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No evidence for carbon enrichment in the mantle source 
of carbonatites in eastern Africa
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Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Centre de Recherches Pétrographiques et 
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ABSTRACT
Carbonatites are unusual, carbon-rich magmas thought to form either by the melting of 

a carbon-rich mantle source or by low-degree partial melting of a carbon-poor (<80 ppm C) 
mantle followed by protracted differentiation and/or immiscibility. Carbonate-bearing 
mantle xenoliths from Oldoinyo Lengai (East African Rift), the only active volcano erupt-
ing carbonatites, have provided key support for a C-rich mantle source. Here, we report 
unique microscale O and C isotopic analyses of those carbonates, which are present as 
interstitial grains in the silicate host lava, veins in the xenoliths, and pseudo-inclusions in 
olivine xenoliths. The δ18O values vary little, from 19‰ to 29‰, whereas δ13C values are 
more variable, ranging from –23‰ to +0.5‰. We show that such carbonate δ18O values 
result from the low-temperature precipitation of carbonate in equilibrium with meteoric 
water, rather than under mantle conditions. In this framework, the observed δ13C values 
can be reproduced by Rayleigh distillation driven by carbonate precipitation and associ-
ated degassing. Together with petrological evidence of a physical connection between the 
three types of carbonates, our isotopic data support the pedogenic formation of carbon-
ates in the studied xenoliths by soil-water percolation and protracted crystallization along 
xenolith cracks. Our results refute a mechanism of C enrichment in the form of mantle 
carbonates in the mantle beneath the Natron Lake magmatic province and instead support 
carbonatite formation by low-degree partial melting of a C-poor mantle and subsequent 
protracted differentiation of alkaline magmas.

INTRODUCTION
Carbonatites, which are unusual magmas 

containing 50% magmatic carbonate and less 
than 20% SiO2 (Le Maitre, 2002), have been 
emitted throughout Earth’s history and on all 
continents (Woolley and Kjarsgaard, 2008), but 
they are generally observed in rift zones and 
associated with a metasomatized mantle. As car-
bonatites are enriched in volatile and incompat-
ible elements, generally interpreted as evidence 
of low degrees of melting, they have been associ-
ated with restricted geodynamic conditions (e.g., 
Kogarko and Veselovskiy, 2019). The carbon 
content of their parental metasomatized mantle 
has important implications for Earth’s carbon 
cycle, yet it remains unconstrained (Kjarsgaard 
and Hamilton, 1989; Ling et al., 2013). Carbon-
atites and associated alkaline magmas also rep-
resent the world’s main rare earth element (REE) 

deposits (e.g., Verplanck et al., 2014). Despite 
their scientific and economic importance, the 
processes generating carbonatitic melts and the 
possible C enrichment of their mantle source 
remain debated. The melting of a C-rich man-
tle source was experimentally shown to directly 
produce magmas of carbonatitic nature (e.g., 
Hammouda et al., 2014). Alternatively, a C-poor 
mantle source would require the silicate parental 
melts to either be affected by crustal contamina-
tion or undergo extreme differentiation to even-
tually obtain immiscible silicate and carbonatite 
melts (Peterson, 1989; Dawson, 2012). Indeed, 
the strongly incompatible nature of CO2 implies 
that the very first partial melts produced from 
a C-poor source should be enriched in C (e.g., 
Hirschmann, 2010; Stamm and Schmidt, 2017).

Oldoinyo Lengai (OL), in the East African 
Rift (EAR), is the only active volcano erupting 
carbonatites, thus representing an invaluable 
natural laboratory for studying the genesis and 
evolution of carbonatitic melts. The amount of 

carbon in the OL mantle source remains con-
troversial. As an example, CO2 is present as a 
volatile phase in mantle xenoliths from Ethio-
pia (Frezzotti et al., 2010), suggesting, at least 
locally, the mobilization of significant amounts 
of C in the EAR lithosphere. Nevertheless, simi-
lar observations are lacking in Tanzania. A strik-
ing observation is that mantle xenoliths collected 
around OL bear carbonate inclusions and veins, 
apparently suggesting strong C enrichment in the 
local mantle (Lee et al., 2000). This is a remark-
able feature because carbonates have only rarely 
been reported in mantle materials (e.g., Ionov 
et al., 1996; Lee et al., 2000), although this may 
in part be due to decomposition of carbonates 
during entrainment, as experimentally dem-
onstrated (Canil, 1990). The presence of solid 
carbonates in a spinel-bearing peridotite field 
is also remarkable. At such mantle conditions, 
Mg-rich carbonates are unstable, and C is rather 
expected as a fluid phase (Wallace and Green, 
1988). However, this may not be suitable in the 
EAR, where calcites are reported (Lee et al., 
2000; Mattsson et al., 2013). For those various 
reasons, carbonatite formation from a carbonate- 
or C-rich source is still seriously discussed. On 
the other hand, modeling of the volatile contents 
in the mantle source, based on the noble gas and 
CO2 contents of OL summit fumaroles, suggests 
that the mantle C content is low (<80 ppm C; as 
reassessed from Fischer et al., 2009). Moreover, 
the 3He/4He ratios of igneous minerals imply that 
the parental melts of the OL carbonatites were 
derived from the depleted convective mantle and 
interacted with the subcontinental lithospheric 
mantle without any crustal contamination (Mol-
lex et al., 2018). These results suggest that OL 
carbonatites form by low-degree partial melting 
of a C-poor mantle, associated with protracted 
differentiation and liquid immiscibility.

In light of these contradictory results, and 
because outcrops containing mantle xeno-
liths generally show posteruption pedogenic *E-mail: valentin.casola@univ-lorraine.fr
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carbonates (Fig. S1 in the Supplemental 
Material1), the mantle origin of carbonate 
inclusions and veins hosted in northern Tanza-
nian mantle xenoliths is questionable. Here, we 
employed petrological and in situ geochemical 
and isotopic analyses of carbonates in five Tanza-
nian mantle xenoliths to determine the origin(s) 

of the carbonates and whether they could be 
present in the mantle source of OL carbonatites.

METHODS AND RESULTS
Xenolith Samples

Among 110 peridotites that we collected in 
the Natron Lake magmatic province (<10 km 
from OL; northern Tanzania, EAR; Fig. 1), 
10 hosted carbonate phases. Clinopyroxene 
grains in protogranular and porphyroclastic 
peridotites were anhedral diopside contain-
ing up to 4.5 wt% Cr2O3, indicating their 
metasomatic origin (O’Reilly and Griffin, 
1988; Table S3). A marked hydrous metaso-

matic stage was recorded by both intergranu-
lar grains and veins of phlogopite ± amphi-
bole, consistent with previous studies of the 
regional mantle (e.g., Dawson and Smith, 
1988). Hydrous minerals were free of textural 
deformation. We focused on three representa-
tive samples and two samples from Lee et al. 
(2000), collected in the same area. Detailed 
sample petrography is presented in the Sup-
plemental Material.

Carbonate Petrography
Carbonates were observed in all mantle 

lithologies (lherzolite, wehrlite, harzburgite, 
and dunite), whether strongly metasomatized 
or free of metasomatic evidence. Carbonates 
were mostly present as inclusions in oliv-
ine, but also as veins crosscutting the xeno-
lith, and locally as patches in the host silicate 
lava (Fig. 2). The latter were linked to exter-
nal pedogenic carbonates locally invading the 
outcrops (Fig. S1). Round carbonate inclu-
sions commonly occurred in large olivines, 
previously interpreted as evidence for C-rich 
melt percolation at mantle levels (Lee et al., 
2000). Carbonate inclusions were observed 
to be monocrystalline to polycrystalline, and 
single grains reached up to 200 µm. Numerous 
cracks and fractures extending to the exteriors 
of host olivines imply that none of the observed 
carbonate inclusions were isolated from exter-
nal grain boundaries. The analyzed carbonates 
were calcite in composition (see Supplemental 
Material for further details).

Carbonate Isotopic Geochemistry
Carbonate C and O isotopic composi-

tions were determined in situ using a Cam-
eca IMS-1270 E7 at the Centre de Recherches 
Pétrographiques et Géochimiques (Nancy, 
France). Typical internal errors for C and O iso-
topes measurements were ∼0.30‰ and ∼0.15‰ 
(2σ), respectively; see Supplemental Material 
for analytical details. We performed 76 analyses 
across the five xenoliths: 8 on carbonates in the 

1Supplemental Material. Additional information 
on sample location, sample description, carbon and 
oxygen analytical methods, and the Rayleigh distil-
lation model. Please visit https://doi​.org/10.1130/
GEOL.S.12417671 to access the supplemental mate-
rial, and contact editing@geosociety.org with any 
questions.

A B C

Figure 2.  Cross-polarized light microphotographs showing three types of carbonates (Carb). (A) Carbonate vein crosscutting olivines in dunite 
19B. (B) Patches of microcrystalline carbonate grains in host lava of wehrlite 24C4. (C) Monomineralic carbonate pseudo-inclusions in olivine 
in lherzolite 24A4. Note the multitude of cracks connecting pseudo-inclusion to grain boundaries.

Figure 1.  Regional geological map of the Natron Lake magmatic province (from Kervyn et al., 
2008). Stars—sampling locations. Inset: Location of study area (blue box) in Africa; red lines—
main structures of the East African Rift.
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host lava (one sample, four zones; δ18O, n = 4; 
δ13C, n = 4), 13 on carbonate veins (one sample, 
two veins; δ18O, n = 5; δ13C, n = 8), and 55 on 
carbonate inclusions in olivine (five samples, 
seven inclusions; δ18O, n = 16; δ13C, n = 39) 
(Fig. 3; Fig. S2; Tables S1and S2). Carbonates 
in the host lava were analyzed to compare the 
isotopic compositions of surface carbonates with 
veins and inclusions inside the xenoliths.

Overall, carbonate δ18O values varied lit-
tle, from 19‰ to 29‰. Veins and inclusions 
had δ18O values between 22‰ and 29‰, i.e., 
clearly higher than the mantle O isotopic sig-
nature (5.5‰ ± 0.4‰; e.g., Mattey et al., 1994) 
and the primary carbonatite field (Fig. 3). Car-
bonate δ13C values were more variable, ranging 
from –23‰ to +0.5‰. Samples EL14 and 24A4 
showed large variations from –22.3‰ ± 0.4‰ 
to –9.1‰ ± 0.3‰ and from –9.3‰ ± 0.5‰ to 
0.1‰ ± 0.5‰, respectively. The two carbonate 
inclusions analyzed by Lee et al. (2000) had 
O and C isotopic compositions consistent with 
our measurements, and these were included in 
the general trend, which displays a strong δ13C 
variation over relatively restricted δ18O values 
(24‰ ± 4‰; Fig. 3).

DISCUSSION
Origin of the Carbonate Isotopic 
Compositions

The C isotopic signature of the mantle is rec-
ognized as δ13C ≈ –5‰, although δ13C values as 
low as –38.5‰ have been observed in mantel-
lic diamonds (e.g., Cartigny, 2005). Neverthe-
less, δ13C values as low as –23‰ (e.g., samples 
EL14, MON5; Fig. 3) have only been observed 
in reduced mantle C (diamonds, graphite, and C 
dissolved in mantle minerals; Deines, 2002) and 
have never been reported in mantellic carbonates.

Although the presence of round carbonate 
inclusions in primary minerals strongly suggests 
a mantle origin (e.g., Lee et al., 2000), their C 
and O isotopic compositions are radically dif-
ferent from any known carbonate mantle sig-
nature, possibly suggesting a surficial origin. 
Below 100 °C, O diffuses too slowly in calcite 
(Cherniak, 2010) to explain such high δ18O val-
ues (∼25‰) by the re-equilibration of mantle 
carbonates with surface fluids. In addition, the 
presence of pedogenic carbonates locally invad-
ing the volcanic outcrops (Fig. S1) opens the 
possibility of carbonate precipitation from fluids 
percolating throughout fractures in the mantle 

xenoliths after their eruption at the surface. Next, 
we modeled surficial carbonate formation from 
groundwater-rock interaction and compared our 
model with the measured compositions.

The carbonate O isotopic compositions 
reported herein (24‰ ± 4‰; Fig. 3) can be 
reproduced by low-temperature equilibrium car-
bonate precipitation from groundwater. Given 
the average δ18O value of rainfall in Tanzania 
(–4‰ to 0‰; e.g., Bowen, 2010) and tempera-
tures of 15–35 °C, modeled carbonate δ18O com-
positions vary between 22‰ and 30‰, perfectly 
matching the compositions of the carbonates 
analyzed herein.

In volcanic settings, the source of C in 
groundwater is generally buffered by organic 
matter (OM) degradation during its path to shal-
low soil layers within the volcano slope, where 
the xenoliths were sampled (e.g., Lloret et al., 
2011). C3 and C4 plants (average δ13C ≈ –25‰ 
and –15‰, respectively) dominate the African 
ground surface (Fig. 4; e.g., Cerling et al., 2011), 
and their degradation in soils is the 13C-depleted 
source responsible for the low δ13C value of 
groundwater. However, near-surface ground-
waters rapidly saturate in dissolved inorganic 

Figure 3.  Carbon and 
oxygen isotopic compo-
sitions of carbonates in 
mantle xenoliths (typi-
cal uncertainties shown 
by cross). OL—fresh 
natrocarbonatites from 
Oldoinyo Lengai; alt.OL—
altered Oldoinyo Lengai 
natrocarbonatites; blue 
and red shaded areas 
correspond to Rayleigh 
distillation model (RDM) 
presented herein (see 
related references in 
the Supplemental Mate-
rial [see footnote 1]). 
PDB—Peedee belemnite; 
SMOW—standard mean 
ocean water.
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carbon (DIC), reaching calcite saturation. Car-
bonate precipitation from low-C fluids in soils 
can sustain OM degradation, buffering the C iso-
topic composition of the fluid, but once the fluid 
moves out of the soil layers, protracted carbonate 
crystallization will lower the DIC concentration 
of the fluid. We thus modeled the concurrent C 
isotopic evolution of the fluids and carbonates 
using a Rayleigh distillation model (RDM), with 
the O isotopic composition of the fluid buffered 
by the water molecule (typical groundwater O/C 
ratio >5 × 103). Our distillation model considered 
the reaction Ca2+ + 2HCO3

– ↔ CaCO3 + H2O 
+ CO2, accounting for the precipitation of cal-
cite associated with CO2 degassing, and it used 
a temperature-dependent isotopic fractionation 
factor of 0.9946 at 15 °C and 0.9955 at 35 °C (see 
the Supplemental Material for details on RDM).

Carbonate Formation Model
Our model considered that meteoric water 

(with no significant C content) infiltrates the soil 
and then is stored in shallow groundwater tables 
where xenoliths are present; the δ13C value of 
DIC in the infiltrating water is buffered by OM. 
Groundwater circulation can therefore precipi-
tate carbonate throughout the outcrops, and thus 
within cracks and other pathways in the mantle 
xenoliths. The percolating fluids progressively 
precipitate carbonate, and Rayleigh distillation 
triggers the strong C isotopic variability observed 
in the carbonates (Fig. 3). This model eventu-
ally reproduces the isotopic compositions of the 
carbonates present in the mantle xenoliths. The 
amount of DIC remaining in the fluid after car-
bonate precipitation is nevertheless rather small, 
since the highest observed carbonate δ13C value 

would require that >99% of the DIC is removed 
by the combined effects of carbonate precipi-
tation and degassing in the case of C3 plants 
(“RDM” in Fig. 3). C-rich surface continental 
waters in exchange with the atmosphere tend 
to be undersaturated with respect to carbonate 
at DIC concentrations <10−3 mol/L (e.g., Appelo 
et al., 2014). A 99% distillation induced by pre-
cipitation of carbonate and associated degassing 
would require a DIC concentration in excess of 
10−1 mol/L in the soil aquifer prior to precipita-
tion. Such high values have never been reported 
when DIC is sourced from the degradation of C3 
OM, and 90% distillation (Fig. 3) is likely a maxi-
mum value. However, if the OM is dominated by 
C4 plants, the extreme carbonate δ13C values can 
be achieved with ∼90% distillation (Fig. 3). Our 
model thus shows that the carbonates formed fol-
lowing several episodes of soil-water percolation 
(with periods dominated alternatively by C3 or C4 
plants) associated with protracted crystallization 
along cracks and in successive pseudo-inclusions 
within a given xenolith. Therefore, the observed 
carbonates do not require any primary mantle car-
bonate in the Natron Lake magmatic province.

Origin of Carbonatites
The origin of the C enrichment in carbon-

atite magmas, either from the melting of a C-rich 
source (e.g., Hammouda et al., 2014) or from 
low-degree partial melting of a C-poor mantle 
followed by protracted differentiation and/or 
immiscibility (e.g., Fischer et al., 2009), if not 
crustal contamination (Jyotiranjan et al., 1999), 
remains controversial. Crustal contamination 
at OL has been examined and recently rejected 
based on the He isotopic compositions of fuma-

roles, crustal cumulates, and mantle xenoliths 
(Mollex et al., 2018). Our results find no evi-
dence for C enrichment in the form of mantle 
carbonates in the mantle beneath the Natron 
Lake magmatic province. Although the mantle 
domain is carbonate free, C-rich melts may 
alternatively form by carbonation during redox 
melting if graphite or diamond is present in the 
mantle (Stagno et al., 2013). However, as only 
one unique report of diamond exists in the EAR 
area (Stachel et al., 1998), it seems very unlikely 
that abundant carbonatite volcanism could have 
been generated by redox melting. Consequently, 
and because carbonates in mantle xenoliths at OL 
(previously a key argument for a C-rich source) 
formed after xenolith emplacement at surface 
conditions, and thus do not require a C-rich 
mantle, we can now, and for the first time, rule 
out both C enrichment of the mantle source and 
crustal contamination at the single active carbon-
atite province on Earth.

Although C poor, the mantle domain beneath 
the EAR, and therefore the mantle source of 
OL carbonatite magmas, is strongly metaso-
matized by silicate, hydrous, and carbonatite 
melts, giving it its fertile character (e.g., Dawson 
and Smith, 1988; Aulbach et al., 2011; Baptiste 
et al., 2015; Mollex et al., 2018). After their 
production by low-degree partial melting of 
a metasomatized (i.e., fertile) mantle domain, 
carbonatite parental silicate melts undergo pro-
tracted differentiation, enriching the magmas in 
C and other incompatible elements (e.g., Daw-
son and Smith, 1988; Kjarsgaard and Hamilton, 
1989). This enrichment stage is also likely at 
least partly responsible for the high REE con-
centrations of carbonatites, the world’s main 
REE deposits.
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