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Effective Erdős-Wintner theorems

Gérald Tenenbaum & Johann Verwee

Abstract. The classical theorem of Erdős & Wintner furnishes a criterion for the existence
of a limiting distribution for a real, additive arithmetical function. This work is devoted
to providing an effective estimate for the remainder term under the assumption that
the conditions in the criterion are fulfilled. We also investigate the case of a conditional
distribution.
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1. Introduction and statement of results

The classical theorem of Erdős & Wintner [3], [5], is the analogue in probabilistic
number theory of Kolmogorov’s three series theorem in probability theory. It asserts that
a real, additive arithmetical function f possesses a limiting distribution if, and only if,
the following series converge

(1·1)
∑
p∈P

min
(
1, f(p)2

)
p

,
∑
p∈P
|f(p)|61

f(p)

p
,

where, here and in the sequel, P denotes the set of primes. Moreover it follows from a
theorem of Lévy [8] that the limit law is continuous if, and only if,

(1·2)
∑

f(p)6=0

1

p
=∞,

while a well-known theorem of Jessen and Wintner [6] tells us that this limit law is
necessarily pure. See, e.g., [10; ch. III.4] for proofs and historical comments.

In this work, our first aim is to exploit a recent result of the first author [11] on
mean values of complex multiplicative functions in order to provide an effective version
of the Erdős–Wintner theorem, or, in other words, to furnish an effective estimate for the
supremum norm

‖Fx − F‖∞ := sup
y∈R
|Fx(y)− F (y)| (x > 1)

where, for each x > 1,

Fx(y) :=
1

x

∑
n6x

f(n)6y

1 (y ∈ R)

is the empirical distribution function and F is the limiting distribution. It is well known
that F has characteristic function

(1·3) ϕF (τ) :=

∫
R

eiτy dF (y) =
∏
p

(
1− 1

p

)∑
ν>0

eiτf(pν)

pν
(τ ∈ R).

We state our results in this direction as two separate theorems, corresponding respec-
tively to the discrete and the continuous case.
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Let us first consider the situation when (1·1) is realised but (1·2) is not. We then define
a multiplicative function uf by its values on prime powers

(1·4) uf (pν) :=

{
1 if f(pν) 6= 0,
0 if f(pν) = 0,

and, given a prime p ∈ P, write

(1·5) Sp = Sp(f) :=
∑
ν>1

uf (pν)

pν
, wp = wp(f) :=

(
1− 1

p

)
Sp(f),

so that the convergence of the series on the left-hand side of (1·2) implies the absolute
convergence of

∑
p wp. We also plainly have

(1·6) αf (y) :=
∑
p>y

uf (p)

p
→ 0, βf (y) :=

1

log y

∫ y

1

αf (t)

t
dt→ 0 (y →∞).

Writing

hf (m) := uf (m)
∏
p|m

1− 1/p

1− wp
(m > 1),

we easily check that

F (y) :=
∏
p

(1− wp)
∑

f(m)6y

hf (m)

m
(y ∈ R)

is a distribution function, indeed∑
m>1

hf (m)

m
=
∏
p

(
1 +

1− 1/p

1− wp
Sp

)
=
∏
p

(
1 +

wp
1− wp

)
=
∏
p

1

1− wp
·

With these notations, we can state our first result. Here and in the sequel, we let logk
denote the k-fold iterated logarithm.

Theorem 1.1. Let f be a real additive function satisfying (1·1) but not (1·2). Then,
uniformly for x > 2, we have

‖Fx − F‖∞ � Rx := αf
(
x1/ log2 x

)
+ βf

(√
x
)1/4

+
1

(log x)1/6
·

Examples. (i) Let κ > 0 be a parameter and consider an additive function f such that
f(p) = 1 if 2n < p 6 2n(1 + 1/(log n)κ) for some n > 3 and f(p) = 0 otherwise. In this
setting, the limit law is atomic—–i.e. (1·2) fails—if, and only if, κ > 1. We then have

αf (y) � βf (y) � 1

(log2 y)κ−1
, Rx �

1

(log2 x)(κ−1)/4
·

(ii) Assume now that f(p) = 1 if 2n < p 6 2n(1 + 1/nκ) for some n > 1, while f(p) = 0
otherwise. Then the series (1·2) converges for all κ > 0 and we have

αf (y) � 1

(log y)κ
, βf (y) � (log2 y)δ1κ

(log y)min(1,κ)
, Rx �

1

(log x)min(2/3,κ)/4
,

with Kronecker’s notation δ1κ.
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(iii) More generally, when the non-zero values of f(p) are distributed with sufficient
regularity, a simple criterion for the continuity of the limit law may be stated and
subsequent estimates for Rx may then be easily computed. Indeed, writing

{p ∈ P : f(p) 6= 0} = P ∩
(
∪k>1]ak, bk]

)
where the ak, bk are integers, 2 6 ak < bk, we first observe that this set is certainly infinite
provided

(1·7) bk > ak + a1−c
k (k > 1)

for sufficiently small, positive c: it follows from [1] that, with c = 0.475, we have
π(x + y) − π(x) � y/ log x for x1−c 6 y 6 x—the sharpest estimate of Hoheisel type
to date. Appealing to this result and to the prime number theorem in the form∑

a<p6b

1

p
= log

( log b

log a

)
+O

(
e−
√

log a
)

(b > a > 3),

it is a simple matter to deduce that, assuming (1·7), condition (1·2) holds if, and only if,∑
k>1

log
( log bk

log ak

)
=∞.

We next turn our attention to the case when (1·1) and (1·2) are both satisfied, which
implies that the limiting distribution F is continuous. We then let ηf (y) denote any
continuous, non-increasing function tending to 0 at infinity and such that

(1·8)

∣∣∣∣ ∑
p>y
|f(p)|61

f(p)

p

∣∣∣∣ 6 ηf (y),
∑
pν>y

min(1, f(pν)2)

pν
6 ηf (y) (y > 1).

For x > 2, we consider a quantity εx such that 1/
√

log x < εx = o(1), and assume
henceforth that εx approaches 0 so slowly that

(1·9) ηf
(
xεx
)

= o
(
ε1/3
x

)
(x→∞).

We write furthermore

Bf (v)2 := 2 +
∑
pν6v

f(pν)2

pν
(v > 1),

and let ` 7→ QF (`) := supy∈R
{
F (y + `) − F (y)

}
denote the concentration function

associated to F . Since F is continuous, we know that QF (`) → 0 as ` → 0. Effective
upper bounds, depending explicitly on the sequence {f(p)}p∈P or on ϕF are available in
the literature: see, e.g., [2], [4], [7], [9], and [10; ch. III.2]. For instance, the Kolmogorov–
Rogozin inequality implies

(1·10) QF (`)� 1√
1 +

∑
|f(p)|>` 1/p

,

while a simple computation (see, e.g., [10; lemma III.2.9]) provides

(1·11) QF (`)� `

∫ 1/`

−1/`

|ϕF (τ)|dτ.

Theorem 1.2. Uniformly for all real additive functions f satisfying (1·1) and (1·2), and
all R > 3, T > 3, x > 3, such that

(1·12) 2 log2R+ 1
2T

2ηf (R) + 7 6 1
4 log(1/εx), T 2ηf (xεx)� ε1/3

x ,

we have

(1·13) ‖Fx − F‖∞ � QF

( 1

T

)
+ ε1/6

x log
(TBf (R)

εx

)
+ ηf (R).
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Remarks. (i) When, for instance, ξ > 1 and f is the strongly additive function defined by
f(p) = 1/(log p)ξ, an estimate of Koukoulopoulos [7] sharpening a result of La Bretèche &
Tenenbaum [2] yields QF (`) � `1/ξ (0 < ` 6 1/3). Then, Bf (R) � 1, ηf (y) � 1/(log y)ξ,
the choice

εx = 2/
√

log x, R = ec(log x)1/16 , T = (log x)ξ/32

is admissible for suitably small c > 0, and we get, ignoring some negative powers of log2 x,

‖Fx − F‖∞ �
1

(log x)1/32
·

(ii) The general estimate (1·13) may be superseded by specific known results when f(p)
shows rapid and smooth decrease. For instance, if f(p) = 1/pξ with ξ > 0, f(pν) = 0
(ν > 2), we have Q(`) � 1/| log `| (0 < ` 6 1/3) by [2; Cor. 1.3]. The optimal choice is
then

εx � 1/
√

log x, R = ec(log x)1/16 , log T � (log x)1/24,

and we only get

‖Fx − F‖∞ �
1

(log x)1/24
,

while the left-hand side is actually � (log2 x)/{(log x) log3 x}, in view of [2; Cor. 1.5],
which includes the cases of the additive functions log{n/ϕ(n)} and log{σ(n)/n} where ϕ
is Euler’s totient and σ(n) :=

∑
d|n d. This lack of precision may be traced back to the use

of the general upper bounds (4·5) and (4·6) infra, which only integrate partial information
on the distribution of the f(p): when f(p) is quickly decreasing, a direct bound for the
difference of the characteristic functions furnishes the stated sharpening.

The technique involved in the proofs of the above results is actually fairly flexible. As an
illustration, we present a further effective theorem, describing how the distribution of an
additive function fluctuates when restricting the support to integers with a fixed number
of prime factors. To avoid technicalities we focus on the case of a strongly additive function
with continuous distribution, but a completely general statement could be achieved by
the same method.

Let ω(n) denote the number of distinct prime factors of an integer n and, for x > 1, let
πk(x) represent the cardinality of the level set E(x; k) := {n 6 x : ω(n) = k}. We have,
classicaly (see e.g. [10; ch. II.6])

πk(x) � x(log2 x)k−1

(k − 1)! log x
(1 6 k � log2 x),

and we may replace k − 1 by k when k � log2 x.
Given the strongly additive function f satisfying (1·1), we consider for each r > 0 the

characteristic function

(1·14) ϕ(τ ; r) :=
∏
p

(
1 +

reiτf(p)

p− 1

)(
1 +

r

p− 1

)−1

(τ ∈ R),

and denote as Fr the corresponding distribution function.
Our estimate depends on the function ηf defined in (1·8). We furthermore introduce

parameters v, T and R such that

(1·15)

1

log2 x
6 v 6 c0, 3 6 R 6 e1/v, T > 1,

T 2ηf (R) 6 log(1/v), T 2ηf (xw)� w (w := vc1),

where c0 and c1 denote strictly positive constants, depending at most on κ, c0 being
sufficiently small and c1 sufficiently large.
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Theorem 1.3. Let κ ∈]0, 1[ and let f be a real, strongly additive function. Assume (1·1)
and (1·2) hold. Then, uniformly for κ 6 r := k/ log2 x 6 1/κ, y ∈ R, and v, T, R
satisfying (1·15), we have

(1·16)
1

πk(x)

∑
n∈E(x;k)
f(n)6y

1 = Fr(y) +O
(
R
)

with

R := QFr

( 1

T

)
+
(
v +

log(1/v)√
k

)
log
(TBf (R)

v

)
+ ηf (R)r/(r+1).

Due to the generality of the hypotheses, this statement turns out as rather technical.
Indeed an optimal choice of the parameters heavily depends on the sequence {f(p)}p∈P.
However, an explicit estimate easily follows in non-pathological situations. As an example,
consider the case when f(p) := 1/(log p)ξ with 0 < ξ < r. It is then easy to show (see, e.g.,
[12; Exercise 259]) that |ϕ(τ ; r)| = |τ |−r/ξ(log |τ |)O(1) as |τ | → ∞ and hence, by (1·11),
that QFr (`)� ` as `→ 0. We may therefore select

v := 1/ log2 x, R := log x, T := (log2 x)ξ/2,

and infer that R� (log3 x)2/
√

log2 x+ 1/(log2 x)ξmin{1/2,r/(r+1)}.

2. The key argument

Our approach rests on the following recent result of the first author [11; th. 1.2], for the
statement of which we introduce further notation. We let M(A,B) designate the class of
those complex-valued multiplicative functions g such that

(2·1) max
p
|g(p)| 6 A,

∑
p, ν>2

|g(pν)| log pν

pν
6 B,

and, for b ∈ R, we write

(2·2) β = β(b, A) := 1− sin(2πb/A)

2πb/A
·

Moreover, given any complex-valued function g, we put cg := 1 if g is real, cg := 2
otherwise, and consider

M(x; g) :=
∑
n6x

g(n), Z(x; g) :=
∑
p6x

g(p)

p
·

Theorem 2.1 ([11]). Let

a ∈]0, 1
4 ], b ∈ [a, 1

2 [, h := (1− b)/b, A > 2b, B > 0, β := β(b, A),

2b 6 % 6 A, x > 2, 1/
√

log x < ε 6 1
2 ,

and let the multiplicative functions g, r, such that r ∈M(2A,B), |g| 6 r, satisfy the
conditions ∑

p6x

r(p)−<e g(p)

p
6 1

2βb log(1/ε),(2·3)

∑
xε<p6y

{r(p)−<e g(p)}h log p

p
� εcgδh log y (xε < y 6 x),(2·4)

∑
p6y

(r(p)− %) log p

p
� ε log y (xε < y 6 x)(2·5)

with δ ∈]0, 2βb/(3cg)
]
.
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We then have

(2·6) M(x; g) =
e−γ%x

Γ(%) log x

{∏
p

∑
pν6x

g(pν)

pν
+O

(
εδeZ(x;g)

)}
,

where γ denotes Euler’s constant. The implicit constant in (2·6) depends at most upon
A, B, a, and b.

3. Proof of Theorem 1.1

Let uf be defined by (1·4) and let vf be the multiplicative function defined of prime
powers by vf (pν) := 1− uf (pν). Then any integer n > 1 may be uniquely represented as
a product n = md with uf (m) = vf (d) = 1, (m, d) = 1 and f(n) = f(m). Therefore

(3·1) Fx(y) =
1

x

∑
m6x

f(m)6y

uf (m)Vm

( x
m

)

with
Vm(t) :=

∑
d6t

(d,m)=1

vf (d) =
∑
d6t

vf (d;m) (t > 1),

say, where, for each m, vf (d;m) is the multiplicative function of d defined on prime powers
by vf (pν ;m) = vf (pν) if p - m and = 0 otherwise. For t > 3, m 6 t, we have, by the
convergence of (1·2),

∑
p6t

1− vf (p;m)

p
6
∑
p|m

1

p
+O(1) 6 log3 t+O(1)

and, similarly,

∑
p6t

{1− vf (p;m)} log p

p
6
∑
p6t

{1− vf (p)} log p

p
+
∑
p|m

log p

p

=

∫ t

1

∑
u<p6t

uf (p)

p

du

u
+O(log2 t) 6 βf (t) log t+O(log2 t),

with notation (1·6).
Hence, for ε := βf (t)3/4 + 1/

√
log t, we have, for tε < s 6 t,

∑
tε<p6s

{1− vf (p;m)} log p

p
� βf (t)1/4 log s+O(log2 s)� ε1/3 log t.

We may therefore estimate Vm(t), uniformly in m 6 t, by applying Theorem 2.1 to
g := vf (·;m) with

b = 1
2 , % = A = cg = β = h = 1, ε := βf (t)3/4 + 1/

√
log t, δ = 1

3 .

We get, for 1 6 m 6 t,

Vm(t) =
{

1 +O
( 1

log 2t

)}
tψm(t) +O

(
tβf (t)1/4 +

t

(log 2t)1/6

)
,
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with

ψm(t) :=
∏
p6t

(
1− 1

p

) ∏
p6t
p -m

( 1

1− 1/p
− Sp +O

(1

t

))

=
{

1 +O
( 1

log 2t

)}∏
p6t

(
1− wp

)∏
p|m

(1− 1/p

1− wp

)
,

where Sp, wp, are defined in (1·5) and we have taken into account that 1/(1−1/p)−Sp > 1.
Since wp 6 1/p, we have log(1− wp) > −2wp, whence∏

p>t

(
1− wp

)
> exp

{
− 2

∑
p>t

wp

}
> 1−O

(
αf (t)

)
,

where αf is defined in (1·6). This yields

uf (m)Vm(t) =
∏
p

(1− wp)thf (m) +O
(
tuf (m)R0(t)

)
(t > m > 1)

with R0(t) := αf (t) + βf (t)1/4 + 1/(log 2t)1/6. Splitting the sum in (3·1) at m = b
√
xc

and considering that Vm(t) 6 t, we readily obtain, uniformly for y ∈ R,

Fx(y) = F (y) +O
(
E1 + E2

)
with

E1 :=
∑
m>
√
x

uf (m)

m
, E2 := R0

(√
x
) ∑
m6
√
x

uf (m)

m
� R0

(√
x
)
,

where the last bound follows from the convergence of the series in (1·2).
In order to bound E1, we introduce a parameter T > 2 and split the summation

according to whether the largest prime factor of m, say P+(m), exceeds T or not. We
obtain, for any σ ∈]0, 1

3 [

E1 6
∑
m>
√
x

P+(m)6T

1

m
+
∑
p>T

∑
ν>1

u(pν)

pν

∑
m>1

uf (m)

m

� 1

xσ/2

∏
p6T

(
1 +

1

p1−σ

)
+ αf (T ) +

1

T

For large T , we select σ := 4/ log T . The last p-product is then � log T , and so

E1 � x−2/ log T log T + αf (T ) +
1

T
.

The required estimate follows by selecting T := x1/ log2 x.

4. Proof of Theorem 1.2

Given R > 3, we define the additive function fR by

(4·1) fR(pν) :=
{
f(pν) if pν 6 R or |f(pν)| 6 1,
0 in all other cases.

Denote by Fx(y;R) the distribution function of fR on the set of integers not exceeding x
and by F (y;R) that of the limit law. We first observe that, when x ∈ N∗,

(4·2) |Fx(y;R)− Fx(y)| 6
∑
pν>R
|f(pν)|>1

1

pν
6 ηf (R) (y ∈ R),

the same bound being valid for |F (y;R)− F (y)| since the inequality is independent of x.
We may hence restrict to evaluating Fx(y;R)−F (y;R) with the perspective of ultimately
optimising the parameter R.
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Note that, for 3 6 R 6 x,∑
pν6x

fR(pν)

pν
=
∑
pν6R

f(pν)

pν
+

∑
R<pν6x
|f(pν)|61

f(pν)

pν
� Bf (R)

√
log2R,

∑
pν6x

fR(pν)2

pν
=
∑
pν6R

f(pν)2

pν
+

∑
R<pν6x
|f(pν)|61

f(pν)2

pν
� Bf (R)2,

where we used (1·1) to bound the last sum. By the Turán-Kubilius inequality, it follows,
still for 3 6 R 6 x, that

(4·3)

1

x

∑
n6x

(
eiτfR(n) − 1

)
=
iτ

x

∑
n6x

fR(n) +O
(τ2

x

∑
n6x

fR(n)2
)

� |τ |Bf (R)
√

log2R+ τ2Bf (R)2 log2R.

Writing

ϕx(τ ;R) :=
1

x

∑
n6x

eiτfR(n), ϕ(τ ;R) :=

∫
R

eiτy dF (y;R) =
∏
p

(
1− 1

p

)∑
ν>0

eiτfR(pν)

pν
,

and considering that the upper bound in (4·3) does not depend on x, we hence see that

(4·4)
ϕx(τ ;R)− ϕ(τ ;R)

τ
� Bf (R)

√
log2R+ |τ |Bf (R)2 log2R (τ ∈ R).

This estimate will be used for dealing with small values of |τ |.
Next we evaluate ϕx(τ ;R) when |τ | is not too close to 0, |τ | 6 T , and assuming (1·12).

We have, for large x,

(4·5)

∑
p6x

1− cos(τfR(p))

p
6
∑
p6R

2

p
+

∑
R<p6x
|f(p)|61

τ2f(p)2

2p

6 2 log2R+ 7 + 1
2T

2ηf (R) 6 1
4 log(1/εx),

(τ ∈ R),

(where we used the estimate
∑
p6y 1/p 6 log2 y + 7/2 (y > 2) which follows by partial

summation from Mertens’ first theorem in the form given for instance in [10; th. I.1.8])
and similarly, for |τ | 6 T , since zx := xεx > R by (1·12),

(4·6)

∑
zx<p6y

{1− cos(τfR(p))} log p

p
6 1

2τ
2
∑

zx<p6y
|f(p)|61

f(p)2

p
log p

� T 2ηf (zx) log y � ε1/3
x log y

(xεx < y 6 x).

We may hence apply Theorem 2.1 to g := eiτfR , with A = % = 1, b = 1
2 , h = 1, β = 1,

r = 1, and ε = εx. This yields

ϕx(τ ;R) =
∏
p6x

(
1− 1

p

) ∑
pν6x

eiτfR(pν)

pν
+O

(
ε1/6
x

)
=
∏
p6x

(
1− 1

p

)∑
ν>0

eiτfR(pν)

pν
+O

(
ε1/6
x

)
,

where we used the inequality |
∏
p(up + vp) −

∏
p up| 6

∑
p |vp|, valid for all up, vp such

that |up| 6 1, |up + vp| 6 1.
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Since∏
p>x

(
1− 1

p

)∑
ν>0

eiτfR(pν)

pν
=
∏
p>x

(
1 +

eiτfR(p) − 1

p
+O

( 1

p2

))

= exp

{ ∑
p>x
|f(p)|61

iτf(p)

p
+O

(τ2f(p)2

p

)
+O

( 1

x log x

)}

= exp
{
O
(
ηf (x)(1 + τ2) +

1

x log x

)}
,

(using |τ | 6 1 + τ2) we eventually obtain, for |τ | 6 T ,

ϕx(τ ;R) = ϕ(τ ;R)
{

1 +O
(
ε1/6
x

)}
+O

(
ε1/6
x

)
,

and so

(4·7) ϕx(τ ;R) = ϕ(τ ;R) +O
(
ε1/6
x

)
.

This enables an appeal to the Berry-Esseen inequality

‖Fx(·;R)− F (·;R)‖∞ � Q
( 1

T
;R
)

+

∫ T

−T

∣∣∣∣ϕx(τ ;R)− ϕ(τ ;R)

τ

∣∣∣∣ dτ,

where Q(·;R) is the concentration function associated to F (·;R). Taking (4·2) into
account, we get

‖Fx − F‖∞ � QF

( 1

T

)
+

∫ T

−T

∣∣∣∣ϕx(τ ;R)− ϕ(τ ;R)

τ

∣∣∣∣ dτ + ηf (R).

To bound the last integral, say I, from above, we introduce a parameter u ∈]0, 1[ and
apply (4·4) for |τ | 6 u, then (4·7) for u < |τ | 6 T . This yields

I � uBf (R)
√

log2R+ u2Bf (R)2 log2R+ ε1/6
x log(T/u)

� ε1/6
x log

(TBf (R)

εx

)
for the quasi-optimal choice u := ε

1/6
x /{Bf (R)

√
log2R}.

5. Proof of Theorem 1.3

Let f be strongly additive, satisfying (1·1) and (1·2), and for R > 3 let fR be defined
by (4·1). We start with a lemma showing that, for large R, we have fR(n) = f(n) for most
integers n ∈ E(x; k). We recall the notation r := k/ log2 x and put

σf (R) := ηf (R)r/(r+1) + 1/(log x)r/(r+1).

Lemma 5.1. Let κ ∈]0, 1[. Uniformly for κ 6 r := k/ log2 x 6 1/κ, 3 6 R 6 x, we have

(5·1)
∑

n∈E(x;k)
fR(n)6=f(n)

1� σf (R)πk(x).
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Proof. We may plainly assume x to be large and hence that k > 2. Put

PR := {p ∈ P : p > R, |f(p)| > 1}, ER(x) :=
∑
p6x
p∈PR

1

p
6 ηf (R).

The quantity to be bounded does not exceed the number of those integers n ∈ E(x; k)
having at least one prime divisor in PR.

From the classical Hardy-Ramanujan estimate for πk(y) (see e.g. [10; Ex. 264]) the
left-hand side of (5·1) is, for an absolute constant a,

6
∑

n∈E(x;k)

∑
pν‖n
p∈PR

1�
∑
pν6x
p∈PR

πk−1

( x
pν

)
�

∑
pν6x
p∈PR

x{log2(3x/pν) + a}k−2

pν(k − 2)! log(2x/pν)
·

Put v := σf (R)1/r. The subsum corresponding to pν 6 x1−v is plainly

� x(log2 x)k−2ER(x)

v(k − 2)! log x
� σf (R)x(log2 x)k−2

(k − 2)! log x
� σf (R)πk(x).

The complementary subsum may be dealt with by partial summation. By the prime
number theorem, it is

� 1

(k − 2)!

∫ x

x1−v

x{log2(3x/t) + a}k−2

t log(2x/t) log t
dt � x

(k − 2)! log x

∫ xv

1

(log2 3u+ a)k−2

u log 2u
du

� x{log2 x− log(1/v) + a}k−1

(k − 1)! log x
� πk(x)

{
1− log(1/v)

log2 x

}k
� πk(x)vr = σf (R)πk(x).

ut
Our next lemma consists in obtaining a uniform upper bound for

SR(x; τ, z) :=
∑
n6x

zω(n)eiτfR(n) (x > 1, |z| = r).

Lemma 5.2. Let κ ∈]0, 1[. Uniformly for 3 6 R 6 log x, κ 6 r 6 1/κ, z = reiϑ, |ϑ| 6 π,
|τ | 6 T , we have

(5·2) SR(x; τ, z)� x(log x)r−1

{
e9rT 2ηf (R)

(log x)rϑ2/60
+

1√
log x

}
·

Proof. By [11; cor. 2.1], the left-hand side of (5·2) is

(5·3) � x(log x)r−1

{
1 +mf (x; τ)

emf (x;τ)
+

1√
log x

}
with

mf (x; τ) = r min
|t|6log x

∑
p6x

1− cos{ϑ+ t log p+ τfR(p)}
p

.

Let ‖a‖ denote the distance of the real number a to the set of integers. The elementary
inequality ‖a+b‖2 > 1

2‖a‖
2−b2 and the standard lower bound 1−cos a > 8‖a/2π‖2 yield

(5·4) mf (x; τ) > 4r min
|t|6log x

λf (x; t)− 8rτ2ηf (R)

with

λf (x, t) :=
∑

R<p6x

1

p

∥∥∥∥ϑ+ t log p

2π

∥∥∥∥2

·
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Now by [10; lemma III.4.13], we have, restricting the p-sum to y < p 6 x with y > R,

(5·5) λf (x; t) > 1
12 log

( log x

log y

)
+O

( 1

|t| log y
+

1 + |t|

e
√

log y

)
(2 6 y 6 x).

If 1 6 |t| 6 log x, we select y := exp
{

(log2 x)2
}

to get

λf (x; t) > 1
12 log2 x+O(log3 x).

Let us then define ν := (log x)(ϑ2/2π2)−1. If ν 6 |t| 6 1, we select y = e1/ν in (5·5) and
obtain

λf (x; t) >
ϑ2

24π2
log2 x+O(1).

Finally, if |t| 6 ν, we have

(5·6)

λf (x; t) >
∑

log x<p6e1/ν

ϑ2/4π2 +O(ν log p)

p
>
ϑ2(1− ϑ2/2π2)

4π2
log
( log x

log2 x

)
+O(1)

>
ϑ2

8π2
log
( log x

log2 x

)
+O(1).

Carrying back into (5·4) and (5·3) yields the stated estimate since 1/6π2 > 1/60. ut

We now deduce from Theorem 2.1 an asymptotic formula with remainder for SR(x; τ, z)
when z belongs to a neighbourhood of the real point r on the circle |z| = r.

Lemma 5.3. For suitable constant c0 ∈]0, 1], arbitrary c1 > 0, both depending at most
on κ, and uniformly under the assumptions

(5·7)
z = reiϑ,

1

log2 x
6 v 6 c0, |ϑ| 6 ϑx :=

√
c1 log(1/v)

log2 x
, 1 + |τ | 6 T,

3 6 R 6 e1/v, T 2ηf (R) 6 log(1/v), T 2ηf (xw)� w (w := vc1),

we have

(5·8) SR(x; τ, z) =
xe−γr

log x

{∏
p6x

(
1 +

zeiτfR(p)

p− 1

)
+O

(
(|ϑ|+ v2)(log x)r

)}
,

Proof. We apply Theorem 2.1 with r(n) := rω(n), g(n) := zω(n)eiτfR(n), b := 1
2 min(1, r),

A := max(1, r), % := r, δ := c2βb, and ε := (|ϑ|+ v2)1/δ. We select c2 so small to ensure
that 2δh 6 1, where h = (1− b)/b.

Since∑
p6x

r(p)−<e g(p)

p
=
∑
p6R

r −<e g(p)

p
+ r

∑
R<p6x
|f(p)|61

1− cos
(
ϑ+ τf(p)

)
p

+O(1)

6 2r log2R+ rϑ2 log2 x+ rT 2ηf (R) +O(1)

6 (c1 + 3)r log(1/v) +O(1),

we see that condition (2·3) is satisfied for an appropriate choice of c0 and c2: indeed, this
is clear if v2 > |ϑ| for then 1/v <

√
2/εδ/2, and, if v2 6 |ϑ|, we have εδ 6 2ϑx whence

log(1/v) 6 log3 x� log 1/ϑx � δ log(1/ε).
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Next, since vc1 6 ε provided c1 > 2/δ, we have, for xε < y 6 x,

∑
xε<p6y
|f(p)|61

r(1− cos{ϑ+ τf(p)})h log p

p
�
(
|ϑ|2h + T 2ηf (xε)

)
log y � ε2δh log y,

and so condition (2·4) is also satisfied. Considering the fact that (2·5) holds trivially, we
obtain

SR(x; τ, z) =
xe−γr

log x

{∏
p6x

(
1 +

zeiτfR(p)

p− 1

)
+O

(
εδe

z
∑

p6x
eiτfR(p)/p

)}
.

The required estimate hence follows from a trivial estimate for the last sum over p. ut

We are now in a position to embark on the final part of the proof.
Define

L(τ ;x) :=
∑
p6x

eiτfR(p)

p− 1
, Gτ (z;x) := e−zL(τ ;x)

∏
p6x

(
1 +

zeiτfR(p)

p− 1

)
.

Under conditions (5·7) for τ , we have

(5·9)
|L(0;x)− L(τ ;x)| 6 2 log2R+ Tηf (R) + 1

2T
2ηf (R) +O(1)

6 4 log(1/v) +O(1)� log k,

in particular L(τ ;x) = log2 x+O(log k), while of course L(0;x) = log2 x+O(1). Moreover,
Gτ (z;x) is an entire function of z which is uniformly bounded on any compact subset with
respect to τ and x, so we have for instance

(5·10) G(j)
τ (0;x)/j!� 1/(1 + r)j (j > 0).

We now apply Cauchy’s integral formula to SR(x; τ, z) for the circle |z| = r = k/ log2 x,
under hypotheses (1·15). This yields

∑
n6x

ω(n)=k

eiτfR(n) =
xe−γr(I1 − I2 + I3)

log x
+ I4

with

I1 :=
1

2πi

∮
|z|=r

ezL(τ ;x)Gτ (z;x)
dz

zk+1
, I2 :=

1

2πi

∫
|z|=r

|ϑx<|ϑ|6π

ezL(τ ;x)Gτ (z;x)
dz

zk+1
,

I3 :=
ek

2πi

∫
|z|=r
|ϑ|6ϑx

O(|ϑ|+ v2)
dz

zk+1
, I4 :=

1

2πi

∫
|z|=r

ϑx<|ϑ|6π

SR(x; τ, z)
dz

zk+1
·

The main term is provided by I1, equal to the coefficient of zk in ezL(τ ;x)Gτ (z;x). We
thus have

(5·11) I1 =
∑

06j6k

L(τ ;x)k−jG
(j)
τ (0;x)

(k − j)!j!
=
L(τ ;x)k

k!

{
Gτ (r;x) +O

( log k

k

)}
,
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by (5·9) and (5·10), after a short computation involving truncating the sum at
⌊√

k
⌋
, for

instance, and noting that

1

(k − j)!L(τ ;x)j
=
rj

k!

{
1 +O

(j2 + j log k

k

)} (
0 6 j 6

√
k
)
.

The integrals Ij (2 6 j 6 4) are treated as error terms. We first have, by (5·9),

I2 �
∫ π

ϑx

e−rL(0;x) cosϑ dϑ�
√
k(log2 x)k

v4rk!

∫ π

ϑx

e−2kϑ2/π2

dϑ

� e−kϑ
2
x/π

2

(log2 x)k

v4rk!
� v(c1/π

2−4)r(log2 x)k

k!
� v(log2 x)k

k!
,

since c1 may be taken arbitrarily large in terms of κ. Next

I3 �
ek

rk
{ϑ2

x + v2ϑx} �
x(log2 x)k

k! log x

{
v +

log 1/v√
k

}
� πk(x)

{
v +

log 1/v√
k

}
,

and finally, by (5·2), still with a suitable choice of c1,

I4 �
xek

rk log x

{vc1r/60

v9r
√
k

+
1√

log x

}
� vπk(x).

Gathering our estimates, we arrive at

∑
n6x

ω(n)=k

eiτfR(n) =
xe−γrL(τ ;x)kGτ (r;x)

k! log x
+O

(
πk(x)

(
v +

log(1/v)√
k

))
,

since the error term of (5·11) may be absorbed by the other remainders. Applying this
with τ = 0, we get

πk(x) =
xe−γrL(0;x)kG0(r;x)

k! log x

{
1 +O

(
v +

log(1/v)√
k

)}
,

and so, recalling definition (1·14),

ϕx(τ ; k) :=
1

πk(x)

∑
n6x

ω(n)=k

eiτfR(n)

=
L(τ ;x)kGτ (r;x)

L(0;x)kG0(r;x)

{
1 +O

(
v +

log(1/v)√
k

)}
+O

(
v +

log(1/v)√
k

)
=
L(τ ;x)kGτ (r;x)

L(0;x)kG0(r;x)
+O

(
v +

log(1/v)√
k

)
= ϕ(τ ; r) +O

(
v +

log(1/v)√
k

)
,

in view of (5·9) and since∣∣∣∣∣∑
p>x

eiτfR(p) − 1

p− 1

∣∣∣∣∣ 6 Tηf (x) + 1
2T

2ηf (x) +O
( 1

x

)
� v.
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It remains to apply the Berry-Esseen inequality, taking into account a variant of (4·3)
conditioned to ω(n) = k in order to handle the contribution of small τ . Assuming (1·15),
we get, for 0 < u 6 T ,

sup
y∈R

∣∣∣∣ 1

πk(x)

∑
n∈E(x;k)
fR(n)6y

1− Fr(y)

∣∣∣∣� QFr

( 1

T

)
+

∫ T

−T

∣∣∣∣ϕx(τ ; k)− ϕ(τ ; r)

τ

∣∣∣∣ dτ

� QFr

( 1

T

)
+ uBf (R)

√
log2R+ u2Bf (R)2 +

(
v +

log(1/v)√
k

)
log

T

u

� QFr

( 1

T

)
+
(
v +

log(1/v)√
k

)
log
(TBf (R)

v

)
,

with the quasi-optimal choice u = v/{Bf (R)
√

log2R}. The required estimate now follows
from (5·1).
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Gérald Tenenbaum
Institut Élie Cartan
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