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Abstract—In order to remain highly competitive, industrial 

companies found their business strategies on the quality and 

the cost of the product/service they deliver to their clients. 

Therefore, it is crucial for them to guarantee the availability 

and reliability of their industrial equipment through 

maintenance. However, while applying maintenance, 

industrials face a major issue: what is the optimal 

maintenance strategy to adopt in order to minimize the total 

cost of maintenance while maintaining an acceptable level of 

system availability? 

In this paper, we answer this question by proposing an 

optimization approach that takes in consideration the 

various costs related to maintenance and integrates them in 

a global cost function to minimize.  A critical threshold of 

the remaining useful life under which the system should be 

replaced is identified, as well as an inspection step giving the 

regularity with which the system should be inspected.  

We then illustrate the approach with an example: a 

mechanical bearing system of a train motor subject to 

degradation and to monitoring. This example has allowed us 

to determine the remaining useful life threshold as well as 

the number of inspections that minimize the total cost of 

maintenance.  

 

 

Index Terms— remaining useful life, weibull distribution, 

cost optimization, predictive maintenance, rolling bearing 

system. 

 

I. INTRODUCTION 

The European norm EN-13306 defines maintenance as 

the combination of all technical, administrative, and 

managerial actions during the life cycle of the system 

aiming to retain it, or restore it to a state in which it can 

perform its required function [1]. The maintenance can be 

corrective when it is performed after detection of failure 

in the system [1]. It can be preventive when it is 

performed at predetermined intervals intending to reduce 

the probability of failure or degradation of the system [1]. 

While corrective maintenance may imply high costs 

and significant system downtime [2][3][4], preventive 

maintenance, in the other hand, does not allow an optimal 
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exploitation of the system [5]. Therefore, predictive 

maintenance has emerged as a solution to overcome the 

drawbacks of corrective and preventive maintenance. 

Predictive maintenance is based on a regular monitoring 

of the system to evaluate its health state. It is usually 

carried out following a forecast derived from repeated 

analysis and evaluation of significant parameters 

describing the degree of degradation of the system [1][6]. 

One of the measures of the health state of the system is 

the remaining useful life "RUL". The "RUL" is defined as 

the expected length of time left for the system before it 

falls down [7]. 

Thanks to predictive maintenance, industrials are now 

able to estimate the RUL of the system-as one among 

other measures used to predict the failure time of the 

system-and maintain the system before it falls down [8]. 

One of the main challenges that industrials face 

nowadays is finding the optimal time to perform 

predictive maintenance.  

The literature review provides a wide range of optimal 

maintenance strategies for improving system reliability, 

preventing system failures and reducing maintenance 

costs [9]. A cost model was developed in [10] taking into 

account finite repair, maintenance durations and costs due 

to testing, repair, maintenance and lost production or 

accidents. The objective of the maintenance optimization 

is to minimize the total cost rate by proper selection of 

two intervals: one for inspections and one for 

replacements [10]. In [11], the case of predictive 

maintenance for systems exhibiting 2-phase behavior: the 

phase of new condition and the phase of worn condition, 

was analyzed and cost-minimizing policies were 

developed in order to determine when monitoring should 

take place. A sequential imperfect preventive 

maintenance policy was developed in [12][13], and the 

optimal preventive maintenance schedule that minimizes 

the cost rate in the life cycle of the system or in the long 

run was determined in [13]. A dynamic predictive 

maintenance policy for complex multi-component 

systems was developed in [14], in order to minimize the 

long-term mean maintenance cost per unit time. Finally, a 

recent work on predictive maintenance decision-making 
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method based on cyber manufacturing and mission 

reliability state was developed in [15]. 

This paper tackles another aspect of maintenance cost 

optimization: first, we consider in this work a system 

subject to degradation and monitored regularly and 

perfectly. A predictive replacement of the system is 

performed once the RUL of the system is under some 

threshold called RULlim. A cost optimization approach is 

developed and tested on the mechanical bearing system to 

determine the threshold RULlim under which we preconize 

a predictive replacement of the system. 

II. METHODOLOGY DESCRIPTION 

The methodology of maintenance cost optimization 

described in this paper was already developed and 

published in a previous research work [8]. In this section, 

we give a brief overview of the methodology:  section A 

describes the assumptions on which our work is based 

and section B describes the cost optimization model and 

the steps to follow to identify the optimal strategy for 

maintenance. 

A. Assumptions 

We adopted the following assumptions to develop the 

methodology of maintenance cost optimization described 

in this paper: 

- The system under study is a single component. 

- The system under study is part of a whole 

complex system, which has a duration of 

exploitation known beforehand, noted D. 

- A perfectly reliable inspection is applied 

regularly on the system (“Fig.1”). The inspection 

gives an information on the state of health of the 

system. For instance, the inspection gives a real 

estimation of the RUL of the system. After 

simulations, the RUL is the expected interval of 

time the system is likely to operate before it 

requires replacement. The RUL of the system 

can be expressed by the following equation: 

 

𝑅𝑈𝐿(𝑡) = 𝐸[𝑇 − 𝑡|𝑇 > 𝑡] =
∫ (𝑢−𝑡).𝑓(𝑢).𝑑𝑢

∞
𝑡

𝑆(𝑡)
.                         (1) 

 

With T the time of failure of the system, f the failure 

density function of the system and S the survival function 

of the system. 

 
 

Figure 1. Inspection procedure. 

- The inspection does not affect the system’s 

performance. 

- A first inspection is required in the early life of 

the system, but the health of the system is 

supposed not to require replacement because it is 

a new one (“Fig.1”). Once the system attains D, 

there is no use to perform inspection and the 

system can be replaced by a new one. 

- Between inspection i and inspection i+1, one of 

these scenarios may happen : 

o Predictive maintenance scenario: the 

RUL of the system attains some threshold 

value called RULlim under which the system 

is considered to be deteriorated. The system 

is then replaced by a new one before the 

inspection i+1. 

o Non-predictive maintenance scenario: 

in this scenario, the system is not replaced 

by performing predictive maintenance. In 

such case, the system can fail or not: if the 

system fails before the next inspection i+1, 

knowing that he was operating at inspection 

i, the system should then be correctively 

replaced by a new one. The probability of 

occurrence of this scenario is given by 

∫ 𝑓(𝑡)
𝑖+1

𝑖,𝑇>𝑡𝑖
. 𝑑𝑡 =

∫ 𝑓(𝑡)
𝑖+1

𝑖 .𝑑𝑡

𝑆(𝑡𝑖)
, where  ti is the 

time of the i
th

 inspection. In the other hand, 

the system may operate normally until the 

next inspection i+1. This last scenario 

occurs with the complementary probability 

of occurrence1 − ∫ 𝑓(𝑡)
𝑖+1

𝑖,𝑇>𝑡𝑖 
. 𝑑𝑡. 

“Fig. 2”summarizes the different scenarios that may 

occur between two consecutive inspections. 

 

Figure 2. Maintenance scenarios 

- The Weibull distribution is adopted to model the 

failure evolution of the system. The parameters 

of the Weibull distribution are updated at each 

inspection i. 

- The durations of both predictive and corrective 

replacement are assumed constant and known. 

- The costs of both predictive and corrective 

replacement, as well as the cost of inspection, 

are assumed constant and known. 
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B. Process of Maintenance Cost Optimization 

In this section, we describe the different costs of 

maintenance (section 1) and the optimization program to 

understand the different steps to follow in order to 

identify the optimal strategy for maintenance (section 2). 

1) Maintenance costs 

The maintenance costs include the following costs: 

- cost of  predictive maintenance Cp: the cost of 

predictive maintenance during the time cycle D  

can be described by the following equation: 

𝐶𝑝 = 𝑐𝑝. ∑ 𝑁𝑖
𝑁𝐼𝑛−1
𝑖=1 .       (2) 

where cp is the cost of a predictive replacement 

and Ni is a binary variable which takes 1 in case 

of predictive maintenance between inspection i 

and i+1 and 0 otherwise. 

Nin refers to the total number of inspections in 

the time cycle D. 

- cost of corrective maintenance Cc : the cost of 

corrective maintenance can be described by the 

following equation : 

 

𝐶𝑐 = ∑ 𝑐𝑐. (1 − 𝑁𝑖) ∫ 𝑓(𝑡)
𝑡𝑖+1

𝑡𝑖,𝑇>𝑡𝑖
. 𝑑𝑡

𝑁𝐼𝑛−1
𝑖=1 + 𝑐𝑐. ∫ 𝑓(𝑡)

𝐷

𝑡𝑁𝑖𝑛
,𝑇> 𝑡𝑁𝑖𝑛

. 𝑑𝑡.      (3) 

 

where cc is the cost of a corrective replacement. 

- cost of inspection Ci : the step of inspection θ is 

linked to the number of inspections Nin per time 

cycle D according to the following equation : 

𝑁𝑖𝑛 =
𝐷

𝜃
       (4) 

Therefore, the cost of inspection per time cycle 

D can be expressed by the following equation : 

𝐶𝑖 =
𝐷

𝜃
. 𝑐𝑖       (5) 

where ci is the cost of an inspection. 

- cost of operating loss Col : the cost of operating 

loss Col can be expressed by the following 

equation : 

𝐶𝑜𝑙 = 𝐷𝑝. 𝑐𝑑𝑡. ∑ 𝑁𝑖

𝑁𝑖𝑛−1

𝑖=1

+ ∑ (1 − 𝑁𝑖

𝑁𝑖𝑛−1

𝑖=1

). ∫ 𝑓(𝑡). 𝑑𝑡.
𝑖+1

𝑖,𝑇>𝑡𝑖

𝑐𝑑𝑡. 𝐷𝑐 + 

(1 − 𝑁𝑖𝑛). ∫ 𝑓(𝑡)
𝐷

𝑡𝑁𝑖𝑛
,𝑇> 𝑡𝑁𝑖𝑛

. 𝑑𝑡. 𝑐𝑑𝑡 . 𝐷𝑐 .       (6) 

 

where Dp is the duration of a predictive 

replacement, Dc is the duration of a corrective 

replacement, and cdt is the cost of system 

downtime per unit of time. 

As expected, the first term of the equation 

corresponds to the cost of operating loss due to 

predictive maintenance and the second term 

corresponds to the cost of operating loss due to 

corrective maintenance. 

Maintenance costs may also include the cost of 

maintenance risks. These risks as described in [8][16] can 

be human, environmental or financial. We refer to our 

previous work in [8], which describes in details the risk 

analysis part of our methodology. 

2) Optimization program 

- Input data: the input data of our optimization 

program are the duration parameters: D, Dp and 

Dc; the cost parameters: cp, cc, ci, cdt and the 

parameters of the Weibull distribution 

characterizing the failure evolution of the system. 

- Decision variables: the decision variables of the 

optimization program are the number of 

inspections Nin and the binary variable Ni 

indicator of predictive maintenance in the 

inspection interval [i, i+1]. 

- Objective function : the objective function that 

we want to minimize is the total cost of 

maintenance Ctot during the interval of time D: 

𝐶𝑡𝑜𝑡 = 𝐶𝑝 + 𝐶𝑐 + 𝐶𝑖 + 𝐶𝑜𝑙       (7) 

- Constraints : 

o Positivity constraints: the different 

costs should be positive as well as the 

inspection step θ. The decision variable Ni 

should be binary for i ϵ [1, Nin]. 

o Constraint on the inspection process: as 

the system requires at least one 

inspection at its early life, the number 

of inspections Nin should be superior to 

1. 

o Constraints on system availability : to 

ensure the availability of the system, the 

durations of both predictive and 

corrective replacement should be too 

small comparing to the inspection step 

θ: 

{
𝐷𝑝  ≤ 𝜀. 𝜃

𝐷𝑐 ≤ 𝜀. 𝜃
      (8) 

with ε a sufficiently small number. 

- Flowchart of the optimization program : “Fig.3” 

summarizes the main steps of the methodology 

described in this paper : 

 
Figure 3. Flowchart of the optimization process for maintenance 

planning. 

III. APPLICATION O F THE METHODOLOGY O N A 

MECHANICAL BEARING SYSTEM 

A.  System Description 

A train is a complex system composed of several 

subsystems, each of these subsystems providing a set of 
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basic functions, all contributing to the accomplishment of 

the main function of the train which is carrying 

passengers from point A to point B (“Fig.4”).   

The traction system contains a bogie supporting an 

electric motor, which is itself a complex system (“Fig.5”). 

Some of the components of the electric motor are critical 

for the functioning of the train. In fact, according to 

Electric Power Research Institute and to researchers in 

electric machine reliability, mechanical bearings are 

pointed as the faultiest components [17]. This is because 

the mechanical bearing systems have an average 

probability of failure combined to a critical severity of 

failure: in fact, a possible failure of the bearing system is 

enough to stop the motor shaft from working which can 

cause the train to stop. 

The mechanical bearing system is then a critical 

component of the train motor. We consider in this work 

that the train motor has a duration of exploitation D.  

A rolling-element bearing (“Fig.6”), also known as a 

rolling bearing, is a type of bearing, which carries a load 

by placing rolling elements (such as balls or rollers) 

between two bearing rings called races [18]. The relative 

motion of the races causes the rolling elements to roll 

with very little rolling resistance and with little sliding. In 

other words, the mechanical bearing system supports the 

rotating elements of the motor and provide additional 

damping to stabilize it. 

In this paper, we focus on the mechanical rolling 

bearing system as a critical component, necessary for the 

operation of the complex system: train motor. The train 

motor is itself a critical system of a wider complex 

system: the train.    

“Table 1” summarizes the parameters characterizing 

the mechanical bearing system of the train motor. These 

data are realistic and are given for information. 

 
Figure 4. Train system. 

 

Figure 5. Critical components of the train motor.  

 

Figure 6. Mechanical rolling bearing system. 

TABLE I.
 
MAIN CHARACTERISTICS OF THE MECHANICAL BEARING 

SYSTEM
 

Parameter
 

Value
 

Unit
 

Duration of exploitation 

of the train motor
 
D

 25000
 

hours
 

Duration of a predictive 

replacement Dp

 2
 

hours
 

Duration of a corrective  
replacement Dc

 6
 

hours
 

Cost of a predictive
 

replacement
 
cp

 70
 

euros
 

Cost of a corrective 
replacement

 
cc

 220
 

euros
 

Cost of an inspection ci

 
20

 
euros

 

Cost of system 

downtime per hour cdt

 400
 

euros
 

Weibull scale 
 

parameter λ
 19000

 
/
 

Weibull shape 

parameter k
 2.8

 
/
 

 

B. Numerical Results 

First, we tested if the RUL of the system converge to a 

some threshold RULlim that we tried to approximate. 

Therefore, we did not respect -a priori- the constraints 

(Eq.8) related to the possible number of inspections 

during the period of time D (section 1). 

In a second step, however, we respected the possible 

number of inspections during D and we tried to compare 

the different results obtained for every number of 

inspection considered (section 2).  

1) Evaluation of RULlim 

We ran the optimization program until obtaining an 

approximation for the value of RUL under which the 

system should be predictively replaced. We followed the 

following steps:  

- Step 1: for a fixed number of inspections Nin, we 

ran the optimization program to obtain the values 

of the decision variables Ni, i ϵ {1,.., Nin}. If there 

exist j ϵ {1, .., Nin-1} where Nj=1, it means that, 

to minimize the total cost of maintenance, the 

system should be predictively replaced after 

inspection j performed at time tj. If we note tp the 

precise time where RULsystem is equal to RULlim, 

according to our optimization program, tp is 

within the interval of time [tj, D]. This can be 

translated by RULlim ϵ [RULsystem(D), 

RULsystem(tj)]. 

-     Step 2: we then iterated step 1 by varying Nin 

from 2 to 13 in order to have a more precise 

interval for RULlim.  

-    Step 3: we verified that we did all the possible 

simulations: in fact, beyond 13 inspections, 

predictive maintenance becomes more expensive 

than corrective maintenance. 

The results show that the best approximation for 

RULlim is within [3594.8, 3977.6] hours. “Fig.7” 

gives an overview of the different intervals of RULlim 

per number of inspections. 
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Figure 7. Interval of approximation of RULlim 

2) Maintenance cost evaluation respecting the 

constraints on the number of inspections 

Considering the system availability constraints (Eq.8), 

the decision maker fixed a value of ε equal to 10
-3

. The 

number of inspections Nin can then take the following 

values: {1, 2, 3, 4}. In this paper, we focused our work on 

the cases where Nin=3 and Nin=4 as these cases are worth 

to study. 

- Case where Nin=3: 

At each inspection i, experts were able to evaluate the 

Weibull parameters on the basis of real data on the health 

state of the system. Therefore, following (Eq.1), the 

evaluation of the RUL of the system at each inspection i 

becomes easy. “Fig.8” illustrates the variation of 

RULsystem in case where Nin=3. 

- Case where Nin=4: 

Similarly, the Weibull parameters were updated at 

each inspection i based on real data. “Fig.9” illustrates the 

variation of RULsystem in case where Nin=4. 

 
 

Figure 8. Variation of RULsystem, case Nin=3 

 

Figure 9. Variation of RULsystem, case Nin=4 

 

C. Result Interpretation 

In case where Nin=3, the evaluation of the RUL of the 

system at each inspection i based on real data on the 

health state of the system indicates that the threshold for 

predictive maintenance has not been achieved by the 

system. Therefore, predictive maintenance is not required 

in this case.  

In case where Nin=4, the evaluation of the RUL of the 

system at each inspection i based on real data on the 

health state of the system indicates that : 

    - RULsystem ≥ RULlim at inspections {1, 2, 3} meaning 

that the threshold for predictive maintenance has not been 

achieved by the system and there is no need to perform 

predictive maintenance in this case. 

- RULsystem≤ RULlim at inspection 4 meaning that the  

threshold for predictive maintenance has been achieved 

by the system. Therefore, the system should be 

predictively replaced by a new one. 

This example illustrates that paying for a more 

inspection may save the cost of a corrective replacement. 

In fact, if we have stopped at 3 inspections, we would 

have left the system working until failure. In case where 

Nin=4, the 4
th

 inspection was a sort of alarm for the 

decision maker to prevent him that the RUL threshod has 

been crossed by the system and that it was time to replace 

the system before failure.  

Let  us evaluate the total cost saved by the decision 

maker. Table 2 gives an overview of the different costs 

(in euros) involved in each case study and the total cost 

saved by the decision maker. 

TABLE II. MAINTENANCE COSTS IN CASE WHERE NIN=3 AND NIN=4 

Nin Cp Cc Ci Col Ctot 

Nin=3 0 220 60 
2400 2480 

Nin=4 70 0 80 
140 290 

Saved cost 
2190 

 

Performing 4 inspections on the system has saved us 

the cost of a corrective replacement and the cost of 

operating loss due to corrective maintenance. This saved 

cost is almost equivalent to 88% of the total cost paid for 

maintenance in case of 3 inspections. 

- Some reflections to consider: 

These results are obtained by assuming a constant 

value of RULlim. This is due to the fact that we consider a 

short period of exploitation D. To improve the obtained 

results, one possible solution is to update the RULlim as 

one goes along inspections. This aspect will be tackled in 

another research work. 

If RULsystem falls within the interval [RULinf, RULsup] 

hours, the choice to maintain the system before failure 

reveals the decision maker's attitude to risk. If the 

decision maker is risk averse, he will certainly choose to 

replace the system once RULsystem ≤ RULsup. If by contrast, 

the decision maker is not risk averse, he will probably 

choose to replace the system once RULsystem ≤  RULinf. 

662

International Journal of Mechanical Engineering and Robotics Research Vol. 9, No. 5, May 2020

© 2020 Int. J. Mech. Eng. Rob. Res



IV. CONCLUSION 

In this paper, we proposed an optimization approach 

for maintenance, which takes as input the parameters of 

the failure distribution of a system and gives as output the 

RUL threshold under which the system should be 

predictively replaced in order to minimize the total cost 

of maintenance. This approach allows the decision maker 

to identify also the best inspection interval that minimizes 

the cost of maintenance while maintaining the operational 

availability of the system.  

We applied the approach on a mechanical bearing 

system treated as a single component integrating a 

complex system (motor train) which is itself a part of 

another more complex system (train). The results show 

that to minimize the maintenance costs, it is preferable to 

perform 4 inspections on the system and to replace the 

system before failure at the fourth inspection meaning 

that money invested in more inspections may be saved 

later by avoiding us the cost of corrective maintenance 

which is usually expensive. However, we need to be wary 

of numerical values used in the example because they 

have a strong impact on the optimization results. 

Therefore, the object of our future work will be to study 

the influence of varying some numerical parameters (cost 

parameters, duration parameters ...) on the optimization 

results. 
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