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DISPERSIVE ESTIMATES FOR THE SEMI-CLASSICAL
SCHRÖDINGER EQUATION IN A STRICTLY CONVEX DOMAIN

OANA IVANOVICI

Abstract. We consider a model case for a strictly convex domain Ω ⊂ Rd of dimension
d ≥ 2 with smooth boundary ∂Ω 6= ∅ and we describe dispersion for the semi-classical
Schrödinger equation with Dirichlet boundary condition. More specifically, we obtain the
optimal fixed time decay rate for the linear semi-classical flow : a loss of (h

t )1/4 occurs
with respect to the boundary less case due to repeated swallowtail type singularities. The
result is optimal and implies corresponding Strichartz estimates.

1. Introduction

Let us consider the Schrödinger equation on a manifold (Ω, g), with a strictly convex
boundary ∂Ω (a precise definition of strict convexity will be provided later):

(1) i∂tv + ∆gv = 0, v|t=0 = v0, v|R×∂Ω = 0,

where ∆g denotes the Laplace operator. The boundary condition will be assumed to be
Dirichlet.

In all recent work on hyperbolic equations on manifolds, understanding the linear flow is
a pre-requisite to studying nonlinear problems: when dealing with the Cauchy problem for
nonlinear wave equation, one starts with perturbative techniques and faces the difficulty
of controlling the size of solutions to the linear equation in term of the size of the initial
data. For this (especially at low regularities), mixed norms of Strichartz type (LqtLrx) are
particularly useful. In the case of the Schrödinger flow eit∆gv0 of (1), local Strichartz
estimates (in their most general form) state that

(2) ‖eit∆gv0‖Lq(0,T )Lr(Ω) ≤ CT‖v0‖Hσ(Ω),

where 2 ≤ q, r ≤ ∞ satisfy the Schrödinger admissibility condition, 2
q

+ d
r

= d
2
, (q, r, d) 6=

(2,∞, 2) and 2
q

+ d
r
≥ d

2
−σ (scale-invariant when equality; otherwise, loss of derivatives in

the estimate (2) as it deviates from the optimal regularity predicted by scale invariance.)
Such estimates are well known in the flat Euclidean space Rd with g = (δij). In that case
σ = 0 and T =∞, so that (2) holds globally in time.

The canonical path leading to such Strichartz estimates is to obtain a stronger, fixed
time, dispersion estimate, which is then combined with energy conservation, interpolation
and a duality argument to obtain (2). The dispersive estimates for the classical Schrödinger
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flow read as:

(3) ‖e±it∆Rd‖L1(Rd)→L∞(Rd) ≤ C(d)t−d/2, for all t 6= 0.

Indeed, (3) and the unitary of the propagator on L2(Rd) are all that is required to obtain
all known Strichartz estimates ; the endpoint cases are more delicate (see [21], [11], [35]).

On any boundary-less Riemann manifold (Ω, g) one may follow the same path, replacing
the exact formula by a parametrix which may be constructed locally within a small ball,
thanks to finite speed of propagation for waves or in semi-classical time for Schrödinger
- where one deals with very short time, wavelength sized intervals (e.g. the size is the
inverse of the frequency), allowing a reduction to almost finite speed of propagation. In
semi-classical time, the dispersive estimates for the Schrödinger equation in the Euclidian
space read as follows

(4) sup
∣∣∣ψ(hDt)e

±ith∆Rd
∣∣∣ . 1

hd
min(1, (

h

t
)
d
2 ) for all 0 < |t| . 1.

When Ω = Rd, dispersive properties of (1) are well understood and play a crucial role
in understanding the nonlinear problems. Studying the same hyperbolic or dispersive
equations on manifolds (curved geometry, e.g. variable metric) started in part with Bour-
gain’s work on KdV and Schrödinger on the torus, and then expanded in several different
directions, all of them with low regularity requirements (e.g. Staffilani-Tataru [32], Burq-
Gérard-Tzvetkov [9], [8] for Schrödinger, Smith [26], [27], Tataru [33], Bahouri-Chemin [4],
[3], Klainerman-Rodnianski [24] and Smith-Tataru [31], [30] for wave equations).

Even though the boundary-less case has been well understood for some time, our un-
derstanding of dispersion on domains is far from complete. Indeed, one may think safely
that while the subject has seen considerable progress in recent years, we only have a very
partial knowledge of dispersive properties of solutions to the wave equation on domains
with boundary, while for Schrödinger on a bounded domain we do not have any satis-
factory estimates to deal with important applications (as an example, the cubic nonlinear
Schrödinger equation on even a 3D ball is not well-understood in the natural energy space).
For compact manifolds (even without boundary) one cannot expect estimates of the same
form as for the Euclidian space: eventually a loss will occur, due to the volume being finite.
There can be no-long time dispersion of wave packets, since they simply have nowhere to
disperse. Long time estimates for the wave equation are unknown, while in the case of the
Schrödinger equation, the infinite speed of propagation immediately produces unavoidable
losses of derivatives in dispersive estimates. Informally, this may be related to the existence
of eigenfunctions, but the complete understanding of the loss mechanism is still a delicate
issue. During the last decade, we have studied dispersive properties of the wave equation
on domains with boundary. Our first result [18], which deals with the model case of a
strictly convex domain (the Friedlander domain, which can be seen as a simplified model
for the disk) highlights a loss in dispersion for the solution to the linear wave equation
which we informally relate to the presence of caustics generated in arbitrarily small time
near the boundary. Such caustics appear when optical rays are no longer diverging from
each other in the normal direction, where less dispersion occurs as compared to the Rd case.
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The Friedlander’s model domain is the half-space, for d ≥ 2, Ωd = {(x, y)|x > 0, y ∈ Rd−1}
with the metric gF inherited from the following Laplace operator

(5) ∆F = ∂2
x +

∑
j

∂2
yj

+ x
∑
j,k

qj,k∂yj∂yk ,

where qj,k are constants and q(θ) =
∑

j,k qj,kθjθk is a positive definite quadratic form.
Notice that the strict convexity of the domain defined by Ωd with the metric inherited
from ∆F is equivalent to the ellipticity of

∑
j,k qj,k∂yj∂yk . When qj,k = δj,k (i.e. when

q(θ) = |θ|2) the domain (Ωd, gF ) is a first order approximation of the unit disk in polar
coordinates (r, θ) : set r = 1 − x

2
, θ = y. Let h ∈ (0, 1] and let 0 < a ≤ 1 be small

(comparable to a positive power of h) : if ua(t, x, y) = cos(t
√
|∆F |)(δx=a,y=0) denotes

the linear wave flow on (Ω, g) = (Ωd, gF ) with data δx=a,y=0 and satisfying the Dirichlet
boundary condition, then

(6) ‖ψ(hDt)ua(t, .)‖L∞ ≤ C(d)h−d min
{

1, (h/t)
d−2
2

(
(
h

t
)1/2 + (

h

t
)1/3 + a1/4(

h

t
)1/4
)}
.

Moreover, there exists a sequence (tn)n for which equality holds in the estimates (6), making
them sharp. This optimal loss of 1

4
in the h

t
exponent is unavoidable for small a and is

due to swallowtail type singularities in the wave front set of ua. This preliminary steps
opened several directions, from obtaining the generic convex case to understanding more
complicated boundary shapes.

In the present work, we address the same set of issues for the Schrödinger equation,
where parallel developments were expected, at least in the so called semiclassical setting
(recall that is a shorthand for saying that one deals with time intervals of the size of
the wavelength h, allowing a reduction to almost finite speed of propagation). It should
be understood that obtaining sharp results for the classical Schrödinger equation - in
the non-trapping case - is far from routine, the main issue being the infinite speed of
propagation of the flow. In the case of a convex boundary, even the wavelength sized time
behaviour is complicated due to the existence of gliding rays. Let h ∈ (0, 1] and consider
the semiclassical Schrödinger equation inside the Friedlander domain (Ωd, gF ), with ∆F

given in (5) and Dirichlet boundary condition

(7) ih∂tv − h2∆Fv = 0, v|t=0 = v0, v|∂Ωd = 0.

The main result of this paper is the following :

Theorem 1. Let ψ ∈ C∞0 ([1
2
, 3

2
]), 0 ≤ ψ ≤ 1. There exists C(d) > 0, T0 > 0 and a0 < 1

such that for all a ∈ (0, a0], h ∈ (0, 1] and |t| ∈ [−T0, T0], the solution v(t, ·) to (7) with
data v0(x, y) = ψ(hDy)δx=a,y=0 satisfies the following estimates:

‖ψ(hDt)v(t, ·)‖L∞(Ωd) .
1

hd
(
h

t
)
d−1
2 min{1, γh,a,d(

t

h
)}, where
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γh,a,d(
t
h
) =



h1/3, if a . h2/3,

√
a, if h2/3 . a . (th)1/2,

(h|t|
a

)1/2, if (|t|h)1/2 . a . th1/3,

(ha|t| )
1/4, if |t|h1/3 . a ≤ a0 < 1.

Moreover, for every |t| ∈ (
√
a, T0] and every |t|h1/3 � a . 1, these bounds are sharp as(

ha
|t|

)1/4

� h1/3 and

(8) ‖ψ(hDt)v(t, ·)‖L∞(Ωd) '
1

hd
(
h

t
)
(d−1)

2

(ha
|t|

)1/4

.

Remark 1. Notice that when a . |t|h1/3 we have γh,a,d( th) . (h|t|)1/4, when a ' |t|h1/3 we
have γh,a,d( th) . h1/3, while when |t|h1/3 � a ≤ a0, (8) yields a sharp loss of 1/4 powers of
h/t compared to the Euclidian case (4).

We notice in particular two main differences with respect to the wave equation which
imply important additional difficulties.

• When a is not too small, the Green function for the wave flow can be explicitly
expressed as a sum of "time-almost-orthogonal" waves, which essentially "live"
between a finite number of consecutive reflections; we are therefore reduced to ob-
taining good dispersion bounds for a finite sum of waves well localised in both time
and tangential variable. Using a subordination formula yields a similar representa-
tion of the Schrödinger flow as a sum of wave packets ; nonetheless, at a given time
t, all the waves in this sum provide important contributions, which occurs because
they travel with different speeds. To sum up all these contributions we need very
refined bounds for each of them, similar to those obtained in [17] for waves.
• When a is very small, writing a parametrix as a sum over reflections doesn’t help
anymore since there are too many terms to deal with (the number of terms becomes
unbounded even in the case of the wave equation, but the finite speed of propagation
allows to handle the situation at least as long as a � h2/3); using the spectral
decomposition of the data in terms of eigenfunctions of the Laplace operator allows
to obtain a parametrix as a sum over the zeros of the Airy function. When dealing
to the wave equation, each term in this sum satisfies the usual dispersive estimate,
hence we can sum up sufficiently many of them and still get sufficiently good bounds.
On the other hand, when considering the semi-classical Schrödinger flow, even the
very first modes - localised at distance h2/3 from ∂Ω (that are known as gallery
modes) yield a sharp loss of 1/6 in both dispersion and Strichartz estimates (in [13]
we compare the two situations).
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Theorem 2. The Strichartz estimates for the semi-classical flow hold with at most 1
4
loss

: let (q, r) be a such that, for d ≥ 2,

1

q
≤ (

d

2
− 1

4
)(

1

2
− 1

r
) ,

let s = d/2− 2/q − d/r, then the solution to (7) with data v0, satisfies

‖ψ(hDt)v‖Lq([0,T0],Lr(Ωd)) . h−s‖v0‖L2(Ωd).

The proof of Theorem 2 follows from Theorem 1 using the classical TT ∗ argument and
the endpoint argument of Keel-Tao [21] for q = 2 when d ≥ 3. The (scale-invariant) loss
at the semi-classical level corresponds to 1/4 derivative in space, as illustrated with d = 2,
for which the (forbidden) endpoint (2,∞) with s = 0 is replaced by (8/3,∞) with s = 1/4.

In [12], we proved that there must be a loss of at least 1
6
derivatives in the Strichartz

estimates for the semi-classical Schrödinger flow, which is obtained when the data is a
gallery mode. It is currently unknown whether or not this result is sharp, nor even if a loss
in the semi-classical setting should provide losses in classical time in the case of a generic
non-trapping domain where concave portions of the boundary could act like mirrors and
refocus wave packets (yielding unavoidable losses in dispersion). In fact, understanding the
Strichartz estimates in exterior domains seems to be a very delicate task: the obstructions
from the bounded situation no longer apply, at least in the case of non-trapping obstacles.
Thus, one may reasonable expect all Strichartz estimates to hold, but the full answer
remains unknown. The conflict between this questioning and the failure of semi-classical
Strichartz (and dispersion) near the boundary is only apparent: for non trapping domains,
a wave packet would spend too short a time in a too narrow to be a contradiction by itself.

For the wave equation, Stricharz estimates with losses were obtained in [5] using short
time parametrices constructions from [29]. As already noticed, the main advantage of [5]
is also its main weakness: by considering only time intervals that allow for no more than
one reflection of a given wave packet, one may handle any boundary but one does not
see the full effect of dispersion in the tangential variables. New results in both positive
and negative directions have recently been obtained, which improve on known results for
strictly convex domains in all dimensions: in [17] it is shown that Strichartz estimates for
the wave equation hold true on the domain (Ωd=2, gF ) with at least 1/9 loss. For d = 2,
[5] obtained 1

6
instead of 1

9
(but for any boundary), while [18] provides 1

4
. The proof of

[17] rely on improving the parametrix construction of [18] and the resulting bounds on the
Green function : in particular, the degenerate stationary phase estimates in [18] may be
refined to isolate precisely the space-time location of the worst case scenario of a swallowtail
singularity. It turns out that, for the wave equation, such singularities only happen at an
exceptional, discrete set of times. The proof of Theorem 1 relies on the refinements of the
degenerate stationary phase estimates from [17] as well as on refined estimates on gallery
modes from [12], all of which are of independent interest:

• the parametrix construction from [18] may be done for initial data δ(x=a,y=0) with
a > h2/3−ε, for any ε > 0;
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• the degenerate stationary phase estimates in [18] may be refined to isolate precisely
the space-time location of the worst case scenario of a swallowtail singularity. If
in the case of the wave equation it turns out that such singularities only happen
(see (6)) at exceptional, discrete set of values of t, in the case of the semiclassical
Schrödinger equation for a given time t ∈ (h, 1] we can expect to get 1/4 losses for
all y in a whole interval around 2t; this happens because wave packets propagate
with different speeds.
• gallery modes provide 1/6 losses in the usual dispersive and Strichartz estimates
(as already proved in [12]) but with uniform constant with respect to the order of
the mode : this allows to deal with the a < h2/3−ε region.

Remark 2. Adapting the construction of a parametrix for the wave flow from [14], one
should be able to generalize the proof of Theorem 1 to a domain Ω whose boundary is
everywhere strictly (geodesically) convex : what we mean by that is that for every point
(0, y0) ∈ ∂Ω there exists (0, y0, ξ0, η0) ∈ T ∗Ω where the boundary is micro-locally strictly
convex, i.e. such that there exists a bicharacteristic passing through (0, y0, ξ0, η0) that inter-
sects ∂Ω tangentially having exactly second order contact with the boundary and remaining
in the complement of ∂Ω. Under this assumption, local coordinates can be chosen in order
to work on the half space Ωd with a Laplace operator of the form ∆ = ∂2

x +R(x, y, ∂y) such
that

τ 2 = R(0, y0, η0), {ξ2 +R(x, y, η), x}|κ0 = 2ξ0 = 0,

{{ξ2 +R(x, y, η), x}, ξ2 +R(x, y, η)}|κ0 = 2∂xR(0, y0, η0) > 0,

where {., .} denotes the Poisson bracket. This is work in progress.

For general domains, there have been important developments especially by H. Smith
and C. Sogge (see for example [6], [29] and references therein). All these positive results
rely on a clever reduction from a boundary problem with smooth metric to a boundary-less
problem with a Lipschitz metric across an interface, and then use the machinery originally
developed for low regularity metrics [26, 33] and spectral cluster estimates [29]. Such con-
structions do away with multiply reflected rays by suitable microlocalizations: one ends
up working on a possibly very small time interval, depending on the incidence of the wave
packet under consideration, such that all corresponding rays are only reflected once. Sum-
ming these intervals induces (scale-invariant) losses, which get worse with dimension; while
Strichartz estimates are obtained in a more direct way in [6] in the case of the wave equa-
tion, one can observe that the corresponding dispersion estimate would have at most 1/t
decay for d ≥ 4, as the argument is blind to the full dispersion which should occur in
tangential directions. As a result, one gets sub-optimal estimates for d ≥ 3 because the
new metric is not smooth enough (only Lipschitz along an hyper-surface, which is meant
to be the boundary). However, as we have shown in [18], caustics (points where light is
singularly intense) appear right between the first and the second reflection of the wave
front: hence, while very flexible with respect to the boundary shape, any microlocalization
procedure that reduces to wave-packets crossing the boundary only once cannot provide
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optimal results.

Depending on the trajectory of light rays, we distinguish two main situations :

The non-trapping case. In order to assure dispersive effects, certain authors introduced the
non-trapping assumption for a manifold: (Ω, g) is non-trapping if any geodesic of the metric
g reflecting on the boundary according to the laws of geometric optics goes to infinity. In
the case of the wave equation, this condition is essentially equivalent to the local decay
of the energy which is "transported" along optical rays, which therefore go to infinity.
The Schrödinger equation on non-trapping domains induces a gain of spatial regularity for
almost all t when compared to the initial data which, if ψ is a smooth, compactly supported
function, reads as

(9) ‖ψeit∆gv0‖L2
tH

1/2(Ω) ≤ C‖v0‖L2(Ω).

The non-trapping condition is known to be essentially necessary and sufficient for (9) to
hold. The local smoothing estimate guarantees that the wave packets only spend a bounded
amount of time next to the obstacle. While for (9) the situation is fairly well understood, as
far as Strichartz estimates are concerned much less is known and it is not really clear under
what geometric assumptions a loss in (2) must occur. Despite important progress on the
study of Strichartz estimates (and nonlinear Schrödinger equations) in exterior domains
(see the papers [2], [8], [22], [23], [19], [25] [32],[20], [36], [1] and the references therein),
when the domain is non-trapping, we only dispose of some partial results (a restricted set
of non sharp, but scale invariant Strichartz estimates that are known to hold, together
with square function type estimates) : results with loss of derivatives were obtained in
[8] (see also [1] and [5]). For the Schrödinger equation, Strichartz estimates without loss
of derivatives have been obtained by Blair, Smith and Sogge in [7], where the authors
have shown that (2) holds true with σ = 1

q
for a range of sub-critical indices (q, r) such

that 3/q + 2/r ≤ 1 , if d = 2; 1/q + 1/r ≥ 1/2, if d ≥ 3. This is currently the best
known result in the case of general non-trapping exterior domains. For the wave equation,
Burq, Lebeau and Planchon [10] used the square function estimates from [29] to prove
Strichartz without loss for solutions to the linear wave equation on Ω for the admissible
pair (d = 3, q = 5, r = 10), that allowed them to show that there is global existence for the
H1 - critical nonlinear wave equation. Both works [7] and [10] are based on [29] and the
restriction of indices is naturally imposed by the local nature of the parametrix construc-
tion in [29] and is clearly not optimal for d ≥ 3.

In the particular case of the exterior of a strictly convex obstacle the situation has been
much better understood lately : let Θ ⊂ Rd be an obstacle whose boundary is everywhere
strictly geodesically convex and let Ω = Rd \ Θ, then the Strichartz estimates are known
to hold like in Rd (see [13]). The first step in [13] consisted in proving sharp, scale-
invariant Strichartz for the semi-classical Schrödinger equation (e.g. on a time interval of
size the wavelength for the classical equation) on compact manifolds with strictly concave
boundaries of dimension d ≥ 2 (an example of such manifold is the so-called Sinaï billiard,
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e.g. a punctured torus). Following the approach of [9], one then sums up over such small,
wavelength size intervals of time and obtain Strichartz estimates on a fixed time interval
for the classical flow with a loss of 1/q derivative and the same admissible pairs as in flat
space. We want to stress that in order to obtain Strichartz in semi-classical time in [13]
we bypassed dispersion: in fact, we side-stepped this issue by taking advantage, as in [28],
of the L2 continuity of certain operators to reduce consideration to operators like those on
a manifold without boundary: we wish to point out that this approach is very unlikely to
work when one is interested in obtaining dispersion.

While many positive results on dispersive effects had been established lately in exterior
domains, the question about whether or not dispersion estimates hold remained completely
open, even for the exterior of a sphere, until very recently. In [15], we provided some
interesting answers to this question: outside a ball in R3 we obtained a precise description
of the behaviour of the flow and proved that dispersive estimates hold like in R3, while
in higher dimensions d ≥ 4 we constructed explicit counterexamples to (3) for both wave
equation and Schrödinger equation : in fact, a loss in dispersion may be informally related
to a cluster point: such clusters occur because optical rays (sent along different directions)
are no longer diverging from each other. Our intuition tells us that if there is a location
where dispersion could fail, this could only happen at the Poisson-Arago spot (a bright
point that appears at the center of a circular obstacle’s shadow due to Fresnel diffraction).

Compact domains. For both compact manifolds and bounded domains, finiteness of the
volume means that there can be no long-time dispersion of wave packets: because of
this, all Strichartz estimates must be local in time. Further, due to the existence of
conjugate points for the geodesic flow, high frequency waves can refocus and this can
happen arbitrarily quickly. As a consequence, the corresponding Strichartz estimates lose
derivatives relative to the Euclidean setting.

On a compact domain with smooth boundary, the same set of estimates as in the exterior
case are still known to hold, but only at semi-classical time scales. In fact, the estimates
in the non-trapping case are obtained by combining these semi-classical estimates via the
local smoothing effect, following a strategy pioneered by [32]. Thus, the best available
Strichartz estimates are due to [7] and they exhibit losses with respect to scaling.

In the remaining of the paper, A . B means that there exists a constant C such
that A ≤ CB and this constant may change from line to line but is independent of all
parameters. It will be explicit when (very occasionally) needed. Similarly, A ∼ B means
both A . B and B . A.

2. The semi-classical Schrödinger propagator: spectral analysis and
parametrix construction

We recall a few notations, where Ai denotes the standard Airy function: define

(10) A±(z) = e∓iπ/3Ai(e∓iπ/3z) = Ψ(e∓iπ/3z)e∓
2
3
iz3/2 , for z ∈ C ,

then Ai(−z) = A+(z) + A−(z). We have Ψ(z) ' z−1/4
∑∞

j=0 ajz
−3j/2, a0 = 1

4π3/2 .
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Lemma 1. (see [16, Lemma 1]) Define

(11) L(ω) = π + i log
A−(ω)

A+(ω)
, for ω ∈ R ,

then L is real analytic and strictly increasing. We also have

(12) L(0) = π/3 , lim
ω→−∞

L(ω) = 0 , L(ω) =
4

3
ω

3
2 +

π

2
−B(ω

3
2 ) , for ω ≥ 1 ,

with B(u) '
∑∞

k=1 bku
−k, bk ∈ R, b1 > 0. Finally, Ai(−ωk) = 0 ⇐⇒ L(ωk) = 2πk and

L′(ωk) = 2π
∫∞

0
Ai2(x − ωk) dx where here and thereafter, {−ωk}k≥1 denote the zeros of

the Airy function in decreasing order. Recall that ω1 ' 2.33.

2.1. Spectral analysis of the Friedlander model. Our domain is the half space Ωd =
{(x, y) ∈ Rd|, x > 0, y ∈ Rd−1} and the Laplacian ∆F is given in (5). As ∆F has constant
coefficients in y, taking the Fourier transform in the y variable, it transforms into −∂2

x +
|θ|2 + xq(θ). For θ 6= 0, this operator is a positive self-adjoint operator on L2(R+), with
compact resolvent.

Lemma 2. (see [16, Lemma 2]) There exist orthonormal eigenfunctions {ek(x, θ)}k≥0 of
−∂2

x + |θ|2 + xq(θ) with corresponding eigenvalues λk(θ) = |θ|2 + ωkq(θ)
2/3, which form

a Hilbert basis of L2(R+). These eigenfunctions have an explicit form in terms of Airy
functions :

(13) ek(x, θ) =

√
2πq(θ)1/6√
L′(ωk)

Ai
(
xq(θ)1/3 − ωk

)
,

where L′(ωk) (with L as in (11)) is such that ‖ek(., θ)‖L2(R+) = 1.

In a classical way, for x0 > 0, the Dirac distribution δx=x0 on R+ may be decomposed
as δx=x0 =

∑
k≥1 ek(x, θ)ek(x0, θ). If, for some fixed t0, we consider a data at time t = t0

such that u(t0, x, y) = ψ(hDy)δx=x0,y=y0 , where h ∈ (0, 1] is a small parameter and ψ ∈
C∞0 ([1

2
, 3

2
]), we can write the (localized in θ) Green function associated to the semi-classical

Schrödinger operator on Ωd as

(14) Gh((t, x, y), (t0, x0, y0)) =
∑
k≥1

∫
Rd−1

ei(t−t0)λk(θ)ei<y−b,θ>ψ(h|θ|)ek(x, θ)ek(a, θ)dθ .

In addition to the cut-off ψ(h|θ|), which localizes the Fourier variable dual to y, we may
add a spectral cut-off ψ1(h

√
λk(θ)) under the θ integral, where ψ1 is also such that ψ1 ∈

C∞0 ([1
2
, 3

2
]). For that, we use

−∆F

(
ψ(h|θ|)eiyθek(x, θ)

)
= λk(θ)ψ(h|θ|)eiyθek(x, θ) .

On the flow, this is nothing but ψ1(hDt) and this smoothes out the Green function.

Remark 3. As remarked in [18] where the wave flow was considered (see also [17]), after
adding ψ1(h

√
λk(θ)), the significant part of the sum over k in (14) becomes then a finite

sum over k . 1/h. Indeed, with the usual notations τ = h
i
∂t = hDt, ξ = h

i
∂x = hDx, η =
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h
i
∇y = hDy, the characteristic set of the semi-classical Schrödinger operator ih∂t − h2∆F

is given by

τ = ξ2 + |η|2 + xq(η).

The hyperbolic (resp. elliptic) subset of the cotangent bundle of the boundary x = 0 is
τ > |η|2 (resp. τ < |η|2) and the gliding subset is τ = |η|2. Using τ = hDt = hλk(Dy), one
obtains (at the symbolic level) that on the micro-support of any gallery mode associated to
ωk we have

(15) h2/3ωkq
2/3(η) = |ξ|2 + xq(η).

We may assume that on the support of ψ(η)ψ1(h
√
λk(η/h)) one has h2/3ωk ≤ ε0 with ε0

small. This is compatible with (15) since it is equivalent to |ξ|2 . ε0. Considering the
asymptotic expansion of ωk ∼ k2/3 the condition h2/3ωk ≤ ε0 yields k . ε0/h.

Remark 4. As in [18], irrespective of the position of x0 relative to h, the remaining part of
the Green function (corresponding to larger values of k) will be essentially transverse and
will see at most one reflexion for t ∈ [0, T0] with T0 small (depending on the above choice
of ε0). Hence, this regime can be dealt with as in [5] to get the free space decay and we will
ignore it in the upcoming analysis.

Reducing the sum to k ≤ ε0/h is equivalent to adding a spectral cut-off φε0(x +
h2D2

x/q(θ)) in the Green function, where φε0 = φ(·/ε0) for some smooth cut-off func-
tion φ ∈ C∞0 ([−1, 1]): using that the eigenfunctions of the operator −∂2

x + xq(θ) are also
ek(x, θ) but associated to the eigenvalues λk(θ) − |θ|2 = ωkq

2/3(θ), we can localize with
respect to x + h2D2

x/q(θ) : notice (x + h2D2
x/q(θ))ek(x, θ) = (ωkq

2/3(θ)/q(θ))ek(x, θ) and
this new localization operator is exactly associated by symbolic calculus to the cut-off
φε0(ωk/q(θ)

1/3). We therefore set, for (t0, x0, y0) = (0, a, 0),

(16) Gh,ε0(t, x, y, 0, a, 0) =
∑
k≥1

∫
Rd−1

eitλk(θ)ei(y−b)η/hψ(h|θ|)ψ1(h
√
λk(θ))

× φε0(ωk/q(θ)1/3)ek(x, θ)ek(a, θ)dθ .

In the following we introduce a new, small parameter γ satisfying max (a, h2/3) . γ ≤ ε0

and then split the (tangential part of the) Green function into a dyadic sum Gh,γ corre-
sponding to a dyadic partition of unity supported for ωk/q(θ)1/3 ' γ ' 2j max (a, h2/3) ≤
ε0. Let ψ2(·/γ) := φγ(·)− φγ/2(·) and decompose φε0 as follows

φε0(·) = φmax (a,h2/3)(·) +
∑

1≤j<log2(ε0/max (a,h2/3))

(φ2j max (a,h2/3) − φ2j−1 max (a,h2/3))(·)(17)

= φmax (a,h2/3)(·) +
∑

γ=2j max (a,h2/3),1≤j<log2(ε0/max (a,h2/3))

ψ2(·/γ),
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which allows to write Gh,ε0 =
∑

max (a,h2/3)≤γ<1Gh,γ where (rescaling the θ variable for later
convenience) Gh,γ takes the form

(18) Gh,γ(t, x, a, y) =
∑
k≥1

1

hd−1

∫
Rd−1

eitλk(η/h)eiyη/hψ(|η|)ψ1(h
√
λk(η/h))

× ψ2(h2/3ωk/(q(η)1/3γ))ek(x, η/h)ek(a, η/h)dη .

Remark 5. Notice that, when γ = max (a, h2/3), according to the decomposition (17), we
should have written φmax (a,h2/3) instead of ψ2(·/max (a, h2/3)) in (18) : it turns out that, for
values h2/3ωk . 1

2
max (a, h2/3), the corresponding Airy factors are exponentially decreas-

ing and provide an irrelevant part; therefore writing φmax (a,h2/3) or ψ2(·/max (a, h2/3)) =
φmax (a,h2/3)(·)−φ 1

2
max (a,h2/3)(·) yields the same contribution in Gh,max (a,h2/3) modulo O(h∞).

In fact, when a < h2/3 is sufficiently small, there is no ωk satisfying h2/3ωk/q
1/3(η) < h2/3/2

as ωk ≥ ω1 ' 2.33 and |η| ∈ [1
2
, 3

2
]; on the other hand, when a & h2/3 and h2/3ωk/q

1/3(η) ≤
a/2 then the Airy factor of ek(a, η/h) is exponentially decreasing (see [34, Section 2.1.4.3]
for details). In order to keep similar notations, we use the same formula (18) for each
Gh,γ.

Note that from an operator point of view, if Gh(·) is the true semi-classical Schrödinger
propagator, we are in fact considering (with Dx = ∂x/i, Dy = ∇y/i)

Gh,γ = ψ(hDy)ψ1(h
√
−∆F )ψ2((x+ h2D2

x/q(hDy))/γ)Gh .

We are left to evaluate ‖Gh,ε0(t, ·)‖L∞(Ωd).

Remark 6. For a . h2/3, dispersive estimates with unavoidable loss of 1/6 have been
proved in [12] :

(19) ‖Gh,h2/3(t, ·, a . h2/3, ·)‖L∞ .
1

hd

(h
t

)(d−1)/2

h1/3.

The proof in [12] is given for q(η) = |η|2 but can be easily generalised to any positive definite
quadratic form q. This loss of 1/6 is optimal in the regime a . h2/3 : in [12, Theorem
1.8] we have suitably chosen a gaussian data whose associated semi-classical Schrödinger
flow satisfied (19) with . replaced by '. This regime (called the regime of "whispering
gallery modes") has been well understood by now. It is worthwhile recalling that (see [12]),
in the case of the wave flow, this regime provides no loss in the dispersive and Strichartz
estimates.

Remark 7. For a & h2/3, the main contribution in the sum (16) comes from values of k and
γ such that γ ' a and a/h2/3 ' ωk, (when the maximum of ek(a, η/h) is reached). When
a lies in a h2/3-neighborhood of the boundary, the sum defining Gh,max(a,h2/3) is essentially
finite (as ωk ' k2/3 ' a/h2/3). Each term (or wave packet) in this sum has degenerate
critical points and provides a 1/6 loss at x = a; obtaining a sharp bound for each wave
packet and then summing-up a finite number of terms still gives a sharp bound. When
a � h2/3, in the sum defining Gh,a the number of wave packets that provide important
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contributions can be very large, as k ' a3/2/h := λ : summing λ � 1 terms provides
additional losses. Moreover, in the sum over eigenmodes ek we cannot expect to localize
the essential supports of the wave packets : for a given (t, x, y), each of the k ' λ terms
provide contributions corresponding to 1/6 loss.

Remark 8. We will see later on that for a � h2/3, the "tangential" part Gh,a of (14),
corresponding to γ ' a and values k ' λ provides a loss in the dispersion of

√
a (when

a ' h2/3 we find h1/3 in (19)) : when 1 > a > h1/2 this is obviously (much) worst than
announced in Theorem 1; it becomes clear that this regime has to be dealt with in a different
manner. Below we will show how a Poisson summation-type formula allows to transform
the sum over eigenmodes into a sum over "reflected waves" that will be used later on to
handle the case of larger values of a.

We briefly recall a variant of the Poisson summation formula that will be crucial to
analyse the spectral sum defining Gh,γ (see [16, Lemma 3] for the proof).

Lemma 3. In D′(Rω), one has
∑

N∈Z e
−iNL(ω) = 2π

∑
k∈N∗

1
L′(ωk)

δ(ω−ωk) . In other words,
for φ(ω) ∈ C∞0 ,

(20)
∑
N∈Z

∫
e−iNL(ω)φ(ω) dω = 2π

∑
k∈N∗

1

L′(ωk)
φ(ωk) .

Using (20) to Gh,γ, we transform the sum over k into a sum over N ∈ Z, as follows

(21) Ĝh,γ(t, x, a, η/h) =
1

2π

∑
N∈Z

∫
R
e−iNL(ω)(|η|/h)2/3q1/3(η/|η|)e

i
h
t|η|2(1+h2/3ωq1/3(η/|η|)/|η|2/3)

× ψ1

(
|η|
√

1 + h2/3ωq2/3(η/|η|)/|η|2/3
)
ψ2(h2/3ω/(q1/3(η)γ))

× Ai(xq1/3(η)/h2/3 − ω)Ai(aq1/3(η)/h2/3 − ω)dω,

where Ĝh,γ is the Fourier transform in y. For max (a, h2/3) ≤ γ < 1, we let λγ = γ3/2

h
;

when h2/3 . a and γ ' a we write λ := a3/2

h
. Replacing the Airy factors by their integral

formulas yields

Ai(xq1/3(η)/h2/3 − ω) =
1

2π

∫
ei(

σ3

3
+σq1/3(η)λ

2/3
γ ( x

γ
−ω/(q1/3(η)λ

2/3
γ )) dσ(22)

=
q1/6(η)λ

1/3
γ

2π

∫
eiq

1/2(η)λγ(σ
3

3
+σ( x

γ
−ω/(q1/3(η)λ

2/3
γ )) dσ.(23)

Rescaling ω = q1/3(η)λ
2/3
γ α = q1/3(η)γα/h2/3 in (21) yields

(24) Ĝh,γ(t, x, a, η/h) =
λ

4/3
γ

(2π)3h2/3

∑
N∈Z

∫
R

∫
R2

e
i
h

Φ̃N,a,γ(η,α,s,σ,t,x)q(η)

× ψ1

(
|η|
√

1 + γαq(η/|η|)
)
ψ2(α) dsdσdα ,
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where Φ̃N,a,γ(η, α, s, σ, t, x) is given by

(25) Φ̃N,a,γ(η, α, s, σ, t, x) = t|η|2(1 + γαq(η/|η|))−NhL(q1/3(η)λ2/3
γ α)

+ γ3/2q1/2(η)
(σ3

3
+ σ(

x

γ
− α) +

s3

3
+ s(

a

γ
− α)

)
.

Here NhL(q1/3(η)λ
2/3
γ α) = 4

3
Nq1/2(η)(γα)3/2 − NhB(q1/2(η)λγα

3/2) and we recall that
B(q1/2(η)λγα

3/2) '
∑

k≥1
bk

(q1/2(η)λγα3/2)k
, where on the support of ψ2(α) we have α ' 1.

At this point, it is worth noticing that, as |η| ∈ [1/2, 3/2], we may drop the ψ1 localiza-
tion in (24) by support considerations (slightly changing any cut-off support if necessary).
Therefore we obtain

(26) Gh,γ(t, x, a, y) =
1

(2π)3

γ2

hd+1

∑
N∈Z

∫
R×Rd−1

∫
R2

e
i
h

(<y,η>+Φ̃N,a,γ)q(η)ψ(|η|)

× ψ2(α) dsdσdαdη .

Remark 9. Notice that formulas (26) and (18) define exactly the same object and both
will be necessary in order to prove the dispersive estimates. The sum over the eigenmodes
ek will be particularly useful for small values of a . (ht)1/2, while for large values of the
initial distance to the boundary the sum over N will provide the announced bounds. Note
that, while both formulas coincide, there is a duality between the two on them: when a is
small, there are less terms in the sum over k in (18), while when a > (ht)1/2 there are less
terms in the sum over the reflections N .

Remark 10. As noticed in [18], the symmetry of the Green function (or its suitable spectral
truncations) with respect to x and a allows to restrict the computations of the L∞ norm to
the region 0 ≤ x ≤ a. In other words, instead of evaluating ‖Gh,ε0‖L∞(0≤x,y)(t, ·) it will be
enough to bound ‖Gh,ε0(t, ·)‖L∞(0≤x≤a,y).

Remark 11. In order to generalize Theorem 1 to a convex domain as in Remark 2, our
construction of gallery modes from [14] will turn out to be crucial. Notice that in the general
situation even the regime a ≤ h has its own difficulties : even deciding how the initial data
should be chosen in order the Dirichlet condition to be satisfied on the boundary becomes
a non trivial issue. Indeed, an initial data of the form χ0(hDx)ψ(hDy)δ(a,0) can provide a
non-trivial contribution on the boundary.

In the model case, Lemma 2 provides a Hilbert basis of L2(R+) in terms of eigenfunctions
of the (model) operator −∂2

x + |θ|2 + xq(θ). In the general case, the eigenfunctions of the
Laplace operator in a compact Ω form a basis in L2(Ω) and one can safely think that this
basis can be used to expand a data of the form κ(−h2∆)ψ(hDy)δ(a,0), but it turns out that
we don’t have a complete understanding of the eigenfunctions of ∆ = ∂2

x +R(x, y, ∂y) from
Remark 2 on Ωd. Instead, we chose to use the spectral theory for the model Laplace operator
(5) in order to expand κ(−h2∆M)ψ(hDy)δ(a,0) in terms of the eigenfunctions ek of −∆M .
Thus, constructing of a parametrix in the model case (in terms of both eigenmodes and sum
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over reflections) and obtaining its best possible decay properties is particularly important
in order to be able to further generalize Theorem 1.

3. Dispersive estimates for the semi-classical Schrödinger flow

In this section we prove dispersive bounds for Gh,ε0(t, x, a, y) on Ωd for fixed |t| ∈ [h, T0],
where T0 > 0 is a suitably chosen small constant. To do that, we estimate separately
‖Gh,γ(t, ·)‖0≤x≤a,y∈Rd−1 for every γ such that max (a, h2/3) . γ ≤ ε0. The reduction to the
interval [0, a] in the normal variable is due to the symmetry of the Green function with
respect to x and a (see Remark 10).

Henceforth we assume t > 0. We deal separate with the following situations :
(1) max (h2/3−ε, (ht)1/2) ≤ a ≤ ε0 for some small ε > 0 : in this case, for all γ such that

max (a, h2/3) . γ ≤ ε0 we have

max (h2/3−ε, (ht)1/2) ≤ a . γ ≤ ε0.

This is, in some sense, the main situation, when only formula (26) is useful; the
integrals with respect to σ, s have up to third order degenerate critical points and
we need to perform a fine analysis of these integrals. In particular, the "tangential"
case γ ' a provides the worst decay estimates. When 8a ≤ γ, the integrals in
(26) have degenerate critical points of order at most two. We call this regime
"transverse" : summing up

∑
8a≤γ ‖Gh,γ(t, ·)‖L∞ still provides a better contribution

than ‖Gh,a(t, ·)‖L∞ .
(2) a . max (h2/3−ε, (ht)1/2) for some small ε > 0 : in this case we consider separately

the following situations:
(a) when max (h2/3−ε, (ht)1/2) ≤ γ ≤ ε0, the situation corresponds to the "trans-

verse" regime of the preceding case, and the same kind of estimates follow
using (26).

(b) when max (a, h2/3) . γ . max (h2/3−ε, (ht)1/2) we use the form(18) of Gh,γ in
terms of eigenmodes to evaluate its L∞ norms.

3.1. Case max (h2/3−ε, (ht)1/2) ≤ a ≤ ε0 for some small ε > 0. In this section we use
(26). Since in this case max (a, h2/3) = a, we consider γ such that a . γ ≤ ε0. Let
λγ := γ3/2/h, then we also have λγ ≥ h−3ε/2.

Remark 12. The approach followed in this part applies for all h2/3−ε . a ≤ ε0 (and not
only for max (h2/3−ε, (ht)1/2) ≤ a ≤ ε0) and provides sharp dispersive estimates for each
Gh,γ for all h2/3−ε . a ≤ γ ≤ ε0; however, when summing up over a . γ ≤ (ht)1/2 we
obtain bounds for Gh,ε0 that are worst than those announced in Theorem 1. This is why
we consider here only values max (h2/3−ε, (ht)1/2) ≤ a ≤ ε0.

We first show that the sum defining Gh,γ in (26) over N is essentially finite and we
estimate of the maximum number of terms in this sum.



SCHRÖDINGER EQUATION IN A STRICTLY CONVEX DOMAIN 15

Proposition 1. For a fixed t ∈ (h, T0] the sum (26) over N is essentially finite and
|N | . 1√

γ
. In other words,

1

(2π)3

γ2

hd+1

∑
N∈Z,|N |√γ /∈O(t)

∫
R×Rd−1

∫
R2

e
i
h

(<y,η>+Φ̃N,a,γ)q(η)ψ(|η|)ψ2(α) dsdσdαdη = O(h∞).

Proof. The proof follows easily using non-stationary phase arguments for N ≥ M t√
γ
for

some M sufficiently large. In fact, the critical points with respect to σ, s satisfy

(27) σ2 = α− x

γ
, s2 = α− a

γ
,

and since x ≥ 0, it follows that Φ̃N,a,γ may be stationary in σ, s only if |(σ, s)| ≤
√
α. If

|(σ, s)| ≥ (1 + |N |ε)
√
α for some ε > 0 we can perform repeated integrations by parts in

σ, s to obtain O(((1 +N ε)λγ)
−n) for all n ≥ 1. Let χ a smooth cutoff supported in [−1, 1]

and write 1 = χ(σ/(N ε
√
α)) + (1− χ)(σ/(N ε

√
α)), then

(28) ψ(|η|)
∑
N∈Z

∫
R

∫
R2

e
i
h

Φ̃N,a,γψ2(α)χ(s/(N ε
√
α))(1− χ)(σ/(N ε

√
α)) dsdσdα

. λ−1/3
γ sup

α,|η|∈[1/2,3/2]

∣∣∣Ai((a− γα)q1/3(η)/h2/3
)∣∣∣∑

N∈Z

(
(1 +N ε)λγ)

−n
)

= O(λ−∞γ ) = O(h∞),

where in the last line we have used that in this regime λγ ≥ h−3ε/2, ε > 0. In the same way,
we can sum-up on the support of (1 − χ)(s/(N ε

√
α)) and obtain a O(h∞) contribution.

Therefore, we can introduce the cut-offs χ(σ/(N ε
√
α))χ(s/(N ε

√
α)) in the integral defining

Gh,γ without changing its contribution modulo O(h∞).
Using again (25), the critical point of Φ̃N,a,γ with respect to α satisfies :

(29)
t
√
γ
q(η)− q1/2(η)(s+ σ) = 2Nq1/2(η)

√
α(1− 3

4
B′(ηλα3/2)),

and as |(σ, s)| . (1 + |N |ε)
√
α on the support of χ(σ/(N ε

√
α))χ(s/(N ε

√
α)), it follows

that Φ̃N,a,γ may be stationary with respect to α only when t√
γ
' 2N . As B′(ηλα3/2) =

O(λ−3
γ ) = O(h9ε/2), this contribution is very small. From (27) and (29), it follows that if

(30)
t
√
γ

|η|√
α
q1/2(η/|η|) /∈ [2(N − 1), 2(N + 1)],

then the phase in non-stationary in α. Recall that q is a positive definite quadratic form :
let

(31) m0 := inf
Θ∈Sd−2

q1/2(Θ), M0 = sup
Θ∈Sd−2

q1/2(Θ).
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As |η|, α ∈ [1
2
, 3

2
] on the support of the symbol, it follows that, it 2(N − 1) > t√

γ
×M0

3/2√
1/2

or if 2(N + 1) < t√
γ
× m0

1/2√
3/2

, then the phase is non-stationary in α as its first order

derivative behaves like N . Repeated integrations by parts allow to sum up in N as above,
and conclude. �

Remark 13. Notice that we can introduce a even better localization with respect to σ and
s : indeed, on the support of (1−χ)(σ/(2

√
α)) and (1−χ)(s/(2

√
α)) the phase is still non-

stationary in σ or s, and repeated integrations by parts yield a O(λ−∞γ ) contribution there.
According to Proposition 1, for h ≤ t ≤ T0 ≤ 1 the sum over N has finitely many terms, and
therefore summing up finitely many O(λ−∞γ ) contributions still yields O(λ−∞γ ) = O(h∞).

Remark 14. Notice that we can bring the factor eiNB(q1/2(η)λγα3/2) into the symbol as it
doesn’t oscillate : indeed, as q is a positive definite quadratic form, α, |η| ∈ [1

2
, 3

2
] on the

support of ψ2, ψ and N ' t√
γ
, we obtain, using Lemma 1

NB(q1/2(η)λγα
3/2) ' N

∑
k≥1

bk
(q1/2(η)λγα3/2)k

' Nb1

q1/2(η)λγ
' ht

γ2
,

and since we consider here the case (ht)1/2 . γ, this term remains bounded. Notice that
we consider here only values N . λγ as N ' t√

γ
. γ2/h√

γ
= λγ.

We set ΦN,a,γ =< y, η > +Φ̃N,a,γ−NhB(q1/2(η)λγα
3/2): from Remark 14 it follows that,

in this regime, ΦN,a,γ is the phase function of Gh,γ defined by (26). We have

(32) ΦN,a,γ(η, α, s, σ, t, x, y) =< y, η > +t|η|2(1 + γαq(η/|η|))

+ γ3/2q1/2(η)
(σ3

3
+ σ(

x

γ
− α) +

s3

3
+ s(

a

γ
− α)− 4

3
Nα3/2

)
.

In the following we study, for each |N | . 1√
γ
, the integrals in the sum (26). Notice that

when N = 0 we deal with the free semi-classical Schrödinger flow (that hasn’t reached the
boundary yet). As we have fixed a sign for t > 0, we consider N ≥ 1.

Proposition 2. Let N ≥ 1. The phase function ΦN,a,γ can have at most one critical
point (αc, ηc) on the support [1

2
, 3

2
] of the symbol. When ∇ηΦN,a,γ = 0 and ∂αΦN,a,γ =

0, the determinant of the matrix of second order derivatives with respect to η and α is
' td−1 × γ3/2N . In other words the stationary phase applies in both α ∈ [1/2, 3/2] and
η ∈ Rd−1 and yields a factor (h

t
)(d−1)/2 × 1√

λγN
.

Proof. The derivatives of the phase ΦN,a,γ with respect to α, η are

∂αΦN,a,γ = γ3/2q1/2(η)
( t
√
γ
q1/2(η)− (σ + s)− 2N

√
α
)
,

∇ηΦN,a,γ = y + 2ηt+ γ3/2 ∇q(η)

2q1/2(η)

(σ3

3
+ σ(

x

γ
− α) +

s3

3
+ s(

a

γ
− α)− 4

3
Nα3/2 + 2α

t
√
γ
q1/2(η)

)
.
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At ∂αΦN,a,γ = 0 and ∇ηΦN,a,γ = 0 the equations satisfied by the critical points are

(33)
√
α =

tq1/2(η)

2N
√
γ
− s+ σ

2N

and also (replacing 2N
√
α by t√

γ
q1/2(η)− (σ + s) in the expression of ∇ηΦN,a,γ)

(34) 2t
(
η +

1

2
γα∇q(η)

)
= −y − γ3/2 ∇q(η)

2q1/2(η)

[σ3

3
+ σ

x

γ
+
s3

s
+ s

a

γ
− (s+ σ)α

3

]
.

It follows from (30) (and the support condition on η and α) that a critical point αc ∈ [1
2
, 3

2
]

does exist only if

(35) (1− 1/N)

√
1/2

3M0/2
≤ t

2N
√
γ
≤ (1 + 1/N)

√
3/2

m0/2
.

• For N ≥ 2, fix M sufficiently large such that [(1 − 1/2)

√
1/2

3M0/2
, (1 + 1/2)

√
3/2

m0/2
] ⊂

[1/M,M ], then (33) may have a solution on the support of ψ2 only when t
2N
√
γ
∈

[1/M,M ] (notice that if q(η) = |η|2, we can take M = 3
√

2).
• For N = 1, we obtain the upper bound t

2
√
γ
≤ 4

m0

√
3/2 but also, using (27), the

following lower bounds : either s + σ ≥ −3
2

√
α, in which case t

2
√
γ
≥

√
α

4|η|M0
, or

(s+ σ) ≤ −3
2

√
α in which case both s and σ must take non positive values and in

this case

q1/3(η)
t

2
√
γ
≥
√
α +

s+ σ

2
≥ a/γ

2(
√
α− s)

+
x/γ

2(
√
α− σ)

≥ a/γ

4
√
α
.

This last lower bound on t states precisely that for t ≤ a/
√
γ

2
√

3/2M
2/3
0

the flow doesn’t

reach the boundary (hence there are no reflections).

Let N ≥ 1 hence t ≥ a/
√
γ

2
√

3/2M
2/3
0

(since otherwise the phase is non-stationary).

As α ∈ [1
2
, 3

2
] and γ ≤ ε0 it follows that (34) may have a critical point ηc only when

|y|/2t ∈ [1
2

+O(ε0), 3
2

+O(ε0)].
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Using ∂ηjq(η) = 2qj,jηj +
∑

k 6=j qj,kηk, qj,k = qk,j the second order derivatives become

∂2
α,αΦN,a,γ = −γ3/2q1/2(η)

N√
α
,(36)

∂ηj∂αΦN,a,γ =
∂ηjq(η)

2q(η)
∂αΦN,a,γ + γ3/2 t

2
√
γ
∂ηjq(η),(37)

∂2
ηj ,ηj

ΦN,a,γ = 2t
(

1 + γα
(∂ηjq(η))2

4q(η)

)
(38)

+
γ3/2

q1/2(η)

(
qj,j −

(∂ηjq(η))2

4q(η)

)(σ3

3
+ σ(

x

γ
− α) +

s3

3
+ s(

a

γ
− α)− 4

3
Nα3/2 + 2α

t
√
γ
q1/2(η)

)
,

(39)

∂2
ηj ,ηk

ΦN,a,γ = 2tγα
∂ηjq(η)

2q1/2(η)

∂ηkq(η)

2q1/2(η)
(40)

+
γ3/2

q1/2(η)

(
qj,k −

∂ηjq(η)∂ηkq(η)

4q(η)

)(σ3

3
+ σ(

x

γ
− α) +

s3

3
+ s(

a

γ
− α)− 4

3
Nα3/2 + 2α

t
√
γ
q1/2(η)

)
.

(41)

At the stationary points we easily see that ∇2
η,ηΦN,a,γ ' 2t(1 + O(γ))Id−1d + O(γ3/2)

where Id−1 denotes the identity matrix in dimension d − 1 ; as ε0 < 1 is small we deduce

∇2
η,ηΦN,a,γ ' 2tId−1. Hence, the stationary phase with respect to η yields a factor

(
h
t

) d−1
2 ,

while the stationary phase in α yields a factor 1√
λγN

for N ≥ 1. �

Lemma 4. Let N ≥ 1 and a . γ ≤ ε0. The critical point ηc of ΦN,a,γ is a function of
s+ σ, (σ − s)2, (σ − s) (x−a)

γ
, y

2t
and t

2N
√
γ
. There exists smooth, uniformly bounded vector

valued functions Θ, Θ̃ depending on the small parameter γ satisfying

Θ(
y

2t
,

t

2N
√
γ
, γ) = −1

2
(

t

2N
√
γ

)2(q∇q)(− y
2t

) + γΘ̃(
y

2t
,

t

2N
√
γ
, γ),

such that the value at σ = s = 0 of the critical point, denoted η0
c := ηc|σ=s=0, satisfies

η0
c = − y

2t
+ γΘ

( y
2t
,

t

2N
√
γ
, γ
)
.

Moreover, the vector valued functions defined as follows Θ1 := t
γ3/2

∂σηc and Θ2 := t
γ3/2

∂sηc
are smooth and uniformly bounded.

Proof. We start with the second statement. Let first N ≥ 2 and define M as follows

(42) M := 4 max
{ √

3/2

m0 − ε0

,
M0 + ε0√

1/2

}
, with m0,M0 introduced in (31),
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and where we can assume, without loss of generality, that 0 < ε0 < m0/2. Then M is

large enough so that
[
(1−1/2)

√
1/2

3M0/2
, (1+1/2)

√
3/2

m0/2

]
⊂ [1/M,M ] and for t

2N
√
γ
∈ [1/M,M ]

and |y|
2t
∈ [1

4
, 2], the critical points αc and ηc of ΦN,a,γ solve the system (33) and (34). Let

η0
c := ηc|σ=s=0 denote the value of ηc at σ = s = 0, then, using (34) we find that η0

c solves
the following equation :

η0
c +

1

2
γ
( t

2N
√
γ

)2

q(η0
c )∇q(η0

c ) = − y
2t
.

For t
2N
√
γ
∈ [1/M,M ], writing η0

c = − y
2t

+ γΘ( y
2t
, t

2N
√
γ
, γ), yields the following equation

for Θ( y
2t
, t

2N
√
γ
, γ)

(43) Θ +
1

2
(

t

2N
√
γ

)2(q∇q)(− y
2t

+ γΘ) = 0,

which further reads as follows, with Θ = (Θ(1), ..,Θ(d−1)) and for all 1 ≤ l ≤ d− 1

Θ(l) + (
t

2N
√
γ

)2
∑
j,k,p

qj,kqp,l(−
yj
2t

+ γΘ(j))(− yk
2tk

+ γΘ(k))(−yp
2t

+ γΘ(p)) = 0.

As γ ≤ ε0 < 1, the last equation has an unique solution that is a smooth function of
( y

2t
, t

2N
√
γ
, γ) of the form Θ(l) = ( t

2N
√
γ
)2
(∑

j,k,p qj,kqp,l(
yj
2t

)(yk
2t

)(yp
2t

)
)

+ γΘ̃(l), where Θ̃ =

(Θ̃(1), .., Θ̃(d−1)) is a smooth function of ( y
2t
, t

2N
√
γ
, γ). When N = 1, t can take (very) small

values but doesn’t vanish there where the phase Φ1,a,γ may be stationary and therefore
(43) still holds and |y|

2t
∈ [1

4
, 2], hence we obtain Θ in the same way.

We now show that for all N ≥ 1, ηc is a function of s+ σ, (σ − s)2, (σ − s) (x−a)
γ

, y
2t

and
t

2N
√
γ
. This will be useful in the last part of the paper, and in particular in the proof of

Proposition 5. Inserting (33) in (34) yields

(44) ηc +
γ

2

( t

2N
√
γ
q1/2(ηc)−

σ + s

2N

)2

∇q(ηc)

= − y
2t
− γ3/2

2t

∇q(ηc)
2q1/2(ηc)

[σ3

3
+ σ

x

γ
+
s3

3
+ s

a

γ
− (s+ σ)

3

( t

2N
√
γ
q1/2(ηc)−

σ + s

2N

)2]
.

It follows that ηc is a function of (s+ σ) and σ3

3
+ σ x

γ
+ s3

3
+ s a

γ
and writing the last term

under the form (s+σ)3

3
− 4(s+ σ)

(
(s+ σ)2 − (s− σ)2

)
+ (s+ σ) (x+a)

2γ
+ (σ − s) (x−a)

2γ
allows

to conclude. Taking now the derivative with respect to σ in (44) yields

(45) ∂σηc

(
Id−1 +O(γ) +O(γ3/2/t)

)
=

γ

2N
∇q(ηc) +

γ3/2

2t

∇q(ηc)
2q1/2(ηc)

[
σ2 +

x

γ
+

√
αc
3

(s+ σ

N
−
√
αc

)]
,
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where the second and third terms in brackets in the first line of (45) are smooth, bounded
functions of ηc, t

2N
√
γ
, (s+σ) and σ3

3
+σ x

γ
+ s3

3
+s a

γ
with coefficients γ and γ3/2/t, respectively.

Let first N ≥ 2, then using t
2N
√
γ
∈ [1/M,M ] we find γ3/2/t ' γ/N and therefore ∂σηc =

O(γ3/2/t). In the same way we obtain ∂sηc = O(γ3/2/t). Let now N = 1, then γ3/2/t & γ
there where the phase may be stationary, and therefore we still find ∂σηc = O(γ3/2/t) and
∂sηc = O(γ3/2/t). It follows that Θ1 := t

γ3/2
∂σηc (and Θ2 := t

γ3/2
∂sηc, respectively) is a

smooth and uniformly bounded vector valued function depending on σ + s, σ2 + x
γ
, σ3/3 +

σ x
γ

+s3/3+s a
γ
and ( t

2N
√
γ
, y

2t
, γ) (and, respectively, on σ+s, s2+ a

γ
, σ3/3+σ x

γ
+s3/3+s a

γ
and

( t
2N
√
γ
, y

2t
, γ)). In the following we write Θj = Θj

(
σ, s, t

2N
√
γ
, x
γ
, a
γ
, y

2t
, γ
)
for j ∈ {1, 2}. �

The next lemma gives the form of the critical point αc.

Lemma 5. For all N ≥ 1, the critical point αc has the following form

(46)
√
αc =

t

2N
√
γ
q1/2
(
η0
c

)
− σ

2N
(1− γE1)− s

2N
(1− γE2),

where Ej are smooth, uniformly bounded functions, defined as follows

E1 :=<

∫ 1

0

Θ1

(
oσ, os,

t

2N
√
γ
,
x

γ
,
a

γ
,
y

2t
, γ
)
do,

∫ 1

0

∇q
2q1/2

(oη0
c + (1− o)ηc)do >,(47)

E2 :<=

∫ 1

0

Θ2

(
oσ, os,

t

2N
√
γ
,
x

γ
,
a

γ
,
y

2t
, γ
)
do,

∫ 1

0

∇q
2q1/2

(oη0
c + (1− o)ηc)do > .(48)

Proof. Equation (33) can be written as

√
αc =

t

2N
√
γ
q1/2
(
η0
c

)
− (σ + s)

2N
+

t

2N
√
γ

(q1/2(ηc)− q1/2(η0
c )).

As ηc − η0
c = γ3/2

t
< (σ, s),

∫ 1

0
(Θ1,Θ2)

(
oσ, os, t

2N
√
γ
, x
γ
, a
γ
, y

2t
, γ
)
do > and

(49) q1/2(ηc)− q1/2(η0
c ) = (ηc − η0

c )

∫ 1

0

( ∇q
2q1/2

)
(oη0

c + (1− o)ηc)do,

defining Ej as in (47) and (48) yields (46). �

Corollary 1. Applying the stationary phase in both α and η yields

Gh,γ(t, x, y) =
C

hd

(h
t

)(d−1)/2

ψ̃(
|y|
2t

)
∑

t√
γ
'N. 1√

γ

VN,h,γ(t, x, y) +O(h∞),

where C 6= 0 is a constant (independent of h, a, γ), ψ̃ ∈ C∞0 ([1
4
, 2]) with ψ̃ = 1 on the

support of ψ and where we set

VN,h,γ(t, x, y) =
γ2

h

1√
λγN

∫
e
i
h
φN,a,γ(σ,s,t,x,y)κ(σ, s, t, x, y;h, γ, 1/N)dσds,
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with phase φN,a,γ(σ, s, t, x, y) = ΦN,a,γ(ηc, αc, σ, s, t, x, y) and symbols κ(·;h, γ, 1/N) ob-
tained from q(η)ψ(|η|)ψ2(α)eiNB(q1/2(η)λγα3/2) after the stationary phase in η, α.

Remark 15. The new symbol κ(·;h, γ, 1/N) has main contribution q(ηc)ψ(|ηc|)ψ2(αc)e
iNB(q1/2(η)λγα3/2).

Its dependence on the parameters h, a, γ, 1/N is harmless as κ(·, h, γ, 1/N) reads as an as-
ymptotic expansion with small parameter (λγN)−1 = h/(Nγ3/2) in α and small parameter
(h/t) in η, and the terms in the expansions are smooth functions of αc, ηc.

Remark 16. Notice that, due to Remark 13, we can introduce the cut-offs χ(σ/(2
√
αc)) and

χ(s/(2
√
αc)) supported for |(σ, s)| ≤ 2

√
αc in the integral defining VN,h,γ without changing

its contribution modulo O(h∞).

We are left with integrals with respect to the variables s, σ and we need to estimate
‖VN,h,γ(t, ·)‖L∞ : in order to address this issue in a meaningful way, we first need to compute
the higher order derivatives of the critical value ΦN,a,γ(ηc, αc, s, σ, t, y, x). The critical points
in σ, s satisfy the following system

∂σ

(
ΦN,a,γ(ηc, αc, s, σ, ·)

)
= γ3/2q1/2(ηc)(σ

2 +
x

γ
− αc),(50)

∂s

(
ΦN,a,γ(ηc, αc, s, σ, ·)

)
= γ3/2q1/2(ηc)(s

2 +
a

γ
− αc).(51)

The higher order derivatives of φN,a,γ(σ, s, ·) := ΦN,a,γ(ηc, αc, σ, s, ·) involve derivatives of
the critical points αc, ηc with respect to σ, s :

∂2
σ,σ

(
ΦN,a,γ(ηc, αc, s, σ, ·)

)
= ∂σηc

∇q(η)

2q(η)
|η=ηc∂σφN,a,γ + γ3/2q1/2(ηc)(2σ − 2

√
αc∂σ
√
αc),

(52)

∂2
s,s

(
ΦN,a,γ(ηc, αc, s, σ, ·)

)
= ∂sηc

∇q(η)

2q(η)
|η=ηc∂sφN,a,γ + γ3/2q1/2(ηc)(2s− 2

√
αc∂s
√
αc),

(53)

∂2
σ,s

(
ΦN,a,γ(ηc, αc, s, σ, ·)

)
= ∂σηc

∇q(η)

2q(η)
|η=ηc∂sφN,a,γ − γ3/2q1/2(ηc)(2

√
αc∂σ
√
αc),

(54)

and therefore, when ∂σφN,a,γ = ∂σφN,a,γ = 0, we have

∂2
σ,σφN,a,γ(ηc, αc, s, σ, ·)|∂σφN,a,γ=∂σφN,a,γ=0 = 2γ3/2q1/2(ηc)(σ −

√
αc∂σ
√
αc),

∂2
s,sφN,a,γ(ηc, αc, s, σ, ·)|∂σφN,a,γ=∂σφN,a,γ=0 = 2γ3/2q1/2(ηc)(s−

√
αc∂s
√
αc),

∂2
σ,sφN,a,γ(ηc, αc, s, σ, ·)|∂σφN,a,γ=∂σφN,a,γ=0 = −2γ3/2q1/2(ηc)

√
αc∂σ
√
αc.

Remark 17. Notice that, at the critical points we indeed have ∂σ
√
αc = ∂s

√
αc : in fact,

the derivatives of αc depend on ηc that solves (34) ; from (34), the derivatives of ηc with
respect to σ (and s, respectively) depend upon (s + σ), σ2 + x

γ
and σ3/3 + σ x

γ
+ s3/3 + s a

γ

(and upon (s+σ), s2 + a
γ
and σ3/3 +σ x

γ
+ s3/3 + s a

γ
); as at the critical points σ, s we have

σ2 + x
γ

= s2 + a
γ

= αc, we find ∂σηc = ∂sηc.
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3.1.1. Tangent waves a ∈ [1
8
γ, 8γ]. To deal with the situation γ ' a it will be crucial to

obtain very precise dispersive bounds for VN,h,a : such bounds are given in Propositions 3,
4 and 5 below (similar to those obtained for the wave flow in [17]). In this section we show
how they can be applied to prove Theorem 1 for a ≥ (ht)1/2.

To eliminate any confusion, we write in this case Gh,a instead of Gh,γ'a, λ = a3/2/h
instead of λγ'a and we recall from Corollary 1 that

(55) Gh,a(t, x, y) =
C

hd

(h
t

)(d−1)/2

ψ̃(
|y|
2t

)
∑

t√
a
'N. 1√

a

VN,h,a(t, x, y) +O(h∞),

where C 6= 0 is constant (independent of h, a), ψ̃ ∈ C∞0 ([1/4, 2]) with ψ̃ = 1 on the support
of ψ and

(56) VN,h,a(t, x, y) =
a2

h

1√
λN

∫
e
i
h
φN,a(σ,s,t,x,y)κ(σ, s, t, x, y, h, a, 1/N)dσds,

where φN,a(σ, s, t, x, y) = ΦN,a,a(ηc, αc, σ, s, t, x, y) and where the symbol κ is obtained from
q(η)ψ(|η|)ψ2(α)eiNB(q1/2(η)λα3/2) after the stationary phase in η, α.

Remark 18. Recall from Remark 14 that we consider here only values N . λ. After
a careful examination of the second order derivatives if φN,a, it turns out that one needs
to deal separately with the cases N < λ1/3 and λ1/3 . N . Fix t and set T = t√

a
: if

λ1/3 . T ' N , then φN,a behaves like the phase of a product of two Airy functions and can
be bounded using mainly their asymptotic behaviour.

When N ' T . λ1/3, the situation is more delicate as φN,a may have degenerate critical
points up to order 3. We will show that for any t such that T := t√

a
� λ1/3 and for any

N ' T there exists a locus of points YN(T ) := {Y ∈ Rd−1|Ka(
Y

4N
, T

4N
) = 1}, where Ka is the

smooth function defined in (57) such that, for all Y ∈ YN(T ) we have ‖Gh,a(t, ·)‖L∞(Ω) =

|Gh,a(t, a, a, y)||y∈√aYN (t/
√
a) ' 1

hd
(h
t
)(d−1)/2a1/4(h

t
)1/4 and for all (ht)1/2 . a . ε0, which

will prove that the announced estimates are optimal.

Remark 19. When dealing with the wave flow inside the same domain, a parametrix is
also obtained as a sum of reflected waves : due to the finite speed of propagation, the main
contribution in this sum at a given moment t comes from the waves that are located between
the (N − 1)th and (N + 1)th reflections, where N = [ t√

a
]. For each N � λ1/3 there exists

an unique time tN when the worst bound is reached and this happens at x = a and for an
unique yN ; in the case of the Schrödinger equation, for any t/

√
a� λ1/3 and any N ' t/

√
a

there is a locus of points YN(t/
√
a) such that, for x = a, |VN,h,a(t, a, y)||y∈√aYN (t/

√
a) '

‖Gh,a(t, ·)‖L∞, where YN(t/
√
a) ∩ YN ′(t/

√
a) = ∅ for all N 6= N ′.

We denote α0
c the value of the critical point αc obtained in (46) at σ = s = 0. Recall

from Lemma 4 (with γ replaced by a), that η0
c = − y

2t
+aΘ( y

2t
, t

2N
√
a
, a) is a smooth function

of ( y
2t
, t

2N
√
a
, a), hence so is

√
α0
c = t

2N
√
a
q1/2(η0

c ). Let T = t/
√
a, Y = y/

√
a and define
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Ka(
Y

4N
, T

2N
) =

√
α0
c(

Y
4N

2N
T
, T

2N
, a). We then have

(57) Ka(
Y

4N
,
T

2N
) =
|Y |
4N

q1/2
(
− Y

|Y |
+ a

T

2N

4N

|Y |
Θ(

Y

4N

2N

T
,
T

2N
, a)
)
,

with Ka smooth in all variables. The following estimates, proven in Section 4, are crucial
in the proof of Theorem 1 :

Proposition 3. For λ1/3 . T ' N , we have

|VN,h,a(t, x, y)| . h1/3

((N/λ1/3)1/2 + λ1/6
√

4N |Ka(
Y

4N
, T

2N
)− 1|1/2)

.

Proposition 4. For 1 ≤ N < λ1/3 and |Ka(
Y

4N
, T

2N
)− 1| & 1/N2, we have

(58) |VN,h,a(t, x, y)| . h1/3

(1 + 2N |Ka(
Y

4N
, T

2N
)− 1)|1/2)

.

Proposition 5. For 1 ≤ N < λ1/3 and |Ka(
Y

4N
, T

2N
)− 1| ≤ 1

4N2 , we have

(59) |VN,h,a(t, x, y)| . h1/3

((N/λ1/3)1/4 +N1/3|(Ka(
Y

4N
, T

2N
)− 1)|1/6)

.

We postpone the proofs of Propositions 3, 4 and 5 to Section 4 and we achieve the proof
of Theorem 1 in the case (ht)1/2 . a ' γ ≤ ε0 < 1. Let therefore

√
a . t . 1 be fixed and

let Nt ≥ 1 be the unique positive integer such that T = t√
a
≤ Nt <

t√
a

+ 1 = T + 1, hence
Nt = [T ], where [T ] denotes the integer part of T . If Nt is bounded then the number of
VN,h,a with N ' Nt in the sum (55) is also bounded and we can easily conclude adding the
(worst) bound (5) a finite number of times. Assume Nt ≥ 2 is large enough. We introduce
the following notation: for k ∈ Z let

INt,k := [4(Nt + k)− 2, 4(Nt + k) + 2).

As αc, ηc ∈ [1
2
, 3

2
] and

√
αc = T

2N
q1/2(ηc) − (σ+s)

2N
with |(σ, s)| ≤ 2

√
αc on the support of

χ (see Remark 16), we deduce (using (35)) that, for M defined in (42), we have 2N ∈
[ T
M
,MT ] ⊂ [Nt

M
,M(Nt + 1)]. Using (55), we then bound Gh,a(t, ·) as follows

‖Gh,a(t, .)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2

sup
x≤a,y

∑
Nt/M≤2N≤M(Nt+1)

|VN,h,a(t, x, y)|.

It will follow from the proofs of Propositions 3, 4 and 5 that the worst dispersive bounds for
VN,h,a always occur at x = a (when φN,a may have a critical point of order 3). Therefore,
we will seek for bounds for Gh,a especially at x = a.

For a fixed y on the support of ψ̃( |y|
2t

) we let Y = y√
a
, then 1

4
≤ |Y |

2T
≤ 2, and therefore

|Y | ∈ [T/2, 4T ] ⊂ [Nt/2, 4(Nt + 1)]. We want to study the set of points where Ka may
get close to 1 : using (57) and the fact that q1/2 is homogeneous of order 1, this happens



24 OANA IVANOVICI

when q1/2(−Y + 2aTΘ( Y
2T
, T

2N
, a)) is sufficiently close to 4N . As 2 < Nt ≤ T ≤ 1/

√
a,

|Y |/T ∈ [1/2, 4], Θ is bounded and 0 < a ≤ ε0 is small,

q1/2
(
− Y + 2aTΘ(

Y

2T
,
T

2N
, a)
)
∈ |Y |[m0 +O(a),M0 +O(a)]

⊂ [Nt(m0 − ε0)/2, 4(Nt + 1)(M0 + ε0)],

where m0 and M0 are defined in (31). Setting

k1 = −Nt(1− (m0 − ε0)/8), k2 = (Nt + 1)(M0 + ε0 − 1)− 1,

we have Nt + k ' Nt and

[Nt(m0 − ε0)/2, 4(Nt + 1)(M0 + ε0)] ⊂ ∪k1≤k≤k2INt,k.

Let ĨNt,k := (4(Nt + k)− 1, 4(Nt + k) + 1) ⊂ INt,k. We now write

(60) sup
x,y

∑
Nt/M≤2N≤M(Nt+1)

|VN,h,a(t, x, y)|

= sup
k1≤k≤k2

sup

q1/2

(
−Y+2aTΘ( Y

2T
, T
2N

,a)

)
∈INt,k

∑
Nt/M≤2N≤M(Nt+1)

|VN,h,a(t, a, y)|

≥ sup
k1≤k≤k2

sup

q1/2

(
−Y+2aTΘ( Y

2T
, T
2N

,a)

)
∈ĨNt,k

∑
Nt/M≤2N≤M(Nt+1)

|VN,h,a(t, a, y)|.

In the next three propositions we prove dispersive bounds for Gh,a(t, ·) : we start with
the case λ1/3 � Nt(. λ), when only Proposition 3 applies, then we deal with the case
λ1/3 � Nt when only Propositions 4 and 5 may be used and eventually we deal with the
case Nt ' λ1/3 when we can encounter all the three situations.

Proposition 6. There exists a constant C > 0 independent on h, a such that, if Nt :=
[ t√

a
]� λ1/3, then

‖Gh,a(t, ·)‖L∞(Ωd) ≤
C

hd

(h
t

)(d−1)/2((ht
a

)1/2

+ h1/3
)
.

Remark 20. Notice that in this regime we always have h1/3 �
(
ht
a

)1/2

as this is equiv-

alent to t√
a
�

√
a

h1/3
= λ1/3, which is the case we consider here. As (ht)1/2 . a, we also

have
(
ht
a

)1/2

. (ht)1/4, and for t ≤ 1 this yields a dispersive bound which is better than
announced in Theorem 1.

Proof. If λ1/3 � Nt, then Nt + k � λ1/3 for all k ∈ [k1, k2] and we estimate the L∞ norms
of Gh,a(t, ·) using the first two lines of (60) and Proposition 3 : if ky ∈ [k1, k2] is such
that q1/2(−Y ) ∈ INt,ky , then, using again that a is small, it follows that 4NKa(

Y
4N
, T

2N
) =



SCHRÖDINGER EQUATION IN A STRICTLY CONVEX DOMAIN 25

q1/2
(
− Y + 2aTΘ( Y

2T
, T

2N
, a)
)
∈ ∪|k′−ky |≤1INt,k′ and therefore the second line in (60) can

be (uniformly) bounded as follows

(61) sup
k1≤k≤k2

sup
4NKa( Y

4N
, T
2N

)∈INt,k

∑
2N∈[Nt/M,M(Nt+1)]

|VN,h,a(t, a, y)|

≤ sup
|k′−ky |≤1

sup
4NKa( Y

4N
, T
2N

)∈INt,k′

∑
2N∈[Nt/M,M(Nt+1)]

|VN,h,a(t, a, y)|

≤ sup
4NKa( Y

4N
, T
2N

)∈∪|k′−ky |≤1INt,k′

∑
2N∈[Nt/M,M(Nt+1)

h1/3

((N/λ1/3)1/2 + λ1/6|4NKa(
Y

4N
, T

2N
)− 4N |1/2)

.

As 4NKa(
Y

4N
, T

2N
) ∈ ∪|k′−ky |≤1INt,k′ , we find, for N = Nt + ky + j and |j| ≥ 2, that∣∣∣4NKa(

Y

4N
,
T

2N
)− 4N

∣∣∣ ≥ |j| − 1,

and therefore the last line in (61) can be further bounded by
(62)
h1/3(Nt + ky)

1/2

(Nt + ky)

(
3λ1/6+

∑
|N−(Nt+ky)|=|j|≥2

1

(1 + j/(Nt + ky))λ−1/6 + λ1/6|(|j| − 1)/(Nt + ky)|1/2
)
.

As λ1/3 � t√
a
' Nt ' Nt + ky, we bound the first term in the last sum as follows

h1/3λ1/6

(Nt + ky)1/2
' h1/3

( λ1/3

(t/
√
a)

)1/2

≤ h1/3.

The sum over N > Nt + ky + 1 reads as

(63)
h1/3(Nt + ky)

1/2

λ1/6(Nt + ky)

∑
N=Nt+ky+1+j,j≥1

1

(1 + (j + 1)/(Nt + ky))λ−1/3 + |j/(Nt + ky)|1/2

≤ h1/3 (Nt + ky)
1/2

λ1/6

∫ 1

0

dx√
x+ λ−1/3(1 + (Nt + ky)−1 + x)1/2

,

and the last integral is bounded by
√
x
∣∣∣1
0

= 1
2
. The sum over N < Nt + ky reads as

(64)
h1/3(Nt + ky)

1/2

λ1/6(Nt + ky)

∑
N=Nt+ky−1−j≥Nt/(2M),j≥1

1

(1− (j + 1)/(Nt + ky))λ−1/3 + |j/(Nt + ky)|1/2)

= h1/3 (Nt + ky)
1/2

λ1/6

∫ 1−(Nt+ky)−1(1+Nt/(2M))

0

dx√
x+ λ−1/3(1− (Nt + ky)−1 − x)1/2

,

where the last integral is taken on [0, 1− (Nt+ky)
−1(1 +Nt/(2M))] as in the previous sum

the following restriction 1 − (Nt + ky)
−1(1 + Nt/(2M)) ≥ j/(Nt + ky) holds. As ky ≥ k1,
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we have Nt + ky ≥ Nt(1 + (m0 − ε0)/8) and therefore, using (42),
Nt

2M(Nt + ky)
≤ 4

M(m0 − ε0)
≤ 1√

3/2
.

As the integral is bounded by 1
2
, the contribution coming from the sum over |N−(Nt+ky)| ≥

2 in (62) is h1/3(Nt + ky)
1/2/λ1/6 and as Nt + ky ≤ (Nt + 1)(M0 + ε0− 1) where M0 is fixed,

depending only on q, and Nt ≤ t√
a
, we obtain

(65) sup
4NKa( Y

4N
, T
2N

)∈∪|k′−ky |≤1INt,k′

∑
2N∈[Nt/M,M(Nt+1)]

|VN,h,a(t, a, y)| ≤
√
M0h

1/3(
t√
a

)1/2λ−1/6,

and h1/3( t√
a
)1/2λ−1/6 =

(
ht
a

)1/2

. We can conclude as at fixed y there are at most three

values of k that satisfy q1/2(−Y + 2aTΘ( Y
2T
, T

2N
, a)) ∈ INy ,k, that the bounds in (65) are

independent of k, and that the intervals INt,k are disjoint. �

Before dealing with the case Nt . λ1/3, we need to introduce one more notation. As
a is small, for a fixed Y = y√

a
there exists at most one value of k such that q1/2

(
−

Y + 2aTΘ( Y
2T
, T

2N
, a)
)
∈ ĨNt,k. If y is such that q1/2

(
− Y + 2aTΘ( Y

2T
, T

2N
, a)
)
∈ ĨNt,k

for some k1 ≤ k ≤ k2, then k is unique and we denote it k#
y (recall that t is fixed). If

2(Nt + k#
y ) ∈ [Nt/M,M(Nt + 1)], we can either have λ1/3 . Nt + k#

y , or Nt + k#
y < λ1/3

(notice that this last situation always occur if Nt � λ1/3 as k#
y ≤ k2 < 2M0Ny and M0 is

fixed, depending only on q).

Remark 21. When Nt + k#
y < λ1/3, Proposition 5 may apply only for N = Nt + k#

y , as
for k#

y 6= k ∈ [k1, k2] and n = Nt + k we necessarily have

(66)
∣∣∣q1/2

(
− Y + 2aTΘ(

Y

2T
,
T

2N
, a)
)
− 4n

∣∣∣ ≥ 4|n− (Nt + k#
y )|

−
∣∣∣q1/2

(
− Y + 2aTΘ(

Y

2T
,
T

2N
, a)
)
− 4(Nt + k#

y )
∣∣∣ ≥ 3� 1

n
.

Proposition 7. There exists a constant C > 0 independent on h, a such that, if Nt :=
[ t√

a
]� λ1/3, then

(67) ‖Gh,a(t, ·)‖L∞(Ωd) '
C

hd

(h
t

)(d−1)/2(ha
t

)1/4

.

Proof. If y is such that q1/2(−Y ) ∈ INt,ky for some ky ∈ [k1, k2], using that a ≤ ε0 is small
enough, it follows that∣∣∣q1/2

(
−Y+2aTΘ(

Y

2T
,
T

2N
, a)
)
−4n

∣∣∣ ≥ 4|n−(Nt+ky)|−
∣∣∣q1/2

(
−Y+2aTΘ(

Y

2T
,
T

2N
, a)
)
−4(Nt+ky)

∣∣∣
for all n 6= Nt + ky; the second term in the right hand side is smaller than 2, while the first
one is at least 4; therefore the assumption of Proposition 5 cannot hold for n 6= Nt + ky.
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For all such n we then use Proposition 4 that yields

(68) sup
q1/2(−Y ))∈INt,ky

∑
2n∈[Nt/M,M(Nt+1)],n6=Nt+ky

|Vn,h,a(t, a, y)|

. h1/3
∑

2n∈[Nt/M,M(Nt+1)],n6=Nt+ky

1

(1 + |n(q1/2(−Y + 2aTΘ( Y
2T
, T

2n
, a))− 4n)|1/2)

. h1/3
∑

n=Nt+ky+j,1≤|j|.Nt

1

(1 + (Nt + ky + j)1/2|j|1/2)

≤ h1/3
(∫ 1−(Nt+ky)−1(1+Nt/(2M))

0

dx

x1/2(1− x)1/2 + (Nt + ky)−1
+

∫ 1

0

dx

x1/2(1 + x)1/2 + (Nt + ky)−1

)
,

where the last two integrals are uniform bounds for the sum over N < Nt + ky and
N > Nt + ky, respectively; when N > Nt + ky, the integral over [0, 1] is bounded by a
uniform constant ; when N < Nt + ky we write x = sin2 θ, θ ∈ [0, π/2) and therefore
1−x = cos2 θ, dx = 2 sin θ cos θ, and therefore the first integral is also bounded by at most
π. This bound is also uniform with respect to ky ∈ [k1, k2].

We are left with N = Nt + ky. If q1/2
(
− Y + 2aTΘ( Y

2T
, T

2N
, a)
)
/∈ ĨNt,ky , then we

use again Proposition 4. If, on the contrary, q1/2
(
− Y + 2aTΘ( Y

2T
, T

2N
, a)
)
∈ ĨNt,ky , then

k#
y = ky ∈ [k1, k2] and we may be able to apply Proposition 5 with N = Nt+k

#
y if moreover

the following holds:
∣∣∣q1/2

(
− Y + 2aTΘ( Y

2T
, T

2N
, a)
)
− 4N

∣∣∣ . 1
N
; if this is not the case we

apply again Proposition 4 for N = Nt + k#
y . We then have

(69) sup
q1/2(−Y ))∈INt,ky

|VN=Nt+ky ,h,a(t, a, y)|

.
h1/3

(N/λ1/3)1/4
+

h1/3

(1 + |N(q1/2(−Y + 2aTΘ( Y
2T
, T

2N
, a))− 4N)|1/2)

'
(ha
t

)1/4

+ h1/3.

As for Nt ' t√
a
�

√
a

h1/3
= λ1/3 we have h1/3 �

(
ha
t

)1/4

it follows that, at fixed t, the

supremum of the sum over VN,h,a(t, x, y) is reached for x = a and y such that q1/2(−Y +
2aTΘ( Y

2T
, T

2N
, a)) = 4N where N = Nt + ky. As the contribution from (68) the sum over

n 6= Nt + ky is h1/3, we obtain an upper bound for Gh,a(t, ·). Using the last line of(60)

and the fact that h1/3 �
(
ha
t

)1/4

yields a lower bound for Gh,a(t, ·) of the same form and
therefore (70) holds true. �
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Proposition 8. There exists a constant C > 0 independent on h, a such that, if Nt :=
[ t√

a
] ' λ1/3, then

(70) ‖Gh,a(t, ·)‖L∞(Ωd) ≤
C

hd

(h
t

)(d−1)/2((ha
t

)1/4

+
(ht
a

)1/2

+ h1/3
)
.

Remark 22. When Nt ' λ1/3 we find a ' h1/3t and all the terms in brackets in the right

hand side of (70) behave like h1/3, hence ‖Gh,a(t, ·)‖L∞(Ωd) ≤ C
hd

(
h
t

)(d−1)/2

h1/3.

Proof. If Nt ' λ1/3 and k ' Nt, we split according to whether y is such that Nt+ky < λ1/3

or Nt + ky ≥ λ1/3 and proceed as in the previous cases using Propositions 3, 4 and 5. As,
for such Nt, we have (ha

t
)1/4 ' h1/3 ' ( th

a
)1/2, we cannot deduce that the supremum equals

(ha
t

)1/4 but obtain the uniform bound h1/3 for γh,a,d( th). �

3.1.2. Tranverse waves. Let γ > 8a, a ≥ x ≥ 0.

Proposition 9. Let t
2
√
γ
≥ 8

m0
, then

(71) ‖Gh,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2

√
th

γ
.

Moreover,

(72)
∑

γ=22j(ht)1/2

‖Gh,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2

(ht)1/4.

Proof. As t
2
√
γ
≥ 8

m0
it follows, using (35), that only VN,h,γ(t, ·) with N ≥ 2 may provide

significant contributions in Gh,γ(t, ·). Let therefore N ≥ 2. We will show that the usual
stationary phase applies in σ, s : the critical points satisfy σ2 + x

γ
= αc, s2 + a

γ
= αc and

since x
γ
≤ a

γ
≤ 1

8
and αc ∈ [1

2
, 3

2
] on the support of ψ2, we find |σcsc| ≥ |αc − a

γ
| ≥ αc − 1

8

and |σ+ s| ≤ 2
√
αc. Moreover, ∂2

σφN,a,γ = 2(σ−√αc∂σ
√
αc), ∂2

sφN,a,γ = 2(s−√αc∂s
√
αc),

∂2
σ,sφN,a,γ = −2

√
αc∂s
√
αc. At the critical points we do have ∂s

√
αc = ∂σ

√
αc (see Remark

17). Using Lemma 5 yields

∂σ
√
α = − 1

2N
(1− γ(E1 + σ∂σE1)), ∂s

√
α = − 1

2N
(1− γ(E2 + σ∂σE2)),

where Ej are smooth, bounded, defined in (47), (48). Putting all this together allows to
obtain a lower bound for the determinant of the matrix of second order derivatives at the



SCHRÖDINGER EQUATION IN A STRICTLY CONVEX DOMAIN 29

stationary points as follows

(73)

detHessσ,sφN,a,γ|∇σ,sφN,a,γ=0 = 4γ3
∣∣∣(σ −√αc∂σ√αc)(s−√αc∂s√αc)− αc∂σ√αc∂s√αc∣∣∣

≥ 4γ3
(
|σs| − |σ + s|

√
αc

2N
(1 +O(γ))

)∣∣∣
s=sc,σ=σc

≥ 4γ3(αc −
1

8
− αc
N

(1 +O(γ)))

≥ 4γ3|αc
3
− 1

8
| ≥ 1

6
γ3 ∀N ≥ 2,

where in the last line we have used that γ ≤ ε0 and that ε0 can be taken sufficiently small
such that 2

3
αc ≥ αc

2
(1 + O(ε0)) for αc ∈ [1

2
, 2

3
]; in the last inequality we have used that

αc ≥ 1
2
. The stationary phase applies in both σ and s for all N ≥ 2 and provides a factor

λ−1
γ : the sum over transverse waves Gh,γ with γ > 8a can be bounded as follows

(74) ‖Gh,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2 ∑
N' t√

γ

γ2

h
× 1√

Nλγ
× 1

λγ

' 1

hd

(h
t

)(d−1)/2γ2

h
× 1

λ
3/2
γ

( t
√
γ

)1/2

' 1

hd

(h
t

)(d−1)/2

√
th

γ
.

Taking the sum over dyadic (ht)1/2 ≤ γ ≤ ε0 yields (72). �

Proposition 10. Let a
γ
. t

2
√
γ
≤ 8

m0
, then

‖Gh,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2(
h1/3 +

h1/2

γ1/4

)
.

Moreover, ∑
γ=22j(ht)1/2

‖Gh,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2

(h1/3 log(h) + h1/4(
h

t
)1/8).

Proof. For bounded values of t/√γ, only a bounded number of VN,h,γ may provide non-
trivial contributions in Gh,γ(t, ·); in particular, we can have N = 1. Since for N = 2 we can
use the preceding bounds (and sum only a small, uniformly bounded number of them), we
focus on N = 1. Notice that if |s+ σ| < 5

√
αc/4, then

detHessσ,sφ1,a,γ|∇σ,sφ1,a,γ=0 ≥ 4γ3(αc −
1

8
− 5

8
αc) ≥

1

2
γ3(3αc − 1) ≥ γ3/4

and we can act as in the proof of (74). We are left with the case |s + σ| ≥ 5
√
αc/4:

making the change of variables ξ1 = s + σ and ξ2 = s − σ yields a new phase for which
the usual stationary method applies in ξ2 whenever ξ1 > c for any small constant c > 0;
as we consider here |ξ1| = |s + σ| ≥ 5

√
αc/4, where now αc = αc((ξ1 − ξ2)/2, (ξ1 + ξ2)/2),

this is indeed the case. We state that the critical value may be degenerate in ξ1 of order at
most two : this follows in the same way as in Lemma 7 from the last section. As such, the
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contribution on the set |ξ1| ≥ c of V1,h,γ(t, ·) is λ−1/2
γ × λ−1/3

γ , where the first factor comes
from the non-degenerate stationary phase in ξ2 and the second one is coming applying Van
der Corput in ξ1. This yields

(75) ‖V1,h,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2γ2

h
× 1

λ
1/2+5/6
γ

=
1

hd

(h
t

)(d−1)/2

h1/3.

Taking the sum over γ > h2/3−ε, yields∑
γ=22j(ht)1/2

‖V1,h,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2

h1/3 log(h).

For 2 ≤ N bounded we obtain as before

‖VN,h,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2γ2

h
× 1

λ
3/2
γ

=
1

hd

(h
t

)(d−1)/2h1/2

γ1/4
,

and summing up in γ yields
∑

γ=22j(ht)1/2 ‖VN,h,γ(t, ·)‖L∞(0≤x≤a,y) . 1
hd

(
h
t

)(d−1)/2

h1/4(h
t
)1/8.
�

3.2. Case a . max (h2/3−ε, (ht)1/2) for some small ε > 0.

3.2.1. The sum over 8 max (h2/3−ε, (ht)1/2) ≤ γ ≤ ε0. This part is easy to deal with as we
can apply the estimates obtained in the previous section. As we necessarily have 8a ≤ γ
and as in this regime we can use the parametrix (26), we get from(74)

(76) ‖
∑

8a.8 max (h2/3−ε,(ht)1/2)≤γ≤ε0

Gh,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd

(h
t

)(d−1)/2

(ht)1/4.

3.2.2. The sum over max (a, h2/3) . γ . max (h2/3−ε, (ht)1/2). This part will be entirely
dealt with using the formula (18) and next Lemma.

Lemma 6. (see [18]) There exists C0 such that for L ≥ 1 the following holds true

(77) sup
b∈R

( ∑
1≤k≤L

ω
−1/2
k Ai2(b− ωk)

)
≤ C0L

1/3.

Moreover, we have

(78) sup
b∈R+

( ∑
1≤k≤L

ω
−1/2
k h2/3Ai′2(b− ωk)

)
≤ C0h

2/3L.

Although the proof of (77) has been given in [18], we recall it here since it is useful to
understand how the same arguments can be used in order to obtain (83) below.
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Proof. From |Ai(z)| ≤ C(1 + |z|)−1/4, we get

J(b) :=
∑

1≤k≤L

ω
−1/2
k Ai2(b− ωk) .

∑
1≤k≤L

ω
−1/2
k

1

1 + |b− ωk|1/2
.

Using ωk ' k2/3, we get easily with C independent of L and D large enough

sup
b≤0

J(b) ≤ CL1/3, sup
b≥DL2/3

J(b) ≤ CL1/3 .

Thus we may assume b = L2/3b′ with b′ ∈ [0, D]. As ωk = k2/3g(k) with g being an elliptic
symbol of degree 0, we are left to prove that

I(b′) = L−1/3
∑

1≤k≤L

(k/L)−1/3 1

1 + L1/3|b′ − (k/L)2/3|1/2

satisfies supb′∈R I(b′) ≤ C0L
1/3. We split [0, 1] into a finite union of intervals on which the

function t−1/3

1+L1/3|b′−t2/3|1/2 is monotone : as each term in the sum is bounded by 1, we get

I(b′) . Cte+ L2/3

∫ 1

0

t−1/3

1 + L1/3|b′ − t2/3|1/2
dt ≤ Cte+ L1/3

∫ 1

0

3

2|b′ − s|1/2
ds ,

which achieves the proof of (77). Inequality (78) follows from similar arguments together
with |Ai′(z)| ≤ C(1 + |z|)1/4. �

Write, for γmax := max (h2/3−ε, (ht)1/2), γmin := max (a, h2/3),

(79)
∑

γmin≤γ≤γmax

Gh,γ(t, x, a, y) =
∑

γmin≤γ≤γmax

h1/3

hd

∫
e
i
h
<y,η>ψ(|η|)

×
∑

ωk≤ε0/h2/3
e
i
h
t(|η|2+ωkh

2/3q2/3(η)) q
1/3(η)

L′(ωk)
ψ2(h2/3ωk/(q

1/3(η)γ))

× Ai(xq1/3(η)/h2/3 − ωk)Ai(aq1/3(η)/h2/3 − ωk)dη

=
∑

k'λγ ,γmin≤γ≤γmax

h1/3

hd

∫
e
i
h
<y,η>ψ(|η|)e

i
h
t(|η|2+ωkh

2/3q2/3(η)) q
1/3(η)

L′(ωk)
ψ2(h2/3ωk/(q

1/3(η)γ))

× Ai(xq1/3(η)/h2/3 − ωk)Ai(aq1/3(η)/h2/3 − ωk)dη +O(h∞),

where we have used the fact that ψ2 and ψ are supported on [1
2
, 3

2
] to deduce k ' ω

3/2
k '

λγq
1/2(η) ' λγ on the support of ψ2(h2/3ωk/(q

1/3(η)γ))ψ(|η|); the term O(h∞) comes from
the (finite) sum over 1 ≤ k � λγ and λγ � k . 1/h.

We are left with the sum over k in the last two lines of (79). Notice that if t ≤ h1/3−2ε

then (ht)1/2 ≤ h2/3−ε, which yields γmax = h2/3−ε and therefore for such t we only need to
consider values a ≤ h2/3−ε (otherwise γmin = a > h2/3−ε > γmax and there are no terms to
consider in the sum (79)). Recall that λγ := γ3/2/h: for t ≤ h1/3−2ε and γ ≤ γmax = h2/3−ε it
follows that λγ . h−3/2ε for ε > 0 small and we cannot perform stationary phase arguments
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with parameter λγ; formula (26) becomes therefore useless. The integral formulas of the
two Airy factors in (18) have phase functions with parameter λγ (these two Airy functions
correspond to the integrals in σ, s in (26)), but the advantage of (18) compared to (26)
is that there is no integration with respect to α (instead we have to sum over k . λγ,
hence over an essentially bounded number of k; recall that the Airy-Poisson formula (20)
transformed ωk into ω = q1/3(η)λ

2/3
γ α). As we cannot take advantage of stationary phase

arguments in the integral formulas of the Airy functions, we instead deal with the two Airy
factors in (18) as if they were part of the symbol (using the fact that they don’t oscillate
"too much", as we will see below). In order to do that we have to check that the stationary
phase in η does apply, and it turns out that this is indeed the case if t is not "too" small.
On the other hand, when t ≥ h1/3−2ε, then h2/3−ε ≤ (ht)1/2 = γmax and for γ ≤ (ht)1/2

we can apply again the stationary phase with respect to η with the two Airy factors as
part of the symbol (using that t is definitely not "too small"). We consider separately the
situations t ≥ h1/3−2ε and t ≤ h1/3−2ε, although the arguments in the corresponding proofs
are similar.

3.2.3. Let t ≥ h1/3−2ε, in which case (ht)1/2 ≥ h2/3−ε. We will be able to bring the Airy
functions into the symbol and apply the stationary phase in η ∈ Rd−1. The sum over k
is taken over 1 ≤ k . (ht)3/4/h and on the support of ψ2 we have k2/3 ' ωk ' λ

2/3
γ with

γ ≤ γmax := (ht)1/2.

Proposition 11. For t ≥ h1/3−2ε, the following dispersive estimates hold

‖
∑

max (a,h2/3)≤γ≤(ht)1/2

Gh,γ(t, ·)‖L∞(0≤x≤a,y) .
h1/3

hd

(h
t

)(d−1)/2((ht)3/4

h

)1/3

' 1

hd

(h
t

)(d−1)/2

(ht)1/4.

Proof. Let z = y/t and let t
h
be the large parameter in the integrals in the fourth line of

(79) whose phase function are, for each ωk ' λ
2/3
γ , of the form

< z, η > +|η|2 + ωkh
2/3q2/3(η).

For each ωk . λmax/h
2/3 = (ht)1/2/h2/3, the corresponding critical point ηc satisfies z +

2ηc +O(ωkh
2/3) = 0 and using that ωkh2/3 ≤ ε0, we obatin that the matrix of second order

derivatives behaves like 2Id−1 +O(ε0). In order to apply the stationary phase with symbol

q1/3(η)ψ(|η|)ψ2(ωk/(q
1/3(η)λ2/3

γ ))Ai
(
q1/3(η)λ2/3

γ

x

γ
− ωk

)
Ai
(
q1/3(η)λ2/3

γ

a

γ
− ωk

)
we need to check that there exists some ν > 0 such that for all j ≥ 1 and for all multi-indice
α with |α| = j one has

(80)
∣∣∣∂αη (Ai(q1/3(η)λ2/3

γ

x

γ
− ωk

))∣∣∣ ≤ Cj

( t
h

)j(1/2−ν)

, ∀|α| = j.
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In particular, this allows to deduce that, for η on the support of ψ we have

(81)

∂2
ηi,ηj

(
q1/3(η)ψ2(ωk/(q

1/3(η)λ2/3
γ ))Ai

(
q1/3(η)λ2/3

γ

x

γ
−ωk

)
Ai
(
q1/3(η)λ2/3

γ

a

γ
−ωk

))
.
( t
h

)1−2ν

,

and assures that the stationary phase can be applied with the Airy factors as part of the
symbol. As one has, for all l ≥ 0,

sup
b≥0

∣∣∣blAi(l)(b− ωk)∣∣∣ ≤ Clω
3l/2
k ,

it is sufficient to check that for t ≥ h1/3−ε and k ≤ (ht)3/4/h the following holds

(82) ω
3/2
k .

( t
h

)1/2−ν
.

Using that ωk ' k2/3 . λ
2/3
γmax ' ((ht)3/4/h)2/3 for k ≤ (ht)3/4/h, (82) holds if we show that

t1/2
( t
h

)1/4

=
(ht)3/4

h
.
( t
h

)1/2−ν

which is obviously true as it reduces to t . ( t
h
)1/2−2ν for some ν > 0 (recall that we consider

here only values t . 1). The sum of the main contributions of the symbols obtained after
applying the stationary phase equals in η equals

(83)
∣∣∣ ∑
k.(ht)3/4/h

ω
−1/2
k Ai

(
x
q1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)
Ai
(
a
q1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)∣∣∣
≤
∣∣∣ ∑
k.(ht)3/4/h

ω
−1/2
k Ai2

(
x
q1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)∣∣∣1/2
×
∣∣∣ ∑
k.(ht)3/4/h

ω
−1/2
k Ai2

(
a
q1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)∣∣∣1/2 . (λγmax)1/3,

where we have applied the Cauchy-Schwarz inequality followed by (77) from Lemma 6
with L ' λγmax = (ht)3/4/h. Notice that we can indeed use (77) as the critical points
ηc(

y
2t
, ωkh

2/3) satisfy ηc(yt , ωkh
2/3) = − y

2t
+ O(ωkh

2/3) with | − y
t
| ∈ [1

2
+ O(ε0), 3

2
+ O(ε0)]

and O(ωkh
2/3) = O(ε0) for all ωk on the support of ψ2 and using the asymptotic behaviour

of the Airy function |Ai(z)| ≤ C
(1+|z|)1/4 , the factors Ai2

(
x q

1/3(ηc(z,ωkh
2/3))

h2/3
− ωk

)
with x ≤ a
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or Ai2
(
a q

1/3(ηc(z,ωkh
2/3))

h2/3
− ωk

)
can be bounded as follows

(84)
∣∣∣Ai2(aq1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)∣∣∣ ' ∣∣∣Ai2(q1/3(− y
2t

+O(ωkh
2/3))

a

h2/3
− ωk

)∣∣∣
.

1

(1 + |ωk − q1/3(− y
2t

)(1 +O(ωkh2/3)) a
h2/3
|)1/2

' 1

(1 + |ωk(1 +O(a))− q1/3(− y
2t

) a
h2/3
|)1/2

,

and therefore the proof of (77) of Lemma 6 does indeed apply with b = q1/3(− y
2t

) a
h2/3

.
However, this is not enough to conclude : we also need to show that the lower order
terms of the symbol obtained after the stationary phase do sum up and provide smaller
contributions : the second main contributions of these symbols are obtained by taking two
derivatives with respect to η and are of the form (81) (with the factor 1

L′(ωk)
) : although the

condition (82) assures that these contributions are small enough for each k ≤ (ht)3/4/h, in
order to prove Theorem 1 in this regime we also need to estimate the following sums for
x ≤ a (where we recall that λ = a3/2/h): the first sum involves one derivative on each Airy
factor

(85)
h

t

∣∣∣ ∑
k.λγmax

ω
−1/2
k

xa

h4/3
Ai′
(
x
q1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)
Ai′
(
a
q1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)∣∣∣
.
(h
t

λ4/3

h2/3

)
×
∣∣∣ ∑
k.λγmax

h2/3

ω
1/2
k

Ai′
(
x
q1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)
Ai′
(
a
q1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)∣∣∣
.
(h
t

λ4/3

h2/3

)
× h2/3λγmax = λ1/3

γmax
× a× a

(ht)1/2
≤ λ1/3

γmax
× a,

where we have first used (78) from Lemma 6 with L ' λγmax together with Cauchy-Schwarz,
and then the fact that we consider only values a ≤ (ht)1/2; the second sum involves two
derivatives on the same Airy factor

(86)
h

t

∣∣∣ ∑
k≤λγmax

ω
−1/2
k λ4/3

∣∣∣(aq1/3(ηc(z, ωkh
2/3))

h2/3
− ωk

)∣∣∣Ai(xq1/3(ηc(z, ωkh
2/3))

h2/3
− ωk

)
× Ai

(
a
q1/3(ηc(z, ωkh

2/3))

h2/3
− ωk

)∣∣∣ . (LHS)(83)×
(h
t

)
λ4/3λ2/3

γmax
. λ1/3

γmax
× a,

where in the first inequality in the second line we have bounded each ωk by λ
2/3
γmax and then

used (83), while in the last inequality we used the fact that h
t
λ4/3λ

2/3
γmax ≤ a × a

(ht)1/2
≤ a

when a . (ht)1/2.
Using the equation satisfied by the Airy function, it follows that each contribution ob-

tained by taking 2n derivatives of the symbol will be a product of either two Airy functions
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as in (86) or a product of two derivatives of Airy functions as in (85) and we can apply
Lemma 6 at each step to obtain a factor an and conclude. �

Remark 23. Notice that applying the stationary phase with respect to η provides a disper-
sive bound of the form

h1/3

hd

(h
t

)(d−1)/2(γ3/2
max

h

)1/3

=
1

hd

(h
t

)(d−1)/2√
γmax,

where the sum over k is taken for k . γ
3/2
max/h. It is clear that for γ � h1/2 this method

cannot provide estimates sufficiently good for our purpose. Although √γmax may not be
sharp, it coincides with the one obtained for t ' 1 in the regime (ht)1/2 . a < h1/3. In
this situation, and in particular when a ' h1/2 and t ' 1, there are too many wave packets
producing important contributions that overlap. Still, the sum of all these contribution
gives a loss less important then the one obtained for a > h1/3, when the oscillatory integrals
describing the reflected wave packets may have degenerate critical points of order exactly 3.

3.2.4. Let t ≤ h1/3−2ε for some small ε > 0. Then max (h2/3−ε, (ht)1/2) = h2/3−ε and, as
we have already noticed, we only need to consider values of γ such that max (h2/3, a) .
γ . h2/3−ε, as the sum over γ > h2/3−ε > (ht)1/2 can be handled as in (76). In this case
λγmax = (h2/3−ε)3/2/h = h−3ε/2.

Proposition 12. Let 0 < ε < 2
9(d+1)

. For all h1/3+ε . t ≤ h1/3−2ε we have

‖
∑

max (a,h2/3).γ.h2/3−ε

Gh,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd
(
h

t
)(d−1)/2h1/3−ε/2.

For all 0 < t . h1/3+ε we have

‖
∑

max (a,h2/3).γ.h2/3−ε

Gh,γ(t, ·)‖L∞(0≤x≤a,y) .
1

hd
(
h

t
)d/2.

Proof. Notice first that(h
t

)1/2

≤ h1/3−ε/2 if and only if t ≥ h1/3+ε,

therefore when h1/3+ε . t ≤ h1/3−2ε a loss appears when compared to the flat case. Consider
0 < ε < 2

9(d+1)
and set

t(h, ε) := h1−3ε−2ε/d.

Notice that the condition 0 < ε < 2
9(d+1)

implies t(h, ε) � h1/3+ε for all d ≥ 1. Let
t(h, ε) . t . h1/3−2ε when the same proof as in the previous case applies. In fact, to use
the stationary phase with the Airy factors in the symbol we need the condition (82) to be
satisfied for all k . λγmax , which translates into

(87) h−3ε/2 .
( t
h

)1/2−ν
for some ν > 0.

Let ν = 2
2+3d

, then (87) holds since it is equivalent to t & h1− 3ε
1−ν = t(h, ε).
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• If h1/3+ε ≤ t ≤ h1/3−2ε, we obtain a loss as h1/3−ε/2 ≥
(
h
t

)1/2

.

• If t(h, ε) . t ≤ h1/3+ε we bound h1/3−ε/2 by (h
t
)1/2.

Let now t . t(h, ε). We set L := 8h−3ε/2, then the sum over k in (79) is taken for k ≤ L.
Applying the Cauchy-Schwarz inequality in (79) and using (77) yields

(88) ‖
∑

max (a,h2/3).γ.h2/3−ε

Gh,γ(t, ·)‖L∞(0≤x≤a,y)

.
h1/3

hd

∑
k≤L

ω
−1/2
k Ai(xq1/3(η)/h2/3 − ωk)Ai(aq1/3(η)/h2/3 − ωk)

.
h1/3

hd

( ∑
1≤k≤L

ω
−1/2
k Ai2(xq1/3(η)/h2/3 − ωk)

)1/2( ∑
1≤k≤L

ω
−1/2
k Ai2(aq1/3(η)/h2/3 − ωk)

)1/2

.
h1/3

hd
L1/3.

For t . t(h, ε) we have 1
t(h,ε)

. 1
t
and as

(
h

t(h,ε)

)d/2
h−3(d+1)ε/2 = h−ε/2 we find

h1/3L1/3 = 2h1/3−ε/2 = 2
( h

t(h, ε)

)d/2
h1/3−3(d+1)ε/2 .

(h
t

)d/2
h1/3−3(d+1)ε/2 ≤

(h
t

)d/2
,

as the condition ε < 2
9(d+1)

implies 1/3− 3(d+ 1)ε/2 > 0. �

4. Proof of Propositions 3, 4 and 5

Here we need to analyse in details the structure of higher order derivatives of the phase
functions φN,a. Let T be fixed, N ∈ [ T

M
,MT ] with M > 8 large enough and let Y = y√

a

with Y
2T
∈ [1

4
, 2]. We prove Propositions 3, 4 and 5 for VN,h,a defined in (56), whose integral

formula is recalled here

VN,h,a(t, x, y) =
a2

h

1√
λN

∫
e
i
h
φN,aκ(σ, s, t, x, y, h, a, 1/N)dσds,

where, from Remark 16, we can assume (without changing the contribution of VN,h,a modulo
O(h∞)) that the symbol κ is supported for |(σ, s)| ≤ 2

√
αc. In order to integrate with

respect to the remaining variables σ, s we need precise information on the higher order
derivatives of the phase functions.

Proof of Proposition 3. We start with the case where λ1/3 . N and we follow closely
the proof of [17, Prop.7]. We will prove the following :

(89)
∣∣∣∣∫

R2

e
i
h
φN,aκ(σ, s, t, x, y, h, a, 1/N) dsdσ

∣∣∣∣ . λ−2/3

1 + λ1/3|K2
a( Y

4N
, T

2N
)− 1|1/2

.
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Let X = x
a
. We rescale variables with σ = λ−1/3p and s = λ−1/3q and define

(90) A = λ2/3(K2
a(
Y

4N
,
T

2N
)−X) and B = λ2/3(K2

a(
Y

4N
,
T

2N
)− 1) ,

and we are reduced to proving that the following holds uniformly in (A,B) :

(91)
∣∣∣∣∫

R2

eiGN,a,λ(p,q,t,x,y)κ(λ−1/3p, λ−1/3q, t, x, y, h, a, 1/N) dpdq

∣∣∣∣ . 1

1 + |B|1/2
,

where the rescaled phase is

(92) GN,a,λ(p, q, t, x, y) :=
1

h

(
φN,a(λ

−1/3p, λ−1/3q, t, x, y)− φN,a(0, 0, t, x, y)
)
.

Replacing γ by a in the expression of the first order derivatives of φN,a,γ in (50) and (51)
yields

∂pGN,a,λ =
1

h

∂σ

∂p
∂σ(φN,a)|(σ,s)=(λ−1/3p,λ−1/3q) = λ2/3q1/2(ηc)(λ

−2/3p2 +X − αc)

= q1/2(ηc)(p
2 − λ2/3(αc −X)),

∂qGN,a,λ =
1

h

∂s

∂q
∂s(φN,a)|(σ,s)=(λ−1/3p,λ−1/3q) = λ2/3q1/2(ηc)(λ

−2/3q2 + 1− αc)

= q1/2(ηc)(q
2 − λ2/3(αc − 1)).

From (46) it follows that, in the new variables, αc has the following form

(93) αc|(λ−1/3p,λ−1/3q) =
(
Ka(

Y

4N
,
T

2N
)− λ−1/3 p

2N
(1− aE1)− λ−1/3 q

2N
(1− aE2)

)2

,

where fj are smooth functions of (σ, s) = λ−1/3(p, q) and of T
2N

, X and Y
4N

. With these
notations and with Ka = Ka(

Y
4N
, T

2N
), we re-write the first order derivatives of GN,a,λ as

follows

∂pGN,a,λ = q1/2(ηc)
(
p2−A+

λ1/3

N
Ka(p(1−aE1)+q(1−aE2))− 1

4N2
(p(1−aE1)+q(1−aE2))2

)
,

∂qGN,a,λ = q1/2(ηc)
(
q2−B+

λ1/3

N
Ka(p(1−aE1)+q(1−aE2))− 1

4N2
(p(1−aE1)+q(1−aE2))2

)
, .

Since λ1/3 ≤ N , we notice that if A,B are bounded, then (91) obviously holds for |(p, q)|
bounded and by integration by parts if |(p, q)| is large. So we can assume that |(A,B)| ≥ r0

with r0 � 1. Set (A,B) = r(cos(θ), sin(θ)) and rescale again (p, q) = r1/2(p̃, q̃): we aim at

(94)
∣∣∣∣∫

R2

eir
3/2G̃N,a,γκ(λ−1/3r1/2p̃, λ−1/3r1/2q̃, t, x, y, h, a, 1/N) dp̃dq̃

∣∣∣∣ . 1

r5/4
,
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where r0 < r . λ2/3 is our large parameter, and the phase G̃N,a,λ is given by G̃N,a,λ(p̃, q̃, t, x, y) =
r−3/2GN,a,λ(r

1/2p, r1/2q, t, x, y). Let us compute, using the formulas of the first order deriva-
tives of GN,a,λ

∂p̃G̃N,a,λ

q1/2(ηc)
= p̃2 − cos θ +

λ1/3Ka

Nr1/2
(p̃(1− aE1) + q̃(1− aE2))− (p̃(1− aE1) + q̃(1− aE2))2

4N2
,

(95)

∂q̃G̃N,a,λ

q1/2(ηc)
= q̃2 − sin θ +

λ1/3Ka

Nr1/2
(p̃(1− aE1) + q̃(1− aE2))− (p̃(1− aE1) + q̃(1− aE2))2

4N2
,

where, abusing notations, Ej is now Ej(r1/2λ−1/3(q̃, p̃), T
2N
, Y

4N
). Since on the support of

the symbol κ(λ−1/3r1/2p̃, λ−1/3r1/2q̃, t, x, y, h, a, 1/N) we must have |(p̃, q̃)| . λ1/3r−1/2 .
λ1/3r

−1/2
0 , it follows that, for λ1/3 . N , the last term in both derivatives is O(r−1

0 ), while
the next to last term is r−1/2

0 O(p̃, q̃). Indeed, using that E1,2 are uniformly bounded, Ka

is bounded for Y
2T

on the support of ψ̃ and r ≥ r0 we obtain |λ1/3
N
Ka

(p̃(1−aE1)+q̃(1−aE2))

r1/2
| .

r
−1/2
0 |p̃+ q̃|. Therefore, when |(p̃, q̃)| > C̃ with C̃ sufficiently large, the corresponding part
of the integral is O(r−∞) by integration by parts (since (sin(θ), cos(θ)) stay bounded). So
we are left with restricting our integral to a compact region in (p̃, q̃).

We remark that, from the restriction X ≤ 1, we have A ≥ B (and A = B if and only
if X = 1), that is to say, cos θ ≥ sin θ and therefore θ ∈ (−3π

4
, π

4
). We proceed depending

upon the size of B = r sin θ. If sin θ < −C/r1/2 for some C > 0 sufficiently large then
∂q̃G̃N,a,λ > c/(2r1/2) for some C > c > 0 and the phase is non stationary. Indeed, in this
case we have

∂q̃G̃N,a,λ

q1/2(ηc)
≥ q̃2 +

C

2r1/2
+
λ1/3Ka

Nr1/2
(p̃(1− aE1) + q̃(1− aE2))− (p̃(1− aE1) + q̃(1− aE2))2

4N2

and using that p̃, q̃ are bounded, that on the support of κ we have |r1/2(p̃, q̃)| . λ1/3 and
that 1

N
. 1

λ1/3
� 1, we then have, for some C large enough

λ1/3

N
(p̃+ q̃)

[ Ka

r1/2
− (p̃(1− aE1) + q̃(1− aE2))

4Nλ1/3

]
.

C

4r1/2
.

We recall that on the support of ψ2(α) we had α ∈ [1
2
, 3

2
] and the critical point α satisfied

(33) (with γ replaced by a in this case) hence Ka = Ka(
Y

4N
, T

2N
) introduced in (57) stays

close to 1 as main contribution of the critical point αc. It follows that ∂q̃G̃N,a,λ > C/(2r1/2)
and integrations by parts yield a bound O(r−n) for all n ≥ 1. Next, let sin θ > −C/r1/2

and assume A > 0 (since otherwise the non-stationary phase applies), which in turn implies
A > r0/2. Indeed, since cos θ ≥ sin θ > −C/r1/2 it follows that θ ∈ (− C√

r0
, π

4
) and therefore

in this regime cos θ ≥
√

2
2
.

Consider first the case | sin θ| < C/r1/2, with C > 0 like before. The non degenerate
stationary phase always applies in p̃, at two (almost) opposite values of p̃, such that |p̃±| '



SCHRÖDINGER EQUATION IN A STRICTLY CONVEX DOMAIN 39

| ±
√

cos θ| ≥ 1/4, and the integral in (94) can be written as follows

(96) r

∫
R2

eir
3/2G̃N,a,λκ(λ−1/3r1/2p̃, λ−1/3r1/2q̃, t, x, y, h, a, 1/N) dp̃dq̃

=
r

r3/4

(∫
R
eir

3/2G̃+
N,a,λκ+(q̃, t, x, y, h, a, 1/N) dq̃ +

∫
R
eir

3/2G̃−N,a,λκ−(q̃, h, a, 1/N) dq̃

)
.

Indeed, the phase is stationary in p̃ when

p̃2 = cos θ − λ1/3Ka

Nr1/2
(p̃(1− aE1) + q̃(1− aE2)) +

(p̃(1− aE1) + q̃(1− aE2))2

4N2
,

and since cos θ ≥
√

2
2

and 1
r
≤ 1

r0
� 1, it follows that there are exactly two distinct solutions

to ∂p̃G̃N,a,λ = 0, that we denote p̃± ' ±
√

cos θ+O(r−1/2). Using (95), the second derivative
of the phase with respect to p̃ at the critical points becomes

∂2
p̃,p̃G̃N,a,λ|p± = q1/2(ηc)

(
2p̃+

λ1/3Ka

Nr1/2
(1 +O(a)

)
+O(N−2)|p̃± ,

where we have used the fact that p̃, q̃ are bounded and that ∂p̃Ej = O( r
1/2λ−1/3

N
) to deduce

that all the terms except the first one are small. Since λ1/3 . N and r−1/2 � 1, and since
Ka is bounded, close to 1, it follows that for p̃ ∈ {p̃±} the second order derivative equals
∂2
p̃,p̃G̃N,a,λ|p̃± ' 2p̃±+O(r−1/2), and since |p̃±| ≥ 1

4
−O(r−1/2), the stationary phase applies.

The critical values at p̃±, denoted G̃±N,a,λ, satisfy

(97) ∂q̃G̃
±
N,a,λ(q̃, .) := ∂q̃G̃N,a,λ(q̃, p̃±, .) = q1/2(ηc)

(
q̃2 − sin θ

+
λ1/3Ka(p̃(1− aE1) + q̃(1− aE2))

Nr1/2
− (p̃(1− aE1) + q̃(1− aE2))2

4N2
|p̃=p̃±

)
.

Since | sin θ| < C/r1/2, the phases G̃±N,a,λ may be stationary but degenerate; taking two
derivatives in (97), one easily checks that |∂3

q̃ G̃
±
N,a,λ| ≥ q1/2(ηc)(2 − O(r

−1/2
0 )) . Hence we

get, by Van der Corput Lemma

(98)
∣∣∣∣∫

R
eir

3/2G̃±N,a,λκ±(q̃, t, x, y, h, a, 1/N) dq̃

∣∣∣∣ . (r3/2)−1/3 .

Using (96) and (98) eventually gives

(99)
∣∣∣∣r ∫

R2

eir
3/2G̃N,a,λκ(λ−1/3r1/2p̃, λ−1/3r1/2q̃, t, x, y, h, a, 1/N) dp̃dq̃

∣∣∣∣ . r−1/4.

Notice moreover that |B| = |r sin θ| ≤ Cr1/2, hence from r2 = A2 +B2, we have A ∼ r and
since r is large r−1/4 . 1/(1 + |B|1/2), which means that (91) holds true and, replacing B
by λ2/3(K2

a − 1), it yields (89). Recall that A,B are given in (90); using that a2 = (hλ)4/3,
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we obtain from (89)

(100) |VN,h,a(t, x, y)| ≤ a2

h

1√
λN

λ−2/3

(1 + λ1/3|K2
a − 1|1/2)

=
2h1/3

2
√
N/λ1/3 + λ1/6

√
Ka + 1|4NKa − 4N |1/2

.

In the last case sin θ > C/r1/2, which means A ≥ B ≥ Cr1/2, we directly perform stationary
phase in (p̃, q̃): the determinant of the Hessian matrix is at least C

√
cos θ
√

sin θ and we
get a bound for the integral in the left hand side term in (94)∣∣∣(LHS)(94)∣∣∣ . 1

(
√

cos θ
√

sin θ)1/2r3/2
.

1

r

1

(r
√

cos θ
√

sin θ)1/2
.

1

r

1

(AB)1/4

so in this case the estimates is slightly better than (89), as we have

(101)
∣∣∣∣∫

R2

e
i
h
φN,aκ(s, σ, t, x, y, h, a, 1/N) dsdσ

∣∣∣∣ . 1

λ2/3|AB|1/4
≤ 1

λ2/3|B|1/2
.

This eventually yields

(102) |VN,h,a(t, x, y)| . (hλ)4/3

h

λ−1/2

N1/2

1

λ2/3|B|1/2
' h1/3 λ

1/6

N1/2

1

λ1/3|K2
a − 1|1/2

.

The proof of Proposition 3 is achieved.

Proof of Propositions 4 and 5. The only differences between the proof of Proposition
4 and that of [17, Prop.5] occur from the existence of the additional critical point ηc, which
is not considered in the case of the wave equation. The proof of Proposition 5 follow the
same path as the one of [17, Prop.6], but in the last part the analysis is slightly more
delicate as one has to carefully deal with the contributions coming from the higher order
derivatives of ηc. Let 1 ≤ N < λ1/3: we aim at proving

(103)
∣∣∣∣∫

R2

e
i
h
φN,aκ(σ, s, t, x, y, h, a, 1/N) dsdσ

∣∣∣∣ . N1/4λ−3/4 .

Since N is bounded by λ1/3, we cannot ignore anymore the last two terms in the first order
derivatives of φN,a, as we did in the previous case when they were small enough to make
a meaningful contribution. Set Λ = λ/N3 = 1

N3 × a3/2/h to be the new parameter. We
rescale again variables with σ = p′/N and s = q′/N and set now

ΛGN,a(p
′, q′, t, x, y) =

1

h

(
φN,a(σ, s, t, x, y)− φN,a(0, 0, t, x, y)

)
.

On the support of κ we then have |(p′, q′)| . N . We are reduced to proving

(104)
∣∣∣∣∫

R2

eiΛGN,aκ(p′/N, q′/N, t, x, y, h, a, 1/N) dp′dq′
∣∣∣∣ . Λ−3/4 .
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The first order derivatives of GN,a with respect to (p′, q′) are given by

(105) ∇(p′,q′)GN,a =
N3

h

( ∂σ
∂p′

∂σφN,a,
∂s

∂q′
∂sφN,a

)
|(p′/N,q′/N)

= q1/2(ηc)
(
p′2 +N2(X − αc), q′2 +N2(1− αc)

)
,

where, using (46), αc(σ, s, ·)|(σ=p′/N,s=q′/N) is given by

(106) αc|(p′/N,q′/N) =
(
Ka −

p′

2N2
(1− af1)− q′

2N2
(1− af2)

)2

.

Recall that Ka = Ka(
Y

4N
, T

2N
), given in (57), equals

√
α0
c and stays therefore close to 1 on

the support of the symbol. We define

(107) A′ = (K2
a −X)N2 and B′ = (K2

a − 1)N2 .

With these notations, the first order derivatives of GN,a,λ read as follows

∂p′GN,a = q1/2(ηc)
(
p′2−A′+Ka(p

′(1−aE1)+q′(1−aE2))− 1

4N2
(p′(1−aE1)+q′(1−aE2))2

)
,

∂q′GN,a = q1/2(ηc)
(
q′2−B′+Ka(p

′(1−aE1)+q′(1−aE2))− 1

4N2
(p′(1−aE1)+q′(1−aE2))2

)
.

Unlike the previous case, we can no longer ignore the two last terms (since even the terms
with 1

N2 factors may provide important contributions !).
We start with |(A′, B′)| ≥ r0 for some large, fixed r0, in which case we can follow the same

approach as in the previous case. Set again A′ = r cos θ and B′ = r sin θ. If |(p′, q′)| < r0/2,
then the corresponding integral is non stationary and we get decay by integration by parts.
We change variables (p′, q′) = r1/2(p̃′, q̃′) with r0 ≤ r . N2 and aim at proving the following

(108)
∣∣∣∣r ∫

R2

eir
3/2ΛG̃N,aκ(r1/2p̃′/N, r1/2q̃′/N, t, x, y, h, a, 1/N) dp̃′dq̃′

∣∣∣∣ . r−1/4Λ−5/6 ,

where κ is now compactly supported in an annulus. The new phase is G̃N,a(p̃
′, q̃′, t, x, y) =

r−3/2GN,a(r
1/2p̃′, r1/2q̃′, t, x, y). We compute

∂p̃′G̃N,a

q1/2(ηc)
= p̃′2 − cos θ +

Ka

r1/2
(p̃′(1− aE1) + q̃′(1− aE2))− (p̃′(1− aE1) + q̃′(1− aE2))2

4N2
,

∂q̃′G̃N,a

q1/2(ηc)
= q̃′2 − sin θ +

Ka

r1/2
(̃′(1− aE1) + q̃′(1− aE2))− (p̃′(1− aE1) + q̃′(1− aE2))2

4N2
.

We intend to follow the same approach, as long as possible, as in the case λ1/3 . N .
Since X ≤ 1 we have A′ ≥ B′ which implies cos θ ≥ sin θ. If |(p̃′, q̃′)| ≥ C̃ for some
large C̃ ≥ 1, then the critical points (p̃′c, q̃

′
c) satisfy p̃′2c ≥ q̃′2c and if C̃ is sufficiently large

the non-stationary phase applies (in fact it is enough to pick any C̃ > 4). Therefore we
are reduced, like in the previous case, to the situation where |(p̃′, q̃′)| stay bounded. We
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deal again with three situations, depending upon B′ = r sin θ : if sin θ < − C√
r
for some

sufficiently large constant C > 0, then

∂q̃′G̃N,a

q1/2(ηc)
≥ q̃′2 +

C

r1/2
+
Ka

r1/2
(p̃′(1− aE1) + q̃′(1− aE2))− (p̃′(1− aE1) + q̃′(1− aE2))2

4N2
,

and as |(p̃′, q̃′)| is bounded, f1,2 are bounded, N is sufficiently large in this case (indeed,
recall that r0 ≤ r . N2 so that 1√

r
≥ 1

N
), it follows that the non-stationary applies

since the sum of the last three terms in the previous inequality is greater than C/(2r1/2)

if C is large enough. If | sin θ| ≤ C√
r
then, again, θ ∈ (− C√

r0
, π

4
) and cos θ ≥

√
2

2
. We

have |B′| = |r sin θ| ≤ C
√
r; if |B′| < C, then 1 + |B′| . r1/2, while |A′| ' r. As in

the previous case the stationary phase applies in p̃′ with non-degenerate critical points p̃′±
and yields a factor (r3/2Λ)−1/2; the critical value of the phase function at these critical
points, that we denote G̃±N,a, always satisfies |∂3

q̃′G̃
±
N,a| ≥ q1/2(ηc)(2 − O( 1

r
1/2
0

)) and the

integral in q̃′ is bounded by (r3/2Λ)−1/3. We therefore obtain (108) which yields, using that
|B′| = |N2(K2

a − 1)| ≤ r1/2,

|VN,a,h(t, x, y)| = h1/3λ4/3

√
λNN2

∣∣∣r ∫
R2

eir
3/2ΛG̃N,aκ(r1/2p̃′/N, r1/2q̃′/N, t, x, y, h, a, 1/N) dp̃′dq̃′

∣∣∣
.
h1/3λ5/6

N5/2
r−1/4

( λ

N3

)−5/6

.
h1/3

(1 + |B′|1/2)
' h1/3

(1 +N |Ka(
Y

4N
, T

2N
)− 1|1/2)

.

If sin θ > C√
r
, then B′ = r sin θ > C

√
r and therefore N2|K2

a − 1| > Cr1/2. We directly
perform the stationary phase with large parameter r3/2Λ as the determinant of the Hessian
matrix at the critical point is at least C

√
cos θ sin θ, and obtain a bound for the left hand

side term in (108) of the form

cr

(
√

sin θ
√

cos θ)1/2r3/2Λ
=

1

Λ

1

(A′B′)1/4
≤ 1

Λ

1

B′1/2
.

We just proved that for N < λ1/3 and when N2|Ka(
Y

4N
, T

2N
) − 1| is not too small, the

following holds

(109) |VN,h,a(t, x, y)| . h1/3

λ1/6
√
N |Ka(

Y
4N
, T

2N
)− 1|1/2

.

We now move to the most delicate case |(A′, B′)| ≤ r0. For |(p′, q′)| large, the phase is
non stationary and integrations by parts provide O(Λ−∞) decay. So we may replace κ by
a cut-off, that we still call κ, that is compactly supported in |(p′, q′)| < R. We proceed
as in [17, proof of Prop. 6], by identifying one variable where the usual stationary phase
may be performed and then evaluating the remaining 1D oscillating integral using Van der
Corput lemma with different decay rates depending on the lower bounds on the derivatives
of order at most 4.



SCHRÖDINGER EQUATION IN A STRICTLY CONVEX DOMAIN 43

Using (105), we compute the derivatives of GN,a as follows

(110) ∂p′GN,a = q1/2(ηc)(p
′2 +N2(X − αc)), ∂q′GN,a = q1/2(ηc)(q

′2 +N2(1− αc)).
The second order derivatives of GN,a follow from (52), (53) and (54)

∂2
p′p′GN,a = q1/2(ηc)(2p

′ −N2∂p′αc) +
∂p′ηc∇q(ηc)

2q1/2(ηc)
(p′2 +N2(X − αc)),(111)

∂2
q′q′GN,a = q1/2(ηc)(2q

′ −N2∂q′αc) +
∂q′ηc∇q(ηc)

2q1/2(ηc)
(q′2 +N2(1− αc)),(112)

∂2
q′p′GN,a = q1/2(ηc)(−N2∂q′αc) +

∂q′ηc∇q(ηc)
2q1/2(ηc)

(p′2 +N2(X − αc))(113)

= ∂2
p′q′GN,a = q1/2(ηc)(−N2∂p′αc) +

∂p′ηc∇q(ηc)
2q1/2(ηc)

(q′2 +N2(1− αc)).

At the critical points where ∂p′GN,a = ∂q′GN,a = 0 , the determinant of the Hessian matrix
of GN,a is given by

detHess(p′,q′)GN,a|∇(p′,q′)GN,a=0 = q(ηc)
(

4p′q′ −N2(p′ + q′)∂p′αc

)
.

When ∇(p′,q′)GN,a = 0 and | detHess(p′,q′)GN,a| > c > 0 for some small c > 0 we can apply
the usual stationary phase in both variables p′, q′. We expect the worst contributions to
occur in a neighborhood of the critical points where | detHess(p′,q′)GN,a| ≤ c for some c
sufficiently small. We turn variables with ξ1 = (p′ + q′)/2 and ξ2 = (p′ − q′)/2. Then
p′ = ξ1 + ξ2 and q′ = ξ1 − ξ2, and we also let

µ := A′ +B′ = N2(2K2
a − 1−X), ν := A′ −B′ = N2(1−X).

We will show that the most degenerate situation corresponds to ν = µ = 0 and ξ1 = 0, ξ2 =
0. Let gN,a(ξ1, ξ2) = GN,a(ξ1 + ξ2, ξ1 − ξ2).
Case c . |ξ1|. We first prove that, for ξ1 outside a small neighbourhood of 0, the usual
stationary phase applies in ξ2 and the critical value gN,a(ξ1, ξ2,c) may have degenerate
critical points of order at most 2. The phase gN,a is stationary in ξ2 when ∂p′GN,a = ∂q′GN,a

and from Remark 17 it follows that in this situation ∂p′ηc = ∂q′ηc and ∂p′αc = ∂q′αc. The
second derivative of gN,a with respect to ξ2 is given by

∂2
ξ2,ξ2

gN,a(ξ1, ξ2) =
(
∂2
p′p′GN,a − 2∂2

p′q′GN,a + ∂2
q′q′GN,a

)
(p′, q′)|ξ1,ξ2 .

Using the explicit form of the second order derivatives of GN,a given above we obtain, at
p′ = ξ1 + ξ2, q′ = ξ1 − ξ2 such that p′2 + N2(X − αc) = q′2 + N2(1 − αc) and for which
∂p′ηc = ∂q′ηc, the following form for ∂2

ξ2,ξ2
gN,a(ξ1, ξ2) :

∂2
ξ2,ξ2

gN,a(ξ1, ξ2)|∂ξ2gN,a=0 = 2q1/2(ηc)(p
′ + q′) = 4q1/2(ηc)ξ1.

Since q(ηc) = |ηc|q(ηc/|ηc|) ∈ [1
2
m2

0,
3
2
M2

0 ] with m0,M0 defined in (31), it follows that the
stationary phase applies in ξ2 when |ξ1| & c, . We denote ξ2,c the critical point that satisfies

∂ξ2gN,a(ξ1, ξ2) =
(
∂p′GN,a − ∂q′GN,a

)
(p′, q′)|p′=ξ1+ξ2,q′=ξ1−ξ2 = 0,
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and obtain
(ξ1 + ξ2,c)

2 +N2(X − αc) = (ξ1 − ξ2,c)
2 +N2(1− αc),

which, in turn, yields 4ξ1ξ2,c = N2(1 − X) = ν and therefore ξ2,c = ν
4ξ1

. In the following
we compute the higher order derivatives of the critical value of the phase gN,a(ξ1, ξ2,c) with
respect to ξ1 and prove the following lemma :

Lemma 7. For |N | ≥ 1, the phase gN,a(ξ1, ξ2,c) may have critical points degenerate of
order at most 2.

Proof. Recall that at the critical point ξ2,c, Remark (17) implies ∂p′ηc = ∂q′ηc and ∂p′αc =
∂q′αc. This in turn implies that the functions Θ1,2 in Lemma 4 coincide there, hence
the functions E1,2 defined in (47),(48) coincide also at ξ2,c. Notice that we kept the same
notation E1,2 but we refer to now as functions of (p′/N, q′/N) = (ξ1 +ξ2)/N, (ξ1−ξ2)/N . As
E1|p′2+N2X=q′2+N2 = E2|p′2+N2X=q′2+N2 , setting E := E1|p′2+N2X=q′2+N2 = E2|p′2+N2X=q′2+N2

in the expression (46) yields

√
αc|∂ξ2gN,a=0 = Ka −

ξ1

N2
(1− aE)

and therefore

∂ξ1(gN,a(ξ1, ξ2,c)) = ∂ξ1gN,a(ξ1, ξ2,c) +
∂ξ2,c

∂ξ1

∂ξ2gN,a(ξ1, ξ2)|ξ2=ξ2,c

= ∂ξ1gN,a(ξ1, ξ2,c)

=
(
∂p′GN,a + ∂q′GN,a

)
(p′, q′)|ξ1,ξ2,c

= q1/2(ηc)
(

(ξ1 + ξ2,c)
2 +N2(X − αc) + (ξ1 − ξ2,c)

2 +N2(1− αc)
)

= q1/2(ηc)
(

2ξ2
1 + 2ξ2

2,c − µ− 2N2
(

(Ka −
ξ1

N2
(1− aE))2 −K2

a

))
= q1/2(ηc)

(
2ξ2

1(1− 1

N2
(1− aE)) + 2ξ2

2,c − µ+ 4Kaξ1(1− aE)
)

= q1/2(ηc)
(

2ξ2
1(1− 1

N2
(1− aE)) + 2

ν2

16ξ2
1

− µ+ 4Kaξ1(1− aE)
)
.(114)

Taking the derivatives of (114) with respect to ξ1 yields

∂2
ξ1,ξ1

(gN,a(ξ1, ξ2,c)) = q1/2(ηc)
[
4ξ1

(
1− 1

N2
(1− a(E +

1

2
ξ1∂ξ1E))

)
− ν2

8ξ3
1

+4Ka

(
1− a(E + ξ1∂ξ1E)

)]
+
(
∂p′(q

1/2(ηc)) + ∂q′(q
1/2(ηc)) +

∂ξ2,c

∂ξ1

(∂p′(q
1/2(ηc))− ∂q′(q1/2(ηc))

)∂ξ1gN,a(ξ1, ξ2,c)

q1/2(ηc)
,
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where the last line vanishes when ∂ξ1gN,a(ξ1, ξ2,c) = 0. In the same way we find

∂3
ξ1,ξ1,ξ1

(gN,a(ξ1, ξ2,c))|∂ξ1 (gN,a(ξ1,ξ2,c))=∂2ξ1,ξ1
(gN,a(ξ1,ξ2,c))=0 = q1/2(ηc)

(
4
(

1− 1

N2

)
+

3ν2

8ξ4
1

+O(a)
)
.

Let first |N | ≥ 2, then we immediately see that the third order derivative takes positive
values and stays bounded from below by a fixed constant, ∂3

ξ1,ξ1,ξ1
(gN,a(ξ1, ξ2,c)) ≥ 2, and

therefore the critical points may be degenerate (when ∂2
ξ1,ξ1

(gN,a(ξ1, ξ2,c)) = 0) of order at
most 2. Let now |N | = 1 when the coefficient of 2ξ2

1 in (114) is O(a). Assume that for
c . |ξ1| the first two derivative vanish, then ν2

8ξ31
= 4Ka + O(a) and therefore the third

derivative cannot vanish since its main contribution is 3ν2

8ξ41
. �

Case |ξ1| . c for some small 0 < c < 1/2. Let now ξ1 = p′ + q′ belong to a small
neighbourhood of 0, |ξ1| ≤ c < 1/2 : we first show that the stationary phase with non-
degenerate critical point applies this time in ξ1. We compute (in the same way as we did
for |ξ1| & c)

(115) ∂ξ1gN,a(ξ1, ξ2) =
(
∂p′GN,a + ∂q′GN,a

)
(p′, q′)|ξ1,ξ2

= q1/2(ηc)
(

(ξ1 + ξ2)2 +N2(X − αc) + (ξ1 − ξ2)2 +N2(1− αc)
)
.

Using (46), we write again, with Ka = Ka(
Y

4N
, T

2N
) = T

2N
q1/2(η0

c ),

√
αc = Ka −

(σ + s)

2N
+

T

2N
(q1/2(ηc)− q1/2(η0

c )),

where in the new variables σ + s = 2ξ1/N . Using (49), we have (q1/2(ηc) − q1/2(η0
c )) =

a
NT
O(ξ1, ξ2) and since |ξ1| ≤ c < 1

2
is small, a ≤ ε0 and αc ∈ [1

2
, 3

2
] it follows from

Ka =
√
αc + O(c/N2) that we must have Ka ∈ [1/4, 2] for all N ≥ 1. The derivative of

gN,a(ξ1, ξ2) becomes

(116)

∂ξ1gN,a(ξ1, ξ2) = q1/2(ηc)
{

2ξ2
1 + 2ξ2

2 − µ− 2N2
[(
Ka −

ξ1

N2
+

a

N2
O(ξ1, ξ2)

)2

−K2
a

]}
= q1/2(ηc)

(
2ξ2

1(1− 1

N2
) + 2ξ2

2 − µ+ 4Kaξ1 + aO(ξ1, ξ2)
)
.

At the critical point, the second derivative with respect to ξ1 is given by

(117) ∂2
ξ1,ξ1

gN,a(ξ1, ξ2)|∂ξ1gN,a(ξ1,ξ2)=0 = q1/2(ηc)
(

4ξ1(1− 1

N2
) + 4Ka +O(a)

)
,

and as Ka ∈ [1
4
, 2] it follows that the second derivative behaves like 4q1/2(ηc)Ka. The

stationary phase applies for any |N | ≥ 1 and provides a factor Λ−1/2. We are left with the
integral with respect to ξ2 and we will show that it may be degenerate up to order 3. In
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order to obtain precise bounds for it we need the exact form of the critical point ξ1 as a
function of ξ2. Let ξ1,c denote the solution to ∂ξ1gN,a(ξ1, ξ2) = 0, then ξ1,c satisfies

(118) 2ξ2
1,c + 2ξ2

2 = µ+ 2N2
[
K2
a −

(
K2
a −

ξ1

N2
+

T

2N
(q1/2(ηc)− q1/2(η0

c ))
)2

|ξ1,ξ2
]
,

where, using (49), T
2N

(q1/2(ηc) − q1/2(η0
c )) = O( a

N2 ). Notice that requiring |ξ1,c| ≤ c for
some small c implies |µ/2− ξ2

2 | . c. More precisely, if |µ/2− ξ2
2 | ≥ 4c, the equation (118)

has no real solution ξ1,c such that |ξ1,c ≤ c.

Lemma 8. For all |N | ≥ 1 and |µ/2− ξ2
2 | ≤ 4c, the equation (118) has one real solution

of the following form

(119) ξ1,c = (µ/2− ξ2
2)Ξ0 + a

(
(µ/2− ξ2

2)Ξ1 + ξ2
2Ξ2 + ξ2

ν

N2
Ξ3

)
,

where Ka=0 = |Y |
4N
q1/2(−Y/|Y |) and Ξ0 = Ξ0(µ/2− ξ2

2 , Ka=0, 1/N
2) is given by

(120) Ξ0(µ/2− ξ2
2 , Ka=0, 1/N

2) =
1

Ka=0 +
√
K2
a=0 + (µ/2− ξ2

2)(1− 1/N2)

and where Ξ1,2,3 are a smooth functions of (ξ2, µ/2−ξ2
2 , ν/N

2, Ka, 1/N, a) such that |∂kξ2Ξj| ≤
Ck, for all k ≥ 0, where Ck are positive constants.

Proof. Notice that for a = 0, the equation (118) has an unique, explicit solution ξ1,c|a=0

that reads as follows

ξ1,c|a=0 =
µ/2− ξ2

2

Ka=0 +
√
K2
a=0 + (µ/2− ξ2

2)(1− 1/N2)
,

that we rename (µ/2− ξ2
2)Ξ0 where Ξ0 = Ξ0(µ/2− ξ2

2 , Ka=0, 1/N
2) is defined in (120). Let

now a 6= 0. Using Lemma 4 with s+σ = (p′+q′)/N = 2ξ1/N , σ−s = (p′−q′)/N = 2ξ2/N ,
(a − x)/a = ν/N2, it follows that the critical point ηc is a function of ξ1/N , ξ2

2/N
2 and

ξ2ν/N
3. Write ξ1,c under the form ξ1,c = (µ/2 − ξ2

2)Ξ0 + aΞ for some function Ξ to be
determined; introducing this in (118) allows to obtain Ξ as a sum of smooth functions with
factors µ/2− ξ2

2 , ξ2
2 and ξ2ν/N

2 as follows

Ξ = (µ/2− ξ2
2)Ξ1 + ξ2

2Ξ2 + ξ2
ν

N2
Ξ3,

where Ξj are smooth functions of µ/2− ξ2
2 , ξ

2
2/N

2, ξ2ν/N
3. �

Let g̃N,a(ξ2) := gN,a(ξ1,c, ξ2) : the first derivative of g̃N,a with respect to ξ2 vanishes when
(∂p′GN,a − ∂q′GN,a)(p

′, q′)|(ξ1,c,ξ2) = 0 which is equivalent to 4ξ1,cξ2 = ν. We compute the
second derivative of g̃N,a using ∂ξ2 g̃N,a = ν − 4ξ1,cξ2, with ξ1,c given in (119) as follows

∂2
ξ2ξ2

g̃N,a = −4(ξ2∂ξ2ξ1,c + ξ1,c).
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It follows that the critical points ξ2 are degenerate when

(121) (µ/2− ξ2
2)Ξ0 + a

(
(µ/2− ξ2

2)Ξ1 + ξ2
2Ξ2 + ξ2

ν

N2
Ξ3

)
= 2ξ2

2Ξ0

(
1− (µ/2− ξ2

2)Ξ̃0(µ/2− ξ2
2 , Ka, 1/N

2)
)

+ a
(

2ξ2
2(Ξ1 − Ξ2 −

1

2
ξ2∂ξ2Ξ2 −

ν

N2
∂ξ2Ξ3)− ξ2(µ/2− ξ2

2)∂ξ2Ξ1 − ξ2
ν

N2
Ξ3

)
,

where the term in the second line of (121) equals ξ2∂ξ2Ξ0. We have thus set

Ξ̃0(µ/2− ξ2
2 , Ka, 1/N

2) :=
(1− 1/N2)Ξ0(µ/2− ξ2

2 , Ka, 1/N
2)

2
√
K2
a + (µ/2− ξ2

2)(1− 1/N2)
.

Consider a = 0 in (121) for the moment, then the critical points are degenerate if

µ/2− ξ2
2 = 2ξ2

2

(
1− (µ/2− ξ2

2)Ξ̃0(µ/2− ξ2
2 , K0, 1/N

2)
)
.

Recall that Ka ∈ [1/4, 2] and that |µ/2− ξ2
2 | ≤ 4c with c small enough. The last equation

can be further written as follows

(µ/2− ξ2
2)
(

2 +
1

1− (µ/2− ξ2
2)Ξ̃0

)
= µ

which may have solutions only if µ is also small enough, |µ| ≤ 10c. Let z = µ/2 − ξ2
2 ; for

|z| ≤ 4c and |µ| ≤ 10c with c small enough, we may now seek the solution to z(2 + 1/(1−
zΞ̃0(z,K0, 1/N

2)) = µ under the form z = µZ0(µ,K0, 1/N
2) and obtain an explicit form

for Z0(µ,K0, 1/N
2) which satisfies Z0(0, K0, 1/N

2) = 1
3
. It follows that the solutions to

(121) when a = 0 are functions of √µ which coincide at µ = 0 when they both vanish.
They have the form

ξ2,±|a=0 = ±
√
µ
√

6

(
1 + µζ(µ,K0, 1/N

2)
)
, for some smooth function ζ.

Let now a 6= 0, then the solutions ξ2 to (121) are functions of √µ, ν/N2, a that coincide
at µ = ν = 0 when they are both equal to 0. In fact, since Ξ1 is a function of µ/2 −
ξ2

2 , ξ
2
2 , ξ2ν/N

2, it follows that ξ2∂ξ2Ξ1 is also a function of µ/2− ξ2
2 , ξ

2
2 , ξ2ν/N

2 and we can
write µ/2− ξ2

2 as a function of µ/2, ξ2
2 and ξ2ν/N

2,

(122) µ/2− ξ2
2 = 2ξ2

2(1− (µ/2− ξ2
2)Ξ̃0(µ/2− ξ2

2 , Ka, 1/N
2))

+ a
(
ξ2

2F1(ξ2
2 , ξ2ν/N

2, µ) + ξ2
ν

N2
F2(ξ2

2 , ξ2ν/N
2, µ)

)
,

for some smooth functions F1,2. Notice that, as |µ/2− ξ2
2 | ≤ 4c and a is small, (122) may

have real solutions ξ2 only for |ξ2
2 | ≤ 4c. For such small ξ2, equation (122) has at most two

distinct solutions (that coincide at µ = ν = 0) of the form

(123) ξ2,± = ±
√
µ
√

6
(1 + µζ(µ,Ka, 1/N

2)) + a < (
√
µ,

ν

N2
), (ζ1,±, ζ2,±) > (

√
µ,

ν

N2
, Ka, a),
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for some smooth functions ζ, ζj,± . We compute the third derivative of g̃N,a at the points
ξ2,± defined in (123) where its second derivative vanishes. Using (121) yields

(124) ∂3
ξ2,ξ2,ξ2

g̃N,a(ξ1,c, ξ2)|ξ2=ξ2,± = −4(2∂ξ2ξ1,c + ξ2∂
2
ξ2,ξ2

ξ1,c)|ξ2,±

= −8
ξ1,c

ξ2

|ξ2=ξ2,± − 4ξ2,±∂
2
ξ2,ξ2

ξ1,c

= 16ξ2Ξ0

(
1− (µ/2− ξ2

2)Ξ̃0(µ/2− ξ2
2 , Ka, 1/N

2)
)

+ 8a
(

2ξ2(Ξ1 − Ξ2 −
1

2
ξ2∂ξ2Ξ2 −

ν

N2
∂ξ2Ξ3)− (µ/2− ξ2

2)∂ξ2Ξ1 −
ν

N2
Ξ3

)
|ξ2,±

+ 8ξ2Ξ0(1 +O(µ/2− ξ2
2) +O(a))|ξ2,± ,

where the last line in (124) equals −4ξ2,±∂
2
ξ2,ξ2

ξ1,c : we don’t expand this formula since it
comes with the small factor ξ2,±, which is sufficiently small for what we need. The third
and forth lines of (124) represent the formula of −8∂ξ2ξ1,c already obtained in (121) (where
∂ξ2ξ1,c comes with a factor ξ2). Since the third derivative of g̃N,a is evaluated at ξ2,± we
can replace (122) in (124) and obtain

∂3
ξ2,ξ2,ξ2

g̃N,a(ξ1,c, ξ2)|ξ2=ξ2,± =
12ξ2,±

Ka

(1 +O(ξ2
2,±) +O(a)) +O(aν/N2).

It follows that at µ = ν = 0 the order of degeneracy is higher as ξ2,±|µ=ν=0 = 0 and
∂3
ξ2,ξ2,ξ3

g̃N,a|ξ2,±,µ=ν=0 = 0. We now write

g̃N,a(ξ2) = g̃N,a(ξ2,±)+(ξ2−ξ2,±)∂ξ2 g̃N,a(ξ2,±)+
(ξ2 − ξ2,±)3

6
∂3
ξ2,ξ2,ξ2

g̃N,a(ξ2,±)+O((ξ2−ξ2,±)4),

where the fourth derivative doesn’t cancel at ξ2,± since it stays close to 12/Ka ∈ [6, 48]
as Ka ∈ [1/4, 2]. Since we are to have ∂ξ2 g̃N,a(ξ2,±) = 0, we also deduce ν = 4ξ1,c|ξ2,±ξ2,±,
which gives

(125) ν = 4
(
±
√
µ
√

6
(1 + µζ(µ)) + a(

√
µζ1,± +

ν

N2
ζ2,±)

)
×
(

(µ/2− ξ2
2,±)Ξ0 + a((µ/2− ξ2

2,±)Ξ1 + ξ2
2,±Ξ2 + ξ2,±

ν

N2
Ξ3)
)

and replacing (123) in (119) yields ν of the form ν = ±
√

2µ3/2

3
√

3Ka
(1 + O(a)), which is at

leading order the equation of a cusp. At the degenerate critical points ξ2,± where ν =

±
√

2µ3/2

3
√

3Ka
(1 +O(a)), the phase integral behaves like

I =

∫
ξ2

ρ(ξ2)e
∓iΛ

√
2
√
µ

Ka
√
3

(ξ2−ξ2,±)3
dξ2 ,

and we may conclude in a small neighborhood of the set {ξ2
2 + |µ|+ |ν|2/3 . c} (as outside

this set, the non-stationary phase applies) by using Van der Corput lemma on the remaining
oscillatory integral in ξ2 with phase g̃N,a(ξ2). In fact, on this set, ∂4

ξ2
g̃N,a is bounded from

below, which yields an upper bound Λ−1/4, uniformly in all parameters. When µ 6= 0, the
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third order derivative of the phase is bounded from below by |ξ2|
Ka

: either |µ/6− ξ2
2 | ≤ µ/12

and then |∂3
ξ2
g̃N,a| is bounded from below by |µ|1/2/(12Ka) or |µ/6− ξ2

2 | ≤ |µ|/12 in which
case |∂2

ξ2
g̃N,a| is bounded from below by |µ|/(12Ka). Hence, using that Ka ∈ [1/4, 2], we

find |∂3
ξ2
g̃N,a|+ |∂3

ξ2
g̃N,a| &

√
|µ| (recall that here µ is small so

√
|µ| ≥ |µ|) which yields an

upper bound
√
|µ|Λ−1/3

. Eventually we obtain

(126) |I| . inf
{ 1

Λ1/4
,

1

|µ|1/6Λ1/3

}
.

From µ = A′ + B′ and ν = A′ − B′ ' ±µ3/2 � µ for µ < 1, we deduce that A′ ∼ B′ and
therefore µ ∼ 2B′, which is our desired bound, as the non degenerate stationary phase in
ξ1 provided a factor Λ−1/2.
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