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Abstract 

This work proposes a unified approach to predict glass transition temperatures (Tgs) of 
linear homo/hetero-polymers and cross-linked epoxy resins by machine-learning approaches 
based on descriptors of reagents undergoing polymerization, represented in a formal way such as 
to encompass all the three scenarios: linear homo- and heteropolymers, plus network 
heteropolymers. The “formal” representation of reagents is a problem-specific, herein designed 
standardization protocol of compounds, sometimes differing from typical structure curation rules 
in chemoinformatics. For example, heteropolymers are represented by the two partner reagents, 
while homopolymers are depicted as formal “heteropolymers” with identical partners. The key 
rule proposed here is to choose “formal” monomers such as to minimize the number of marked 
atoms, involved in bonds being formed or changing bond order. Accordingly, carbonyl 
compounds are rendered as the less stable vinyl alcohol tautomer, following the same formalism 
as in olefin polymerization, in order to minimize the total number of formal polymerization 
mechanisms and herewith provide the most general framework encompassing a maximum of 
polymerization processes. ISIDA (In Silico design and Data Analysis) fragment counts with 
special status given to the “marked atoms” participating in the polymerization process were 
combined using “mixture” strategies to generate the final polymer descriptors. Three predictive 
models based on SVR (Support Vector Regression) are discussed here. After reproducing results 
of Katritzky et al. with a local model applicable only to linear homo/hetero-polymers, an epoxy 
resin-specific model applicable to both linear and network forms was built. Eventually, the 

general model applicable to all these families was constructed. In 12  repeated 3-fold cross-
validation challenges, it displayed the highest accuracy of Q2 = 0.920, RMSE = 34.3 K over the 
training set of 270 polymers, and R2 = 0.779, RMSE 35.9 K for an external test set of 119 
polymers. GTM (Generative Topographic Mapping) analysis produced a 2D map of “polymer 
chemical space”, highlighting the various classes of polymers included in the study and their 
relationship with respect to Tg values. The epoxy-specific and general models are publicly 
available on our web server: http://infochim.u-strasbg.fr/webserv/VSEngine.html. 
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1. Introduction 
 When a liquid is cooled sufficiently fast (supercooled), crystallization can be avoided and 
a glass is formed with an amorphous structure.1 This occurs at the glass transition temperature 
(Tg), where the increasing viscosity reaches 1013 poise that the material can be regarded as 
solid.1,2 Under constant pressure, temperature-dependent changes of liquid volume or enthalpy 
largely differ below and above Tg. It should be noted that the glass transition is only a kinetic 
phenomenon and does not mark a phase transition, so that glassy polymer is not in 
thermodynamic equilibrium below its Tg.1,3 Tg is an important indicator of key processing and 
performance properties such as heat resistance, durability, and adhesion of the polymer since the 
heat capacity, the coefficient of thermal expansion, and viscosity are affected by glass transition. 
Tg is generally measured using Differential Scanning Calorimetry (DSC) or Dynamic 
Mechanical Thermal Analysis (DMTA).4–5,7 Glass transition occurs over a relatively wide 
temperature range and depends on conditions such as measurement method, experimental period, 
and pressure under measurement.4,8 Tg is also highly dependent on the structure of the polymer 
(crosslinking, chain stiffness), constitutive (additives, fillers, impurities), and conformation 
(stereo regularity). Therefore, it is difficult to uniquely determine by experiment, and the 
differences between the reported values of Tg in literature can be very large. 

Numerous Tg prediction models have been already developed.5–6, 9–24 Krevelen and co-
workers developed the basis of group additive property (GAP) method.9–10 The GAP method 
predicts polymer Tgs as a sum of calibrated contributions associated to typical substructures 
present in the monomers. Starting from here, many studies have been attempted to improve 
prediction accuracy and applicability domain by calibrating the contributions for additional 
substructures. Bicerano used a data set of 320 polymers5 to build a model that combined a 
weighted sum of structural parameters along with the solubility parameter of each polymer. A 
linear regression procedure was used to produce a model with a standard deviation of 24.65 K 
and a correlation coefficient of 0.9749. However, no external data set compounds were withheld 
to validate this model. Most of these approaches gave relatively good predictive correlations, but 
they are only applicable for polymers containing chemical structural groups previously 
investigated. 

At the end of the 1980’s, more general QSPR (Quantitative Structure–Property 
Relationships)-based Tg predictions were developed.14–17 Hopfinger and co-workers used 
molecular modeling to generate polymer descriptors (conformational entropy, mass moments, 
and intermolecular interactions) used to complement the group-specific terms in GAP models.14–

15 Waegell and co-workers approached modeling by using an Energy, Volume, Mass (EVM) 
QSPR model.16–17 For linear and branched aliphatic acrylate and methacrylate polymers, the 
standard deviation from linear regression was 12 K with an R2 value of 0.96. This model allowed 
the prediction of polymer Tg values not used for training of the original multiple linear 
regression, with an average absolute error of 10%. In the 1990’s, Tg prediction focused on 
models without explicit knowledge of polymer 3D structure and without falling back to a 
predefined set of substructures of known contributions.6,18–21 Katritzky and co-workers generated 
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over 400 constitutional, topological, geometrical, and quantum chemical descriptors directly 
from the molecular structure of the unit block in the polymer with the Comprehensive 
Descriptors for Structural and Statistical Analysis (CODESSA) program.18–19 They showed that 
Tg divided by the molar weight of the repeating unit (M) improved squared correlation 
coefficient, resulting in an R2 value of 0.946. In cross-validation of their training set, the Tg 
values for the 88 linear homopolymers, from the results of Tg/M prediction, with a standard error 
of 0.33 K mol g-1. 
 All the discussed approaches for predicting Tg values were developed on the basis of 
homopolymers, despite the importance of epoxy-amine copolymers in commercial applications. 
There are, however, studies concerning a small number on amine-cured epoxy resins.22–24 
Bellenger et al. predicted about 40 Tgs of epoxy-amine copolymers based on the additivity law 
for copolymers and the contribution of cross-linked structures.23 They have compared several 
physical and empirical approaches of the effect of cross-linking on Tg. Morrill et al. have 
predicted Tgs for epoxy-amine copolymers with the CODESSA program.24 They succeeded to 
predict the Tg changes depending on the epoxy-amine molar ratio. However, their data set was 
rather limited. 
 So far, thus, most Tg prediction studies use molecular descriptors of the repeat unit in the 
polymer, which implies that they are only applicable to homopolymers –(A)n– or linear 1:1 
heteropolymers –(AB)n– which can formally be regarded as “homopolymers” of unit AB. By 
contrast, repeating units cannot be always found in epoxy resins forming a network structure. As 
a result, Tg prediction of linear homopolymer and epoxy–amine copolymers were so far treated 
separately, because of assumed incompatibility of input descriptors: classical molecular 
descriptors of the repeat unit, on one hand, versus a combination of descriptors of copolymer 
reagents (and information about molar ratios) for epoxy-amine resins. Since epoxy–amine 
copolymers form a complicated 3D network structure, we herein advocate focusing on 
copolymer reagent structures (the polyamines and polyepoxides) and their molar fraction to 
generate “implicit” descriptors for the resulting polymer.  

The herein proposed strategy is possible because the basis of QSPR is the neighborhood 
behavior principle: similar molecules are likely to have similar properties. Molecules are 
represented as points in a descriptor space, with the vector of descriptors defining their 
coordinates. In this space, similarity metrics are defined, allowing to quantitative assess the 
distances (dissimilarity) between molecules. The actual machine learning method – here, Support 
Vector Regression SVR – basically impacts on the concrete way in which the concept of 
“neighborhood” is defined in that space, ranging from straightforward Euclidean distance to 
sophisticated non-linear “kernels”, but has no alter the fundamental principle of QSPR. In this 
work, “molecules” are actually monomer pairs, described by the concatenated ISIDA descriptor 
vectors. The QSAR principle is – for the best or the worst - completely oblivious of mechanistic 
aspects. Let us exemplify this on hand of the case of two heteropolymers (A,B) with glass 
transition temperature Tg, versus (A’,B) at Tg’. Assume A and A’ to be rather analogous 
monomers of the same type – for example, A and A’ could be epoxides differing by the presence 
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of an additional ethyl group in A’. How does the model achieve prediction of Tg’’ for the polymer 
(A’’,B) – where A’’ features an methyl group as new substituent? It will infer that the point 
(A’’,B) is situated in descriptor space roughly halfway between reference points (A,B) and (A’,B) 
– and therefore Tg’’=(Tg+Tg’)/2. Why does Tg change to Tg’’ upon addition of an ethyl 
substituent? It may be because its presence triggers a change of monomer reactivity and impacts 
on chain length and/or on the degree of branching of the polymer – or it may simply strengthen 
hydrophobic contacts between polymer chains, or it may trigger a combination of all the above 
effects. This question is – fortunately – not requiring an answer in QSPR, which simply assumes 
that, whatever impact an ethyl group has on Tg shift, the impact of the methyl group will be 
roughly half as strong. This enables prediction of the property of the methyl analogue without 
needing to synthesize it and characterize its chain length and branching. As far as the similarity 
relationship between the “formal” representations of polymers in descriptor space correctly 
renders the inter-species “distances” (in the sense that higher distances statistically correlate with 
increased Tg differences) the QSPR model will be predictive. By this approach, the propyl 
derivative will experience a Tg shift of 150% with respect to Tg-Tg’|, butyl – 200%, etc. This 
simplistic extrapolation is obviously prone to fail at a certain point, and the final model cannot be 
better than the data it was based on. If the butyl derivative is however part of the training set, 
providing experimental evidence that the local trend in Tg is actually flattening off with respect to 
alkyl chain length, then the QSPR model will gain in accuracy for both the propyl and pentyl 
derivatives, direct neighbors of the butyl reference point. Of course, physico-chemical 
descriptors like mean chain length and branching could be used in QSPR, with many potential 
benefits, but at very high cost: these would need to be either measured (limiting application to 
existing polymers only) or predicted, by an approach that remains to be defined. However, such 
descriptors would not fundamentally change the empirical nature of the approach, but simply 
redefine the “formal” descriptor space. Perhaps the latter would support some metric leading to 
statistically more robust models – but the gain in predictive power is unlikely to compensate for 
the loss of applicability to not yet synthetized species. The formal representation employed here 
was chosen such as to allow “virtual screening” of polymer candidates before their synthesis, by 
simple interpolation in a formal space based on monomer structures. It was assumed that the 
final state of the polymer is implicitly “encoded” in the structures of its monomers – which is a 
limiting hypothesis: chain length and degree of branching might also depend on polymerization 
reaction conditions. However, the explicit impact of conditions could not be considered here, 
because of lacking data. Otherwise, reaction conditions could be entered as novel descriptors1, 2, 
in completion of the vector derived from monomer structures. This would still render the 
approach independent of knowledge of structural details, e.g. able to perform virtual screening. 
In Silico design and Data Analysis (ISIDA) descriptors25–26 monitor the occurrence of user-
defined fragments in compounds, furthermore supporting “marked-atom”27 strategies (where 
specified atoms are “marked” in the input structure and herewith acquire special status: the 
molecular fragments containing marked atoms will hence be counted separately from fragments 
occurring in the non-marked molecular “bulk”). This approach is perfectly suited to capture 
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structural information about the copolymer reagents, all while marking the atoms involved in the 
formation of new bonds during the polymerization process. Marked-atom descriptors of the 
copolymerization reagents can then be combined (with optionally weighing by their molar ratio) 
into a final descriptor vector of the copolymer. This approach is however not limited to epoxy-
amine copolymers, but also applies for linear 1:1 heteropolymers –(AB)n– of other chemical 
classes, thus opening the perspective of a more general Tg prediction model. For example, 
polyamides will be described by the combined descriptors of the dicarboxylic acid with marked 
carboxyl carbon and diamine with marked amino N atoms. Eventually, the present study 
undertook one more step towards generalization: it was assumed that homopolymers –(A)n– can 
be formally described as 1:1 copolymers of A with itself, and herewith amenable to the same 
description protocol as implemented for genuine copolymers. This original strategy enabled the 
first-time development of a unified, homo- and heteropolymer-competent Tg prediction model. 
Implicitly, the now possible fusion of the various local datasets exploited in previous studies lead 
to an unprecedented wealth of training information and external validation opportunities. Support 
Vector Regression (SVR)28 was used for modeling, driving the selection of best-suited polymer 
description schemes (which result from the several considered marked-atom monomer 
fragmentation schemes and monomer descriptor combination strategies). Generative 
Topographic Mapping (GTM)29–31 was employed to create a 2D map of “polymer chemical 
space”, highlighting the various classes of (co)polymers included in the study, and being used to 
analyze the features and problems of the predictive model. Proceeding in three steps, Tg models 
of increasing generality are realized: (1) Tg prediction is performed on Katritzky’s data set of 
homo- and linear –(AB)n– copolymers, for which published modeling results serve as a 
benchmark to assess the pertinence of the herein proposed method. Next, (2) an epoxy-resin-
specific model was developed, based on Tg data set of epoxy resin gathered from published 
literatures. Finally, (3) a global data set including both linear and network homo- and 
heteropolymer was compiled and used to fit the general, final model. Models obtained at steps 
(2) and (3) are publicly available on the QSAR prediction web server http://infochim.u-
strasbg.fr/webserv/VSEngine.html. 

 
2. Methods 
2.1. Data Sources 
 To support the modeling workflow shown in Figure 1, Tg values of 389 polymers were 
collected from the literature. 270 of these constituted the “global” set for the general model. They 
contain  
 
(i) 88 compounds from Katritzky’s set.19 These also served to build an alternative model to 

the published one, with the herein proposed technology for benchmarking purposes (by 
cross-validation),  

(ii) 50 epoxy resins,24,32–43 which also served for calibration of an epoxy resin-specific model, 
and  
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(iii) 132 homo- and heteropolymers from Bicerano et al.,5 which only contributed to the 
global set (no “local” model was fitted for these). These were selected because they 
included completely novel chemotypes shown to fall outside the Applicability Domain 
(AD) of the local model (i). 
 
The remaining 119 polymers, composed of 102 linear and 17 epoxy-amine copolymers 

were kept apart, as test sets for external validation. The 17 epoxy resins represent the novel 
compounds listed in ref 20 but not already present amongst the 50 compounds mentioned above 
(ii). They served both in the test set of the global model as well as for the epoxy-resin-specific 
model (ii). The 102 linear homo/heteropolymers stem from Bicerano’s article and were kept as 
external test after exclusion of the 132 items which were mandatorily part of training set as 
chemically complementary to Katritzky’s polymers. 

 

 
 

Figure 1. Workflow for the modeling of the Tg for homopolymers and copolymers. 

 
2.2. Data preparation 
 The training data used in the present work was compiled from the various precursory 
articles mentioned above. However, given the herein targeted goal of a maximal generality 
model, structural data had to be significantly reorganized and standardized to fit our purposes. As 
already mentioned, the most general case is represented by heteropolymers – thus, the input 
required for modeling must contain the structures of the two monomers involved in 
copolymerization (dot-concatenated SMILES of the two species must be prepared for input). 
Implicitly, in homopolymers the structure of the only monomer “copolymerizing” with itself 
must also be reported twice. As the studied polymers result from diverse chemistries, there is no 
clear rule to define which of the two monomers must be reported first in the SMILES pair – 
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therefore, the order in which the two SMILES are concatenated is irrelevant. However, another 
key request is to report (in the second column of SMILES file), the molar ratio of the first 
monomer in the SMILES pair. For example, in a network epoxy-amine resin incorporating two 
moles of triamine A for three moles of diepoxy compound E, the input line can be either “E.A 
0.6” or “A.E 0.4”, where 0.6 is the molar fraction of E (3/5) and 0.4 is the one of A (2/5). For a 
homopolymer of monomer M, the input line will invariably be “M.M 0.5” 
 Before employment in model building, monomer structures must undergo structure 
standardization. Since the ultimate goal of this work was to achieve publicly available models 
operating on our multipurpose QSAR prediction server, submitted structures will necessarily 
undergo the thereon implemented “classical” standardization protocol (removal of counterions 
and mixtures – this specific option can and must be toggled off to allow processing of above-
mentioned input files, e.g. standardize every mixture component –, conversion to “basic” 
aromatic form, split-charge nitro groups, etc.). For this reason, it is required to enter the “formal 
structures” of monomer reagents rather than structures of unit fragments in the polymer chain 
(with unsatisfied valences). These “formal structures” of the reagents are those atom-marked 
representations of the reagents which are easiest to convert to the polymeric form (with a 
minimal rearrangement of bonds). Polyethylene –[CH2-CH2]n-  can be obviously derived from 
the structure of it monomer, ethylene – which coincides with the “formal structure” 
[CH2:1]=[CH2:1] to be used (note “:1” represents the mapping labels associated to the atoms 
connecting to other monomers – the same map label “1” can be used for all atoms involved in 
polymerization). However, as shown in Figure 2, –[CH2-CH(OH)]n- is the polymerization 
product of acetaldehyde, 

 
Figure 2. Polymerization of acetaldehyde. 

a reaction proceeding by the addition of the carbanion resulting from -proton extraction by a 
base to the carbonyl group. Formally it is nevertheless easier to describe this polymer as 
“polyvinylalcohol” stemming from [CH2:1]=[CH2:1]O. The key rule adopted in this work is to 
minimize the number of marked atoms, involved in bonds being formed or changing bond order. 
With vinyl alcohol, only the two carbons need to be marked. By contrast, taking acetaldehyde as 
such for monomer would require flagging of both carbons and the carbonyl O. Using this 
concept of “formal structures” for monomers, even copolymers in which the chain unit stems 
from three molecules may be described by a pair of formal structures. For example, above-
mentioned polyvinylalcohols may react with another aldehyde, forming 1,3-dioxane rings as 
stable acetals. The product (Figure 3) may nevertheless be described in a way that is compatible 
with modeling constraints, by assuming the two “formal” copolymer structures to be (i) the vinyl 
alcohol and (ii) the vinylalcohol hemiacetal of the ring-closing aldehyde. Both all the “ethylene” 
carbons (as responsible for the C-C concatenation) as well as the vinyl alcohol O and the 
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hemiacetal carbon C(O)(X)OH need to be marked. The latter couple is responsible for dioxane 
ring closure – with elimination of water, which corresponds to the unmarked -OH of the 
hemiacetal. 

 
Figure 3. Actual synthesis and formal representation of a polymer containing a 1,3-dioxane-
based unit resulting from ring closure by acetal formation in a reaction following the formation 
of the polyvinylalcohol chain. Formally, this can be described as the “copolymerization” of a 
vinyl alcohol molecule with the hemiacetal formed by another vinyl alcohol molecule and the 
ring-closing aldehyde. 

As could be seen in the above-mentioned example, some polymerization processes (the 
archetypical ones being polyamide or polyester synthesis) involve elimination of some leaving 
groups (typically -OH, e.g. formation of water). This leaving group is kept in the reacting 
monomers, even though it will be absent in the actual polymer for which prediction of Tg is 
attempted. Owing to the fact that a leaving -OH group is by definition connected to a marked 
carbon participating in reaction, this signature can be allegedly exploited by the machine learning 
algorithm to differentially treat leaving -OH by contrast to regular hydroxy groups in the 
polymer. However, leaving groups other than -OH (it is chemically possible to obtain polyamides 
by reacting diamines with diacyl chlorides, with HCl as coproduct, for example) should be 
rendered as -OH in “formal” monomer structures, for coherence (not following this rule will 
place the input structure outside the model’s applicability domain). Note that Bicerano’s set also 
feature two “atypical” polytriazine imide-based structures: these were ignored in the present 
study. Albeit they could be formally represented according to a scheme similar to Figure 3, they 
were excluded from the study because they are radically new chemotypes, and two of them are 
clearly not enough to allow any meaningful learning of specific features of this polymer class. 
 The above-mentioned simple rules are not meant to define an exhaustive protocol for the 
rendering of arbitrary polymer structures – a still open problem in chemoinformatics. Note that 
in QSPR the representation of modeled items need not be “correct” from a physical point of view 
but must be neighborhood-behavior compliant and, to this purpose, coherent to the ad-hoc 



9 
 

representation rules established as a constitutive part of the model. The herein advocated rules 
are not necessarily the best, nor are they generalizable to any polymers – they simply have the 
merit to allow the unification of so-far distinct modeling problems into a common framework. 
Any further evolution of the model may imply an evolution of the so-far established rendering 
rules, in expectation of the development of a general-purpose polymer rendering system and the 
advent of large-scale polymer structure-property databases. So far, the rules are not general, but 
merely coherent and self-sufficient (in the sense that classes of polymers not representable by 
these rules are not part of this training set, so would be by definition out of its applicability 
domain). The user wishing to submit polymer structures for Tg prediction on our web server is 
therefore encouraged, if in doubt about how to render an input structure, to seek for similar 
entries in the training set provided in Supplementary Material as an example.   
 
2.3. ISIDA (In Silico design and Data Analysis) descriptors 
 To generate fragment descriptors, ISIDA Fragmentor 2017 (see Supplementary Material) 
was applied to each reacting monomer, as rendered after the standardization step. ISIDA 
descriptors are topological fragments descriptors based on 2D chemical structures.25–27 Each 
element of the vector corresponds to the number of occurrences of an associated substructure, 
where the considered substructures are defined by the user, in specifying key parameters. The 
most important key parameter is the type of considered fragments (I – linear sequences, II – 
atom-centered fragments, III – topological triplets). Upper and lower bounds for the considered 
fragment sizes are also mandatory: considered options ranged from 2 to 15 for sequences, from 1 
to 5 for atom-centered fragments, and from 3 to 7 for triplets. The following options were also 
used at choice: charges on atoms (FormalCharge), accounting for the terminal atoms of a 
fragment exclusively (AtomPairs), exploring all possible paths instead of shortest paths 
(AllPaths) or restricted paths (Restricted). All employed fragmentation schemes generated both 
default fragments and specific fragments containing marked atoms (marked-atom strategy #3). 
For example, in sequence counts, enabling the marked-atom strategy implies that the number of 
propyl fragments CCC which do not contain any marked atoms will be counted separately 
(assigned to a distinct vector element) from propyl moieties with a terminal ([C:1]CC) or 
respectively central (C[C:1]C) marked C, which have each a distinct, dedicated vector element of 
their own.   Refer to the above-cited Fragmentor manual for technical details about these options. 
A total of 42 different fragmentation schemes were considered, in order to select the best suited 
one for modeling (their list, following standard Fragmentor nomenclature, is provided in 
Supplementary Material). 
 The actual polymer –(AxB1-x)n- is eventually described by combined descriptors of their 
monomers in eq (1), with the first elements of the descriptor vector stemming from the summing, 
and the last ones from the absolute differences of (molar ratio-weighed or not) monomer 
descriptors.  
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𝐷௫ሬሬሬሬሬ⃗ ൌ ൣ𝑥𝐷஺,௜ ൅ ሺ1 െ 𝑥ሻ𝐷஻௜, 𝑖 ൌ 1…𝑁; |𝑥𝐷஺௜ െ ሺ1 െ 𝑥ሻ𝐷஻௜|, 𝑖 ൌ 1…𝑁൧

𝐷଴ሬሬሬሬሬ⃗ ൌ ൣ𝐷஺,௜ ൅ 𝐷஻௜, 𝑖 ൌ 1…𝑁; |𝐷஺௜ െ 𝐷஻௜|, 𝑖 ൌ 1…𝑁൧
  

(1) 

 
 
where DA and DB are the descriptor values of the individual monomers A and B, respectively, 
while x is the molar fraction of the first listed monomer, A and N the dimension of descriptor D 
in the chemical space containing all monomers, irrespective of their reactive class. Polymer 
descriptors will thus have a maximal dimensionality of 2N – and typically much less, noting that 
in the case of homopolymers the absolute difference contributions will systematically be zero. 
Since, for each of the 42 different fragmentation schemes applied to monomers, the two distinct 
combination strategies – with and without accounting of molar ratio – are applied, a total of 84 
distinct descriptor spaces competed in the evolutionary strategy to be selected as the best support 
for optimally cross-validating Support Vector Machine models, vide infra. 
 
2.4. Building and validation of the models 

 SVR models were built and validated using the -SVR algorithm implemented in the 
libSVM package.45 Optimally parameterized SVR models, including descriptor choice as a key 
degree of freedom, were built according to the evolutionary procedure,46 which provides both 
descriptor space selection and optimization of the operational parameters (epsilon, kernel type, 
cost, gamma) of the SVR method. The SVR models have been built for homopolymer, 
copolymer, and general data sets. 
 The predictive performance of the SVR models has been estimated by squared 
determination coefficient calculated in three-fold cross-validation (Q2) repeated 12 times after 

the data reshuffling (12  3-CV) and eventually on the external test set (R2) which are shown in 
eq 2, and Root-Mean-Squared Error (RMSE) which is shown in eq 3.  
 

𝑄ଶሺ𝑅ଶሻ ൌ 1 െ
∑ ሺ𝑌௘௫௣,௜ െ 𝑌௣௥௘ௗ,௜ሻଶ
௡
௜ୀଵ

∑ ሺ𝑌௘௫௣,௜ െ൏ 𝑌 ൐௘௫௣ሻଶ
௡
௜ୀଵ

 
(2) 

 

𝑅𝑀𝑆𝐸 ൌ ඨ
∑ ሺ𝑌௘௫௣,௜ െ 𝑌௣௥௘ௗ,௜ሻଶ௡
௜ୀଵ

𝑛
 

(3) 

 

 
Here Yexp and Ypred are experimental and predicted values of Tg respectively, n is the number of 
data points, while <Y>exp is the mean of experimental values. 
 
2.5. Generative Topographic Mapping 

Generative Topographic Mapping (GTM) is a nonlinear mapping method used for data 
visualization originally described by Bishop.29 The approach is basically a fuzzy-logics-driven 
generalization of Self-Organizing (Kohonen) maps3. A six-page brief introduction to this 
relatively new technology which is steadily gaining visibility in recent chemoinformatics 
publications is provided as Supplementary Material for the interested reader. In GTM, a 2D 
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latent space (called manifold) is embedded into the descriptor space. The manifold represents a 
grid of k × k nodes; each node is mapped in the initial descriptor space using the mapping 
function y(x, W). An “item” (here – a polymer depicted by its ISIDA descriptor vector) will be 
considered to “reside” on one or several of the k × k nodes that are closest to its descriptor space 
position. The fuzzy (real-number) truth value of the assumption “item n  is a resident on node k” 
is termed “responsibility” Rnk, meaning that – unlike in Kohonen maps – an item may be a “time-
sharing” resident of several nodes, such that ∑ 𝑅௡௞௞ ൌ 1. The mapping function is given as a 
grid of m × m radial basis functions (RBFs). To build a GTM-based QSAR model, the weighted 
average of properties of all molecules associated with any particular node is used to “color” the 
manifold according to that property, achieving a meaningful separation of items with different 
properties, or assignable to different classes. Here, the map parameters were tuned in order to 
achieve maximization of the separations of the different polymer classes as given in the 
literature5,9 (Table 1, listing 17 distinct polymer types assigned to both training and test items). 
Map tuning followed the evolutionary procedure already described, using only the five descriptor 
spaces employed in SVM models as potential candidates for the GTM descriptor space and 
addressing the classical tunable GTM parameters (the number of RBF kernels, the number of 
grid points, the width factor of radial basis functions, and the regularization coefficient). The 
global model training set served both as frame set (items to guide the fitting of the manifold in 
descriptor space) and selection sets (providing items to be optimally separated on the map – here, 
by chemical class). The optimality criterion was the mean ability to separate (balanced accuracy; 
BA) members from non-members of the 10 most well-represented polymer classes (with at least 
10 examples in the global model training set) following the cross-validated projection of the 
global training set on the current manifold. Once an optimal manifold in the above-mentioned 
sense was selected, it was also “colored” by Tg values, leading to a coherent landscape with “red” 
and “blue” zones populated by high and low Tg polymers, respectively. White zones represent 
unpopulated areas. 
 

Table 1. 17 classes of polymer and numbers of polymers in train/test set for each class. 

Classes 
Numbers of data 

Train Test 

1 Epoxy resin 50 17 

2 Polyolefin 15 3 

3 Polystyrene 13 36 

4 Polyvinyl 24 10 

5 Polyacrylic 30 13 

6 Polyhalo-olefin 9 2 

7 Polydiene 5 5 

8 Polyoether 17 6 

9 Polysulphide 2 0 
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10 Polyester 12 11 

11 Polyamide 4 15 

12 Polyimide 20 0 

13 Polyamide-imide 1 0 

14 Polycarbonate 26 1 

15 Polyimine 20 0 

16 Silicon-containing polymer 14 0 

17 Polyxylene 8 0 
 
 
3. Results and Discussion 
3.1. Reproducibility of Katritzky’s results by the proposed modeling strategy  
 The results of the Katritzky set model are shown in Table 2. The descriptor set producing 
the SVR model of maximal robustness (estimated by 3-CV Q2 value) was based on atom-
centered fragments of the length 1–3 (See Table S1). This model returned a Q2 value of 0.727, 
RMSE of 34.3 K, with the worst misprediction error of 110.4 K. In previous works by Katritzky 
et al., Tgs for homopolymers calculated from predicted Tg/M values reported a Q2 value of 0.754 
based on 3-CV model, and a worst error of 111 K. Our results are consistent with Katritzky’s, 
which means that SVR modeling with purely topological ISIDA fragment counts for 
homopolymers works as well as the more sophisticated model employing constitutional, 
geometrical, and quantum chemical descriptors. Although Tg/M was the property modeled by 
Katritzky, we can directly predict the Tg values. Most important, note that in Katritzky’s work a 
“homopolymer”-specific strategy was used, focusing on the repeating unit in the polymer – 
which means that copolymers may only be predicted if they are 1:1 linear concatenation products 
of the two monomers. A polyamide is modeled as a “homopolymer” of the amide unit -C(=O)-A-
C(=O)N-B-N- in Katritzky’s approach, while the same species is rendered as a genuine 
heteropolymer in this work. The proposed descriptor scheme is thus robust in supporting 
simultaneous processing of genuine homopolymers and 1:1 linear copolymers, without the need 
to explicitly generate the repeating unit. 

 

Table 2. Tg predictive accuracy from 12  3-CV models for Katritzky’s, epoxy resin, and global 
training sets. 

 
Katritzky’s set 

model 
Epoxy resin-

specific model 
General model 

Number of data points 88 50 270 

Tg range /K 190–409 280–531 130–685 

Q2 0.727 0.864 0.920 

RMSE /K 34.3 21.5 34.3 

Max error /K 110.4 44.0 137.2 
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3.2. Epoxy resin-specific model 

The results of the epoxy resin specific model are shown in Table 2. The descriptor set 
producing the SVR model of maximal robustness (estimated by 3-CV Q2 value) was based on 
atom-centered fragments of the length 1–4 with AtomPairs option (See Table S1). This model 
performed well with a Q2 value of 0.864, RMSE of 21.5 K, with the worst misprediction error of 
44.0 K. In the previous work by Morrill,21 the leave-one-out cross-validated coefficient of 
determination was 0.995, which is higher than our Q2 result. The difference between the number 
of data set and the diversity of epoxy resin can be parts of the reasons why our Q2 value were 
lower than the Morrill’s result. 50 epoxy resins are contained in our data set, on the other hand, 
Morrill’s data set has only 13 data points. Additionally, there was small diversity of epoxy resin 
in Morrill’s data base because Morrill et al. applied only DGEBA for their prediction as a 
representative epoxy resin, while we have 6 kinds of epoxy resin in training set.  

Comparing with Katritzky’s set model (section 3.1), epoxy resin-specific model returned 
higher accuracy. There are two possibilities for the reason. (1) Because the number of data points 
decreased, regression model fitted on data points more exactly. Since if the model fits too exactly 
to a particular data set, the model fails to fit additional external test set, we have checked the 
reliability of our model by using scrambled Tg data set to avoid this risk. Tgs were randomly 
mixed to create no correlated epoxy resin–Tgs data set. The same procedure as epoxy-specific 
model of SVR modeling was applied to this data set, at least it is proved that epoxy-specific 
model was not overfitting model although the number of the data set was relatively small. (2) 
Basically epoxy–amine copolymers have similar structures; all of epoxies have epoxy group, 
most of them also contain benzene rings, and all of amines contain amine groups. Therefore, the 
prediction should be more accurate than Katritzky’s data set which has big diversity and different 
chemical groups. The similarity of epoxy resin structures will be assured by GTM maps 
discussed in section 2.4. 
 A consensus model was generated from 5 models which showed high robustness to 
predict 17 epoxy resins of external test set. The 5 different models have several types of 
descriptor set; two of them contain the sequence of the length within 2–6 with FormalCharge and 
AtomPairs options, other two contain atom-centered fragments of the length within 1–3 with 
FormalCharge, and another model is based on the sequence of the length 2–7. Descriptors in 
former 4 models were not multiplied by molar ratio, while descriptors in the last model were 
multiplied by molar ratio (See Table S2). Prediction of the external test set have returned an R2 
value of 0.687, RMSE of 22.3 K, with the worst misprediction error 50.2 K. In the previous work 
by Bellenger et al.,20 “The results, which are given in Table V, are generally in good agreement 
with the experimental data; the average error of the prediction being less than 3%.” To compare 
with this, our results showed the average error of the prediction less than 4% which is relatively 
acceptable. 
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3.3. General model 
To create the general model, 132 linear homo/heteropolymers set have been added to 

combined Katritzky’s data set and epoxy resin set as training data. The results of the general 
model are shown in Table 2. This model performed with a Q2 value of 0.920, RMSE of 34.3 K, 
with the worst misprediction error of 137.2 K. The plot of predicted Tg values versus 
experimental Tg values is shown in Figure 4. The descriptor set producing the SVR model of 
maximal robustness (estimated by 3-CV Q2 value) was based on atom-centered fragments of the 
length 1–3 with FormalCharge option (See Table S1). This model returned higher accuracy than 
epoxy resin-specific model. The increasing number of data points must have affected Q2 high 
accuracy, since Q2 was improved even though the diversity of data points much wider than 
Katritzky’s set model and epoxy resin-specific model. 
 

 
Figure 4. Plot of predicted Tg values versus experimental Tg values for 270 training data set 
consisted of 220 linear homo/heteropolymers (gray) and 50 epoxy resins (black) from 12 × 3-CV 
prediction. 

 
The external test set consisted of 102 linear homo/heteropolymers from Bicerano’s data 

set and 17 epoxy–amine copolymers from Bellenger’s data set were predicted from a consensus 
model generated from 5 models which showed high robustness. The 5 models which is the base 
of the consensus model have atom-centered fragments of the length within 1–4, additionally one 
of them contained FormalCharge option (See Table S2). This external validation showed results 
of an R2 value of 0.779, RMSE of 35.9 K, with the worst misprediction error of 127.1 K. The 
plot of predicted Tg values versus experimental Tg values is shown in Figure 5. We have divided 
the test set into linear polymer part and epoxy resin part to check each accuracy. The breakdown 
is shown in Table 3 together with external validation results of epoxy resin-specific model 
(section 3.2).  As shown in Table 3, general model succeeded to improve the prediction accuracy 
of epoxy resin part of test set comparing with results of epoxy resin-specific model. It is 
interesting that the model could get better results for the epoxy resin prediction when 
homo/heteropolymers have been added into training set. According to both results of 3-CV for 
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training data set and external validation for test set, the greater diversity of polymer structures 
can be considered to lead to the better Tg predictions. This notwithstanding, the imprecision of 
prediction (which is in part an echo of the intrinsic experimental noise affecting training data) is 
certainly not good enough to consider this model as a reliable replacement of experimental Tg 
assessment. But QSPR models in general, and in all their domains of application – from drug 
design to material science – are rarely accurate enough to substitute themselves to experimental 
measure. Their goal is rather to act as filtering/prioritizing tools, selecting a small set of 
experimentally verifiable compounds with a maximal probability to contain molecules of desired 
properties, out of the very large pool of possible molecular structures. This approach is mainly 
intended to serve for the design of new materials – like, for example, considering a combinatorial 
matrix of E epoxides  × A polyamines, running the in Silico prediction for all the E × A putative 
compounds, and selecting a pool of few dozen combinations amongst the ones predicted to have 
Tg within the desired range. The statistics of the model ensures that selected polymers will have a 
significantly enhanced probability to actually meet the desired Tg constraints, comparatively to 
randomly picked members of the E × A product matrix. The intended use makes it primordial to 
rely on a formal representation of polymers which can be applied to not yet synthesized, virtual 
species of unknown mean chain lengths, degree of reticulation, etc. 

Generation of model based on such a diverse database consisted of homo/heteropolymer 
and cross-linked epoxy resins has never been attempted before, and we found this general model 
for global set can predict Tgs with better accuracy especially for epoxy resins. 
 

 
Figure 5. Plot of predicted Tg values versus experimental Tg values for 119 external data set 
consisted of 102 linear homo/hetero polymers (gray) and 17 epoxy resins (black). 
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Table 3. Results of external test set based predicted from consensus models of epoxy resin set 
and global set. For general model, results for the entire set and breakdown consisted of linear 
polymer and epoxy resin parts are shown. 

 General model Epoxy resin-specific 
model  All Linear polymer Epoxy resin 

Number of data points 119 102 17 17 

R2 0.779 0.761 0.848 0.687 

RMSE /K 35.9 38.3 15.6 22.3 

Max error /K 127.1 127.1 29.6 50.2 

 
 The dramatic improvement of epoxy resin predictions by the global model compared to 
the dedicated model is an interesting example of inductive transfer of knowledge. The problem 
with the epoxy resin-specific model is its already very small training set. Data fusion allowed 
information conveyed by the linear polymers to complement the epoxy resin data, leading to 
overall better predictions. This is not trivial – if a training set containing two completely 
unrelated chemical classes (e.g. learning structure-activity relationships for the first chemical 
class is not helpful to understand the behavior of the second class), then building separate “local” 
models for each class (splitting the training set in a “divide and conquer” strategy) is the more 
rational approach. There are reasons to believe that a “divide and conquer” approach for Tg 
prediction may help some of the unaddressed challenges of the present work – conceiving, for 
example, specific models based on polymer subsets with Tg values obtained from a same strictly 
controlled experimental protocol may for example answer the problem of the noise affecting our 
training data. Unfortunately, “divide and conquer” only makes sense for initial training sets large 
enough to accommodate specific subsets still capable of supporting the fit of a robust local 
model. The alternative to “divide and conquer” is fitting of a unified model including 
experimental conditions – even experimental conditions describing the polymerization process, 
as these are likely to affect key parameters of resulting chains or networks – as additional fitable 
parameters in machine learning1, 2. Unfortunately, tracing back the reported Tg values to their 
experimental protocol in absence of centralized public polymer databases requires human 
resources beyond our capacities. At the given amount and quality of training data, the unifying 
approach adopted here was in our opinion the best strategy to adopt – as the above-illustrated 
results show. The key source for further improvement of the model will foremost be conditioned 
by an improvement of quantity and content of experimental information available for training. 
 
3.4. Polymer space analysis by GTM visualization 

16 GTMs highlighting the (fuzzy) separation of members from non-members of all 
classes except class 9 are shown in Figure 6. Class 9 has been removed since there are only two 
polysulfides in this data set, as shown in Table 1. The map supporting these fuzzy classification 
landscapes is based on atom-centered fragments of restricted atoms and bonds with a length of 
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1–3, with multiplication by molar ratio. All compounds (training set and test set of global set 
confounded) have been projected. Most classes are indeed well separated from each other (BAs 
for 10 most well-represented polymer classes in the cross-validated projection of the global 
training set were more than 0.88, such as 1.00 for class 1, 0.98 for class 5 and 12), which means 
that the selection of descriptors was well chosen by GA in SVR modeling. In particular, members 
of Class 1 and 5 are nearly perfectly separated from any other classes. This is not surprising for 
epoxy resins, which indeed stand out as the only (potentially) network polymers for which Tg 
data were available.  

 

 
Figure 6. Polymer class landscapes highlighting the map positions of 16 relevant chemical 
classes, built on hand of on the global data set. The dark red area represents zones exclusively 
featuring resident compounds belonging to the specified class, while dark blue areas are 
populated by polymers of any other class except the specified one. At intermediate colors, class 
members “mingle” with representatives of other classes, and their relative occurrences are 
linearly related to the color scale to the right. Color transparency is modulated by the total 
number of residents (cumulated responsibility or “density”). 

 
Some polymer classes do however overlap to significant extents, but this can be perfectly 

well explained on behalf of the chemical similarity of structures, which transcends the rather 
rigid labelling by chemical class. Classes 2 to 7 are homochain polymers which are classified 
based on the type of side chains, while 8 to 17 are heterochain polymers which contains some 
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elements or chemical groups in main chain such as oxygen, sulfur, carbonyl group amide group, 
benzene rings. They are classified based on the type of main chain. Overlap on the map may 
arise because of the similarity of either main chains or side chains. Unsurprisingly, 
“polycarbonates” and “polyesters” are overlapping – carbonates are technically esters of the 
carbonic acid, after all. Also, the distinction between “Polyvinyl” compounds and “Polyhalo-
olefins” is not clear – neither is the separation of these two classes. More interesting is the case 
of overlapping classes 7 (polydiene) and 17 (polyxylene). Clearly, one would expect aromatic 
polyxylenes to be distinct from polydienes – however, the formal monomers (Figure 7) used to 
describe polyxylene formation are, too, nothing but polyenes. Aromaticity is an unpredicted 
consequence of the reaction – therefore, the reagent-based similarity of the two classes – the 
underlying reason of the observed overlap – is not reflected in the final product. This is a 
limitation on (formal) monomer-based representation advocated here in order to unify modeling 
of Tg for both linear and network polymers. Regardless of this, the Tg landscape shown in Figure 
8 indicate that compounds on node 3 and surrounding nodes have relatively low values compared 
to the global Tg range. (Strictly speaking, it should be noted that the Tg ranges are 171–293 K for 
class 7, 298–373 K for class 17, they are not overlapping.) On the opposite, significant diversity 
may occur within a chemical class. For example, compounds of class 10 spread on some nodes 
of the map because some of them have normal carbon chain, others have benzene rings with 
ester groups in the main chain (Figure 9). 
 

 
Figure 7. Polymerization of class 7 (polydiene) and class 17(polyxylene). 

 
 
 



19 
 

 
Figure 8. Tg landscape (left) and the landscape of the Tg standard deviation (SD) at each node 
(right). 

 

 
Figure 9. Representative structures, the number of training/test on each node of the map for class 
10. 
 
3.5. Understanding outliers within their chemical space context 

According to the external validation of the SVR model in section 2.3, three outliers were 
evidenced: two polyesters (class 10) and one polyamide (class 11). Figure 9 and Figure 10 show 
landscapes of classes 10 and 11, representative structures, and the number of training/test set 
compounds residing in each node. Or, the nodes in which these outliers reside do not harbor any 
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training set compounds. In other words, if the GTM model would have been used as 
Applicability Domain delimiter, these outliers would have counted as excluded from the AD. 
Note that they did pass the less stringent test of “fragment control” used by the SVR model, but 
they do not stand out in terms of rare fragments – they rather stand out in terms of how these 
fragments are interconnected. Aliphatic diacids and diols are well represented in the training set 
– yet, their combinations are not. Table 4 shows the accuracy of Tg predictions for test set 
compounds of class 10 and 11 based on SVR general model in section 2.3. Although the worst 
misprediction error of class 11 is higher than that of class 10, RMSE and R2 values of class 11 
were much better than for class 10, regardless of the fact that class 10 has relatively more 
training set data than class 11. As discussed above, the imbalance coverage of polymer chemical 
space by train/test data is the reason for this. According to Figure 9, most of test data of class 10 
is on node 11, which does not have any training item residing here. On the other hand, in Figure 
10, most of test data resides in node 3, which is the residence node of one training item with a Tg 
value matching rather closely the ones of external compounds. As a consequence, their Tg 
predictions were quite accurate.  

 
 

 
Figure 10. Representative structures, the number of training/test on each node of the map for 
class 11. 
 
 
Table 4. External validation results from SVR general model in section 2.3. for each class 10 and 
11. 

Classes 
Numbers  
of data 

Accuracy of Tg prediction  
for test data on general model 



21 
 

Train Test R2 RMSE Max Error 
10 Polyester 12 11 –0.18 72.6 105.7
11 Polyamide 4 15 0.73 44.5 127.1

 
 

3.6. The Tg Landscape of Polymer Space 
 A key advantage of GTM is that a convenient manifold may be used to support any 
arbitrary property landscape. Even though the map was chosen for its propensity to separate 
chemical classes of polymers, it is nevertheless able to display a Tg landscape, with clearly 
separated high- and low-temperature areas. It is important to note upfront that, since the color 
code reflects averages of Tg values projected on each node, the interpretation of both high and 
low temperature nodes is straightforward: these chemical space zones are predominantly 
populated by polymer with extremal (high, respectively low) Tg values. By contrast, zones with 
“medium” Tg corresponding to intermediate spectral colors might arise either due to a local 
concentration of polymers with intermediate Tg values, or due to the cohabitation of low- and 
high-temperature polymers. To lift this uncertainly, the Tg landscape can be associated to the 
landscape of the Tg standard deviation at each node (Figure 8). The node with the highest 
divergence of Tg values of residing polymers can be clearly located in the Figure. The eight 
residents therein have a mean Tg of 435.0 ± 88 K. In all other nodes, resident polymers have 
better focused Tg ranges. 

In Figure 11, low Tg areas (in blue) in the North-West (top left) mainly accommodate 
simple carbon polymers. Moving North, mean Tg values correspond to compounds contain 
oxygen, carbonyl groups, or carboxyl group. Eventually, the North-East is a high Tg-area, 
populated with polyamides and -imines. It is thus apparent that structure similarity as captured 
by the map implies similarity of Tg values. While the polymer class is per se a partial indicator of 
expectable Tg values, the map (and, of course, the predictive models) provide additional 
accuracy. In particular, epoxy resins form a well-separated class of polymers with strongly 
varying Tg values. This variability is well reproduced by the map, which provides a fine split of 
class 1 epoxy resins into subfamilies of higher and lower Tg, depending on their degree of 
reticulation. On the other hand, in the case of class 5, there can be special reason why they were 
well separated even though they have similar Tg ranges from top left compounds on the map, 
which can be interesting topic to investigate in detail for the future work.    
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Figure 11. Tg landscape and representative maps on some areas depending on the Tg values. 
 
 
4. Conclusions 
 The successfully addressed challenge of this work was to propose a unified framework 
for chemoinformatics modeling of the glass transition temperature Tg of both network and linear 
homo- and heteropolymers, which were traditionally addressed by distinct approaches. The key 
to solve this problem was the unified description paradigm of these polymers, by means of 
molar-ratio-sensitive “mixing” of atom-marked ISIDA fragment counts of the “formal” 
monomers – following typical mixture modeling strategies, where in homopolymers the single 
monomer is considered in 1:1 “mixture” with itself. This “formal monomer”-based strategy 
accommodates both linear and network polymers, while classical approaches based on 
descriptors of the repeating unit only work for linear homo- and 1:1 heteropolymers –(AB)n–, i.e. 
“homopolymers” of repeating unit AB. “Formal” monomers are rendered according to herein 
defined, specific standardization rules – following not the actual chemical mechanism of 
polymerization, but aiming to minimize the number of simplest schemes that could be used to 
formally describe the polymerization process. For example, aldehyde polymerization is easiest 
rendered as the formal polymerization of vinyl alcohol, the unstable tautomer of the aldehyde. 
This may be mechanistically untrue but has the merit to describe these polymers in a similar way 
to “other” polyolefins. This unified rendering of all polymers as pairs of monomers (identical, for 

High Tg (685 K)

Low Tg (130 K)

2_Polyolefin 
(195–363 K)

7_Polydiene
(171–293 K)

16_Silicon-
containing polymer
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(208–433 K)
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12_Polyimide
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15_Polyimine
(539–668 K)

1_Epoxy resin
(273–531 K)

8_Polyether
(188–493 K)

10_Polyester
(205–583 K)

14_Polycarbonate
(388–548 K)
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homo- or different, for heteropolymers) was shown to apply even to some ternary polymers, if a 
judicious choice of formal monomers is made. The rule here is to minimize the number of 
marked atoms, involved in bonds being formed or changing bond order. While this rule is clearly 
established, it must be nevertheless pointed out that the herein performed standardization is semi-
automatic and required human reflection and decision-making for specific cases. A fully 
automated implementation of rendering polymers by their “formal” monomers would require an 
additional technical development, which is not a priority knowing that, unlike drug-like 
molecules having structures that can be directly accessed from electronic databases, a universal 
standard for polymer databases is not yet established, making chemical name to structure 
conversion an unavoidably human intervention requiring step, anyway. 
 Starting from the file of pairs of monomers and molar ratio information, descriptor 
calculation, model building and prediction are fully automated, following standard QSAR 
procedures. In a first step, a focused approach excluding network epoxy resins was challenged to 
reproduce Katritzky’s previous study and achieved comparable results. Specific modeling of 
epoxy resins (network or not) also proved to be robust. Eventually, the general model covering 
both linear homo/heteropolymers and cross-linked epoxy resins showed the highest accuracy (Q2 
= 0.920, RMSE = 34.3 K for training set of 270 polymers, and R2 = 0.779, RMSE 35.9 K for 
external test set of 119 polymers) of three models. Especially, this model performed better 
predicting epoxy resins Tg than the dedicated, epoxy resin-specific model. The greater diversity 
of polymer structures has thus a significant impact in improving Tg predictions across polymer 
classes. Generation of models based on such a diverse database has never been attempted before, 
and it was shown to be helpful for improving predictions for small polymer families, where 
paucity of training data automatically limits the applicability domain of local, dedicated models. 

Eventually, polymer space analysis using GTM landscapes highlighted several interesting 
insights. Outliers mispredicted during the external validation of the model, were shown to reside 
in chemical space zones with insufficient training data. GTM landscapes allow a clear separation 
of chemically distinct polymer families, but also highlighted an interesting case (polydienes 
versus polyxylenes) where monomer-based rendering was pushed to its limits – aromatization 
occurring during the polymerization process cannot be captured by monomer-based descriptors. 
The GTM may also harbor the landscape of the property of interest Tg herewith permitting the 
intuitive oversight of the association of polymer classes to glass temperature ranges.  
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Supporting Information  

The Supporting Information is available free of charge on the ACS Publications website.  

The formal SMILES representation of the compound set is provided in a multi-column text file 

(DataSets.txt) featuring smiles, molar ratio, experimental Tgs, polymer class, participation in 

either of the following subsets: training set of Katritzky’s model, training set of Epoxy model, 

global training set, global external test set – see header line. 

One document of the provided archive reports model-related information: the list of considered 

fragmentation schemes, out of which descriptor sets supporting SVR model of maximal 

robustness were selected, and the descriptor sets involved in the SVR consensus models.  

In addition, the ISIDA Fragmentor manual is provided for the reader interested in in-depth 

understanding of ISIDA fragmentation schemes, whilst a short introductory document about 

Generative Topographic Mapping revisits the basics of this rather new but potent dimensionality 

reduction and mapping technique. 
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