks et al., 2015, Sect. 4.2.1). This is the basic reason be-
hind the artificially high (4 hPa) 1σ uncertainty on the prior
surface pressure currently used in the OCO-2 retrieval. If
future versions of the retrieval (including spectroscopy up-
dates) yield a more unbiased retrieval of surface pressure, it
may reduce the role of dP in the bias correction and lead to
a more accurate retrieval of XCO2 .

The figure reveals several additional interesting features.
The co2_grad_del bias is of a smaller magnitude than the
dP bias, and has the strongest effect in tropical forests and
a more diffuse effect elsewhere, including the tropical and
southern oceans. The DWS bias has the largest effects over
northern Africa, temperate Eurasia, and Australia, where
large dust particles are prevalent. The total parametric bias
pattern can sometimes cancel the departure from the prior,
such as over Australia, indicating that the original depar-
ture was likely spurious. However, the overall large posi-
tive departure in the northern middle-to-high latitudes is not
strongly affected by the bias correction, and thus appears to
be a feature well captured by the native retrieval itself. This
latter feature seems to imply that the interhemispheric gra-
dient is too weak in the TCCON prior. The GGG2014 TC-
CON CO2 prior relies exclusively on the age of the air to
create the interhemispheric gradient of CO2. The next re-
lease of the TCCON software includes an age-independent
term in the CO2 priors representing the source–sink imbal-
ance, which will roughly double the interhemispheric gradi-
ent (Geoff Toon, personal communication, 2018).

5 Brief evaluation of OCO-2 XCO2

Thus far, we have completely described the mechanics of
the current ACOS retrieval and methodology, but have yet
to evaluate the actual algorithm performance. As B7 XCO2

was validated in detail in Wunch et al. (2017), in this sec-
tion we focus primarily on the differences (mainly improve-
ments) between B7 and B8. Figure 18 shows the relationship
between colocated TCCON and OCO-2 XCO2 observations,
for both B7 and B8 OCO-2 retrievals. Operational quality
filtering and bias correction have been applied for each ver-
sion. We used the same colocation strategy as described in
Sect. 4.1.1, but with the additional requirement that fos-
sil fuel emissions from the 1 km 2013 ODIAC database
(Oda and Maksyutov, 2011), smoothed with a 5 km Gaussian
smoother, be less than 300 g m−2 month−1 at the location of
the OCO-2 soundings; this eliminated OCO-2 soundings in
the vicinity of strong fossil fuel sources. All good-quality
OCO-2 soundings within each overpass were averaged (thus,
one symbol on each plot denotes one overpass). Only over-
passes with at least 10 such OCO-2 soundings were included.
The TCCON XCO2 values are averages of all good-quality

TCCON soundings at that site within ±2 h of the OCO-2
overpass.

Based on these figures, B8 appears generally superior to
B7 in terms of agreement with TCCON. First, there are
more good-quality data in B7, at least for glint observations.
This is primarily due to improvements in the prescreeners.
In terms of accuracy, the scatter and outliers of XCO2 over
both land and ocean are reduced in B7, especially over ocean,
for which the outliers were driven by Southern Hemisphere
observations (in particular the high southern-latitude sites,
Lauder and Wollongong). The bias over land in B7 was sig-
nificant, with a 0.3 ppm difference between land nadir and
land glint. The overall apparent bias over land of 0.2–0.3 ppm
is partly due to neglecting the averaging kernel effect when
solving for the global divisors in the bias correction, and
partly due to methodological differences in how we calculate
the global bias in the first place. While the R2 values are sig-
nificantly higher than those reported in Wunch et al. (2017),
this is due to the extended length of the data record used
here. Coupled with the secular increase in CO2, this leads to
a larger dynamic range in XCO2 and hence more signal and
higher correlations than when using a shorter data record.
Finally, we note that in B8 (and to some extent B7) there
is generally a negative slope between TCCON and OCO-2.
This appears to be due to a trend in OCO-2 XCO2 relative to
TCCON (not shown), in which OCO-2 appears to be losing
XCO2 at a rate of 0.1–0.2 ppm yr−1, though this trend is not
statistically significant. The apparent trend may be due to an
OCO-2 calibration effect, and is currently under study.

The general improvement in B8 over B7 can also be seen
in comparisons to models. Figure 19 shows the compari-
son of both versions to the six-model suite as discussed in
Sect. 4.1.3. The large-scale differences between OCO-2 and
model XCO2 are generally reduced in the latest version. The
positive bias with respect to models over the Southern Hemi-
sphere mid-latitude oceans is nearly removed in B8, as are
some negative biases over Australia and the Sahara. Positive
biases in the Northern Hemisphere mid-to-high latitudes over
land are also reduced. We also see that the latitudinal extent
of the ocean glint data is greater in version 8, especially in
DJF; again, this is primarily due to updates in the prescreen-
ers. A large-scale negative difference between OCO-2 rela-
tive to the model median persists in the tropical oceans, par-
ticularly over the Pacific and Indian basins, and is currently
under study.

There are clear deficiencies remaining in the B8 OCO-2
XCO2 product. First, note again that Fig. 18 showed overpass
average statistics. As each overpass had at least 10 OCO-2
soundings, and each sounding typically had < 1 ppm poste-
rior uncertainty, if the errors were all independent, the over-
pass average errors would be less than 0.3 ppm. Even taking
into account TCCON and colocation errors, it is likely that
the overpass-level (small-area) errors are still much larger
than this due to correlated errors in the OCO-2 retrievals.
A more detailed validation of OCO-2 B8, along with how
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Figure 19. The difference between OCO-2 bias-corrected XCO2 versus the model median where the models agree for both version 7 (a, c)
and version 8 (b, d), using the agreement criteria as given in Sect. 4.1.3. Results are shown for two seasons: DJF 2014–2015 (a, b) and JJA
2015 (c, d).

its errors are correlated and how they integrate down, is the
subject of a forthcoming paper (Kulawik et al., 2018). Other
error sources also are still plainly visible in the OCO-2 data.
For instance, the topography-related biases noted by Wunch
et al. (2017) still exist in B8, but have recently been tracked to
a misspecification of the satellite-to-ground pointing vector,
and will be corrected in a forthcoming version 9. Also, there
are still cloud-related errors in the OCO-2 data, for instance
as noted by Massie et al. (2016). It is believed that these are
often related to three-dimensional cloud effects, for instance
as discussed in Merrelli et al. (2015).

6 Summary and outlook

As described in this paper, the OCO-2 retrieval algorithm for
XCO2 has been evolving more or less continuously over the
last decade, and is beginning to achieve accuracies that en-
able ground-breaking carbon cycle science. The latest ver-
sion (B8) has the lowest biases and highest throughput of
any version yet, though regionally coherent biases still re-
main at a significant level (∼ 1 ppm). A number of choices
and assumptions go into the algorithm, and due to its com-
plexity in terms of the number of variables it must accom-
modate, further research is needed to improve it. These as-
sumptions relate to a number of factors, such as clouds and
aerosols, surface pressure, spectroscopy, and potential instru-
ment problems (e.g., scattered light, drifting calibration), to

name a few. Advances in these areas will form the basis of
future algorithm improvements. These issues affect not only
OCO-2, but potentially all current and future sensors rely-
ing on this technology to measure XCO2 , such as the TanSat
(Yang et al., 2018), OCO-3 (Eldering et al., 2018), GOSAT-2
(Nakajima et al., 2012), MicroCarb (Pascal et al., 2017), and
GeoCarb (Moore et al., 2018) missions.

To fully exploit space-based short-wave infrared measure-
ments of reflected sunlight at high spectral resolution for
studies of the carbon cycle, improvements must be made in
several areas. First, satellite-based XCO2 retrieval biases must
be further reduced. Next, in order to make and validate re-
trieval improvements, we must have validation data that are
more accurate than the satellite retrievals in the first place.
Satellite retrievals are currently pushing that limit; for in-
stance, the stated station-level calibration accuracy for TC-
CON is currently 0.4 ppm (Wunch et al., 2010). Calculations
of OCO-2 station-level differences with TCCON show that
the mean absolute bias at all stations with at least five valid
overpasses is 0.4 ppm, right at this level. Finally, we must
have inversion and data assimilation systems that can make
maximum use of these data. This requires, for example, min-
imizing transport model error, currently an active area of re-
search (see, e.g., Basu et al., 2018; Schuh et al., 2018).

Significant progress has been made in the past decade
in the retrieval of XCO2 from SCIAMACHY, GOSAT, and
OCO-2 radiances. This paper shows that this progress con-
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tinues. Given the numerous sensors planned for development
and launch in the near term, the future of passive remote sens-
ing of CO2 remains bright.

Code and data availability. The OCO-2 L2 Full Physics Code
is open source and available on Github https://github.com/nasa/
RtRetrievalFramework (last access: 4 December 2018), and
the User’s Guide, for it is available at http://nasa.github.io/
RtRetrievalFrameworkDoc/ (last access: 4 December 2018). All of
the OCO-2 data products are publicly available through the NASA
Goddard Earth Science Data and Information Services Center (GES
DISC) for distribution and archiving (http://disc.sci.gsfc.nasa.gov/
OCO-2; last access: 4 December 2018). TCCON data were ob-
tained from the TCCON data archive hosted by CaltechDATA, and
are available from https://tccondata.org/.
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Appendix A: XCO2 quality flag definitions

The ACOS XCO2 quality flags use a number of variables.
Each has an upper and lower threshold. These variables and
thresholds are given in Table A1.

Table A1. XCO2 quality flag definition for version 8.

variable meaning land filter ocean filter

co2_ratio Ratio of Band 2 to Band 3 CO2 column from the IDP∗ algorithm [1, 1.025] [0.997, 1.018]
h2o_ratio Ratio of Band 2 to Band 3 H2O column from the IDP∗ algorithm [0.88, 1.01] [0.88, 1.01]
dP Retrieved minus prior surface pressure (hPa) [−6, 14] [−4, 10]
dPABP Retrieved minus prior surface pressure from ABP algorithm (hPa) [−10, 13] [−50, 10]
co2_grad_del Retrieved vertical gradient in CO2 (ppm) (see text for details) [−80, 100] [−20, 30]
albedo_slope_sco2 Retrieved slope of the Lambertian component of the [−1.8× 10−4, 10−3] [5× 10−6, 7× 10−5]

surface albedo (cm−1)
rms_rel_wco2 Relative rms of Band 2 fit residuals (%) < 0.22 < 0.30
Max_Declocking_wco2 See text for details < 0.75 < 0.2
Max_Declocking_sco2 See text for details < 0.3
eof33rel Retrieved relative amplitude of 3rd EOF of Band 3 [−0.3, 0.25]
wind speed Retrieved surface wind speed (m s−1) [1.5, 25]
Altitude SD Standard deviation of the surface elevation in the FOV (m) < 60
Band 3 albedo Retrieved albedo SCO2 band [0.05, 0.6]
S31 Continuum signal band 3 rel. to band 1 [0.03, 0.4]
τIC Retrieved optical depth of ice cloud < 0.04 < 0.035
τ Retrieved total aerosol+ cloud optical depth < 0.5
τDU+ τWA+ τSS Retrieved optical depth of three large types < 0.25

(dust, water cloud, and sea salt)
τWA Retrieved optical depth of water cloud [0.0005, 0.1]
τSS Retrieved optical depth of sea salt < 0.125
HIC Retrieved relative pressure height of ice cloud [−0.5, 0.45]
τSU+ τOC Retrieved sulfate+ organic carbon optical depth < 0.3
τOC Retrieved organic carbon optical depth < 0.08
τST Retrieved stratospheric aerosol optical depth < 0.02

∗ IMAP-DOAS preprocessor.
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Appendix B: Land surface BRDF parameterization

Since OCO-2 observations outside of target mode contain
only single observation geometries, it is unrealistic to attempt
to retrieve the BRDF shape on a per-observation basis. This
fact, combined with the similar improvement seen in the dif-
ferent trial BRDFs, suggested that a single fixed BRDF shape
could be used for all land footprints. The selected BRDF
shape is a particular parameter set for the Rahman–Pinty–
Verstraete (RPV) kernel (Rahman et al., 1993) that has been
used as an initial guess for spectral multi-angle polarimet-
ric aerosol remote sensing (Dubovik et al., 2011). This fixed
BRDF shape is used within the physical forward model, and
a similar set of two state variables is applied independently
to each band to allow for the BRDF amplitude to have a lin-
ear spectral variation across the band. Since the RPV kernel
assumes the surface is azimuthally symmetric, the absolute
values of the azimuth angles are unimportant and the kernel
function can be expressed in terms of the azimuth angle dif-
ference. Thus, the BRDF model used in the algorithm is a
function of three angular variables, and can be expressed as

ρ(θi,θr,1φ)= [w+ s(ν− ν0)]F(θi,θr,1φ;C), (B1)

where θi and θr are the zenith angles in the incident and re-
flected directions,1φ is the relative zenith angle,w and s are
the BRDF “weight” and “weight slope”, F is the fixed BRDF
shape (the RPV kernel), and C are the fixed BRDF shape
parameter values. The weight w and weight slope s are the
retrieved variables, one each per band, with the linear varia-
tion computed in wavenumber space relative to per-band ref-
erence values (ν0). The RPV kernel function (Rahman et al.,
1993) has three parameters: ρ0, the hotspot parameter;2, the
asymmetry parameter; and k, the anisotropy parameter. The
functional form, as implemented in the VLIDORT routines
used by the OCO-2 forward model, uses the exact form as
given in Rahman et al. (1993).

The fixed values used for the parameters are ρ0 = 0.05,
2=−0.1, and k = 0.75. Figure B1 shows the RPV kernel
shape for these parameters.

Figure B1. The shape of the RPV kernel for all reflection angles,
for a 45◦ solar incidence angle. The incident direction is at 180◦.
(meaning the solar irradiance is directed inwards from the left side).

While the retrieval works with the weight and slope vari-
ables, w and s, due to the normalization of the RPV ker-
nel these are not the most convenient or intuitive quanti-
ties. Therefore, we evaluate the actual BRDF kernel func-
tion for the primary observation geometry (incident direction
from the Sun, reflected direction toward the sensor), and then
scale by the retrieved weight and weight slope, to obtain the
BRDF reflectance and reflectance slope. In the absence of
atmospheric scattering, these values will be equal to the re-
trieved albedo and albedo slope using a Lambertian assump-
tion. Therefore, in much of the high-quality retrieval output
from the Version 8 algorithm, the reported BRDF reflectance
and reflectance slope values will be similar to the albedo and
albedo slope values reported in the Version 7 results. Obser-
vations with relatively higher amounts of aerosols or other
complicating effects would be expected to have larger differ-
ences between the BRDF reflectance and Lambertian albedo.
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