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This work shows the derivation of the element matrices for a rectangular ACM plate-bending element using the fundamental of calculus. The double integral over a rectangular element is considered as a special integral over a polygonal element. The integration over the rectangle is performed as an integration over a polygon enclosed between two edges, a lower straight edge, an upper one and two coordinate lines. The double integral with two variables over the element is transformed into two single integrals with one variable of the primitive of the integrand with respect to the other variable. The sequence is arranged counter clockwise starting from the minimum value of the variable of integration. Finally, the integration over the rectangle is performed using only one variable in one direction by making use of two simple formulas for integration over polygonal element. The way of integration is illustrated by detailed calculation of the stiffness matrix, the mass matrix and the loading vector for a rectangular plate-bending element. These matrices and vector results in from evaluating the strain energy density, the kinetic energy and the external work of the element loading, respectively. A program code written in MATLAB is also presented to assess the results.

Introduction

In [START_REF] Abo Diab | Worked Examples on Using the Riemann Integral and the Fundamental of Calculus for Integration over a Polygonal Element[END_REF], two simple formulas for integration of double integrals over arbitrary domain enclosed by curved and/or straight edges are presented. These formulas will be used here as a basis for deriving the element matrices of the well-known ACM plate-bending element. Since the formulas are developed to deal with integration over a polygonal domain, the integration over the rectangular element is considered as a special case of the integration scheme over a polygon restricted to two edges. The derivation of the finite element approximation is based on Hamilton's Principle. This nonconforming rectangular plate-bending element with three degrees of freedoms each node is one of the earliest elements developed in the framework of the finite element method. It is already called ACM element in [START_REF] Clough | Finite element stiffness matrices for analysis of plate bending[END_REF] and the derivation of it is related therein to the works [START_REF] Adini | Analysis of plate bending by the finite element method[END_REF], [START_REF] Melosh | A stiffness matrix for analysis of thin plates in bending[END_REF], [START_REF] Melosh | Basis for derivation of matrices for the direct stiffness analysis[END_REF]. The mentioned element was a subject of intensive study in many well-known finite element textbooks published in several editions [START_REF] Clough | Dynamics of Structures[END_REF][START_REF] Zienkiewicz | The finite element method[END_REF][START_REF] Zienkiewicz | The finite element method: Its basis and fundamentals[END_REF][START_REF] Reddy | Energy and variational methods in applied mechanics with an introduction to the finite element method[END_REF][START_REF] Cook | Concepts and applications of finite element analysis[END_REF][START_REF] Akin | Finite Element Analysis with Error Estimators An Introduction to the FEM and Adaptive Error Analysis for Engineering Students[END_REF][START_REF] Felippa | Introduction to finite element methods[END_REF][START_REF] Rao | The finite element method in engineering[END_REF][START_REF] Bathe | Finite element procedures[END_REF].

In this work, the way of integration of double integrals over a rectangular element using the Riemann integral and the fundamental of calculus presented in [START_REF] Abo Diab | Worked Examples on Using the Riemann Integral and the Fundamental of Calculus for Integration over a Polygonal Element[END_REF] will be used to drive the element matrices for the ACM plate bending element. The double integral with two variables over the element is transformed into sequences of single integrals with one variable of its primitive. The sequence is arranged counter clockwise starting from the minimum value of the variable of integration. Finally, the integration over the element is performed using only one variable in one direction.

Integration over polygon in the Cartesian coordinate system

Let  be a polygonal domain related to a Cartesian coordinate system ) , ( y x with the origin o, and the unit vectors The edges are connected by a sequence of vertices (1), (2) (…), (n) (nodal points) with the nodal coordinates is some function, defined on the domain.
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x y x and y , then these can be performed using only one variable as stated in every encyclopaedia for mathematics, see for instance [START_REF]EncyclopediaofMathematics[END_REF]16]. Using for example
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x or y as a variable, the following integral over the total area of Fig. 1 can be calculated corresponding to Fubini's theorem [START_REF] Fubini | Sugli integrali multipli[END_REF] mentioned in [18] as follows:
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It is shown in [START_REF] Abo Diab | Worked Examples on Using the Riemann Integral and the Fundamental of Calculus for Integration over a Polygonal Element[END_REF] that the definite integral over an arbitrary domain bounded by a sequence of curved and / or straight edges can be performed using only one variable in x or y direction as a series of single integrals over the subintervals arranged counter clockwise applying one of the following two formulas: x , )

       n i E x x A dx y x F dxdy y x f i i i 1 | ) , ( ) , ( ) 1 ( ) ( (5)       n i E y y A dy y x F dxdy y x f i i i i 1 | ) , ( ) , ( ) 1 ( ) ( (6) 
2 ( x ],…, [ ) 1 (  n x , ) (n x ],[ ) (n x , ) 1 ( x ] .
Now, let us explain how to use this formula for integration over a rectangular element. Consider the rectangular element depicted in Fig. 2. The domain is bounded by two edges )

1 ( E , ) 3 ( E or ) 2 ( E , )
4 ( E . Every edge-equation can be determined by the two corresponding vertices spanning the edge. The resulting edge-equations are as follows:
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In such case, one of the variables can be explicitly expressed in terms of the other one and the integration can be performed in one direction. In the following, the integration of the stiffness matrix, the mass matrix and the loading vector will be demonstrated in details. Detailed information about the classical plate theory can be found in [START_REF] Timoshenko | Theory of plates and shells[END_REF][START_REF] Ventsel | Thin Plates and Shells, Theory, Analysis, and Applications[END_REF]. For studying energy principles the reader is referred to [START_REF] Washizu | Variational methods in elasticity and plasticity[END_REF][START_REF] Pilkey | Mechanics of structures variational and computational methods[END_REF] and for studying structural dynamics the reader may consult [START_REF] Weaver | Structural dynamics by finite elements[END_REF][START_REF] Leissa | Vibration of Plates[END_REF][START_REF] Chopra | Dynamics of Structures: theory and applications to earthquake engineering[END_REF], just to mention only some books from a wide range of published books in the literature over the last fifty years.

Deriving the Stiffness matrix of ACM-plate bending element

The finite Element approximation is based on Hamilton's Principle. The 2D expression for the special case of the thin plate considered can be written in the absence of the prescribed boundary displacements relating to a Cartesian coordinate system in the following form: is the first variation, A is the area and dA its differential element, i u  is the velocity vector in which both displacement and rotation components are included, j i  is the corresponding mass density matrix,
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is the concentrated load applied at the point (i). ij  is the curvature tensor, which reads expressed in terms of the deflection ) , (
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is the matrix of the force-curvature dependency which reads in a matrix form:
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j i
 is defined by the following matrix:
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where  is the material density, E is the modulus of elasticity, h is the plate thickness and  is the Poisson's ratio. The indicial notation to indicate the Cartesian variables 2 1 , x x is used instead of the y x, -frame and indices between brackets range over the nodal points. In Eqn. [START_REF] Cook | Concepts and applications of finite element analysis[END_REF], the internal work associated with the bending and twist moments is only considered.

The plate finite element with the nodal points (i), (j), (k), (l) has three degrees of freedom each node. These are the displacement normal to the plate surface in 3 x -direction and the two rotations about 1 x and 2 x -axes. The total number of degrees of freedom each element is then represented by the element nodal displacement vector with 12 degrees of freedom
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The origin of the coordinate system 2 1 , x x is located at the element centre. The approximation basis is constructed using the defined local Cartesian variables
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Linking the free parameters
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to the nodal degrees of freedom using the essential boundary conditions at the finite element level yield: [START_REF] Fubini | Sugli integrali multipli[END_REF] Eliminating the free parameters from Eqn. ( 15) by solving the linear system of equations ( 16) and substituting the result into equation [START_REF]EncyclopediaofMathematics[END_REF], the following relationship between the internal displacements ) , (
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In Eqn. (16), 

A

is the inverse matrix of Deriving the curvature tensor ij  using Eqn. ( 18) and ( 19) yield
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Applying the expressions of ij  in the first term of Eqn. (10) gives [START_REF] Pilkey | Mechanics of structures variational and computational methods[END_REF] is the element stiffness matrix related to the Cartesian coordinate system.
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The integration over the area can be performed using the scheme presented above as follow:
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The area of the rectangular element is enclosed between the coordinate lines
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The explicit form of the previous integral takes the following form: 3 [START_REF] Chi | Some basic formulations of the virtual element method (VEM) for finite deformations[END_REF] Finally, the element stiffness matrix of the rectangular plate bending element can be presented by the product of the following explicit matrices:
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The relations presented above can be easily verified using the following MATLAB code. %stifness matrix of a biquadrat of side length 4x4 and thhe %following and material properties %E=1365.0;m=0.3;t=0.2;%D=1 k=subs(subs(subs(subs(subs(k,a,2),b,2),m,0.3),E,1365),t,0.2) k=vpa(k,6) %===============================================================%

Deriving the mass matrix of the rectangular ACM-plate bending element

The element mass matrix results in from evaluating the third term of Eqn. ( 10)
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The displacement is expanded to include the rotational terms in order to consider their contributions
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Applying the expressions of i u in the first term of Eqn. (10) gives
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is the element mass matrix related to the Cartesian coordinate system.

The integration over the area can be performed using the scheme presented above as follow: 
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The following simple code based on Fundamental of Calculus gives the exact mass matrix of a rectangular element and the numerical mass matrix for a biquadrate of side length 
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Substituting the expressions for the deflection from Eqn.(18) and the loading intensity from Eqn.(36) into Eqn (39) yield
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The integration over the area can be performed using the scheme presented above as follow:
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The area of the rectangular element is enclosed between the coordinate lines a

x a x     1 1
, and the edges 3 1 , E E so that the previous integral can be simply presented as follows:

1 ) ( 1 ) ( 1 1 ) ( ) ( 2 ) ( 2 ) ( ) 1 ( ) ( ) ( ) ( | | | dx Cr dx Cr dx Cr C b x a a m m b x a a m m n i E x x m m m m q q i i i q q                   (44) b x m m q Cr   2 ) ( | ) (
is the matrix in which each 2 x is replaced by the edge equation b

x   2 .
The explicit form of this matrix is given by the following expression: As may be seen here, the presented procedure for deriving the element matrices of the rectangular ACM platebending element is easier than that of the conventional one. In the latter one, long expressions for the shape functions are constructed and complex double integrals are evaluated. The advantages of using the Fundamental of Calculus are clear even for this simple geometry case. This will be more visible the more complex is the geometry. Furthermore, the Fundamental of Calculus can deal with special geometry case, too. It is worth mentioning that the integration over a polygonal element is usually performed by subdividing the polygon into standard elementary shapes like triangles and quadrilateral and after that applying a mapping technique. For the history of integration over polygonal element the references [START_REF] Gautam Dasgupta | Integration within Polygonal Finite Elements[END_REF][START_REF] Chi | Some basic formulations of the virtual element method (VEM) for finite deformations[END_REF][START_REF] Beirão Da Veiga | The Virtual Element Method with curved edges[END_REF][START_REF] Sukumar | Conforming polygonal finite elements[END_REF][START_REF] Sommariva | Product Gauss cubature over polygons based on Green's integration formula[END_REF] are selected to be referred to. In [START_REF] Antonietti | Fast Numerical integration on polytopic meshes with applications to discontinuous Galerkin finite element methods[END_REF], the integration is curried out without subdivision but the integration is performed numerically after transforming it into boundary integral using the Stoke's theorem and a mapping procedure.
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In the presented procedure the task of integration can be carried out exactly with one variable in one direction by evaluating boundary integrals. There is also no need for any kind of mapping or any use of Stoke's Theorem or Gauss Theorem. A MATLAB code [32] is presented with which the results can be assessed.

Conclusion

This work shows that the Fundamental of Calculus can also deals with special geometry-domains. The integration over a rectangular element is considered as a special case of integration over a polygonal element. Element matrices for the well-known ACM plate-bending element are derived and the derivation is enhanced basically comparing with the conventional derivation. The same results are obtained. The presented way of integration has several advantages comparing with the conventional one. There is no need to construct long expressions for the shape functions or to integrate over the limits of two variables. It reduces also the computational costs especially for arbitrary domain and enables the construction of explicit element matrices. Such advantages will be clear when we deal with complex domains enclosed by curved edges.

Figure 1 :

 1 Figure 1: Domain enclosed by curved and /or straight edges, Cartesian coordinates of vertices

Figure 3 :

 3 Figure 3: Rectangular plate bending element, Cartesian coordinates of vertices, and edges

where 1 t and 2 t

 2 are two fixed time points of the vibration process, 

  by Eqn.(17) which is derived from ) (m m M by substituting the coordinates of the element nodes into Eqn. (15

  %===============================================================% %MATLAB code for deriving the stiffness matrix of the rectangular plate: %bending element known as ACM integrated using the Fundemental of Calculus : %===============================================================% syms x y ; syms a b E t m;%a=2;b=2; xip=[-a -b; a -b ;a b;-a b] D=((E*t^3)/(12.*(1-m^2))) %===============================================================% %Symbolic calculation of the stifness matrix of the plate element %E: Young modulus m Poissons ratio t:thickness %===============================================================% M=[ 1 x y x^2 x*y y^2 x^3 x^2*y x*y^2 y^3 x^3*y x*y^3]; Mxx=diff(diff(M,x),x); Mxy=diff(diff(M,x),y); Myy=diff(diff(M,y),y); %c: eleasticity tensor in the x y-system c=D*[1 0 0 m; 0 (1-m)/2. (1-m)/2. 0; 0 (1-m)/2. (1-m)/2. 0;m 0 0 1]; p=[Mxx;Mxy;Mxy;Myy]; Mi=[M;diff(M,y);-diff(M,x);]; A=[subs(subs(Mi,'x',xip(1,1)),'y',xip(1,2)); subs(subs(Mi,'x',xip(2,1)),'y',xip(2,2));subs(subs(Mi,'x',xip(3,1)),'y',xip(3,2));sub s(subs(Mi,'x',xip(4,1)),'y',xip(4,2))] Am1=inv(A) k=transpose(p)*c*p %Primitive matrix of the matrix pT*c*p k=int(k,y) %Equation of edge E(1)y=-b;equation of edge E(3): y=b %kr=int(subs(k,y,E(3)),-a,a)-int(subs(k,y,E(1)),-a,a) kr=-int(subs(k,y,-b),-a,a)-int(subs(k,y,b),a,-a) k=transpose(Am1)*kr*Am1 simplify(k/D)

  deriving the mass matrix of the rectangular plate: %bending element known as ACM integrated using the Fundamental of Calculus : %===============================================================% syms x y ; syms a b r t;%a=2;b=2; xip=[-a -b; a -b ;a b;-a b] %t=0.2;r=5;D=1 E=1365.0;m=0.3 %===============================================================% %Symbolic calculation of the mass matrix of the plate element %r: mass density t:thickness %===============================================================% M=[ 1 x y x^2 x*y y^2 x^3 x^2*y x*y^2 y^3 x^3*y x*y^3]; %rij: mass density matrix in the x y-system rij=[r*t 0 0 ; 0 r*(t^3/12) 0; 0 0 r*(t^3/12)]; Mi=[M;diff(M,y);-diff(M,x)] A=[subs(subs(Mi,'x',xip(1,1)),'y',xip(1,2)); subs(subs(Mi,'x',xip(2,1)),'y',xip(2,2));subs(subs(Mi,'x',xip(3,1)), 'y',xip(3,2));subs(subs(Mi,'x',xip(4,1)),'y',xip(4,2))] Am1=inv(A) m=transpose(Mi)*rij*Mi %Primitive matrix of the matrix MiT*rij*Mi m=int(m,y) %E(1)=-b;E(3)=b %kr=int(subs(k,y,E(3)),-a,a)-int(subs(k,y,E(1)),-a,a) mr=-int(subs(m,y,-b),-a,a)-int(subs(m,y,b),a,-a) m=transpose(Am1)*mr*Am1 m=simplify(m) %mass matrix of a biquadrat of side length 4x4 m=subs(subs(subs(subs(m,a,2),b,2),r,5),t,0.2) m=vpa(m,6) %===============================================================%

  deriving the load vector for the rectangular plate: %bending element known as ACM integrated using the Fundemental of Calculus : %===============================================================% syms x y ; syms a b q1 q2 q3 q4;%a=2;b=2; xip=[-a -b; a -b ;a b;-a b] %t=0.2;r=5;D=1 E=1365.0;m=0.3 %D=((E*t^3)/(12.*(1-m^2))) %===============================================================% %Symbolic calculation of the load vector for the plate element %q1,q2,q3,q4: load intensity at nodes 1,2,3,4 respectively %===============================================================% M=[ 1 x y x^2 x*y y^2 x^3 x^2*y x*y^2 y^3 x^3*y x*y^3]; Mi=[M;diff(M,y);-diff(M,x)] A=[subs(subs(Mi,'x',xip(1,1)),'y',xip(1,2)); subs(subs(Mi,'x',xip(2,1)),'y',xip(2,2));subs(subs(Mi,'x',xip(3,1)), 'y',xip(3,2));subs(subs(Mi,'x',xip(4,1)),'y',xip(4,2))] Am1=inv(A) %shape function of the load intensity at an arbitrary point of the element N=[ 1 x y x*y]; A=[subs(subs(N,'x',-a),'y',-b); subs(subs(N,'x',a),'y',b);subs(subs(N,'x',a),'y',b); subs(subs(N,'x',-a),'y',b)]; Nb=N*inv(A) Cr=transpose(M)*Nb %Primitive matrix of the matrix MiT*Nb*q Cr=int(Cr,y) Cr=int(subs(Cr,y,b),-a,a)-int(subs(Cr,y,-b),-a,a) L=transpose(Am1)*Cr L/(4*a*b) L=simplify(L)*[q1;q2;q3;q4] %mass matrix of a biquadrat of side length 4x4 under unit load intensity L=subs(subs(subs(subs(subs(subs(L,a,2),b,2),q1,1),q2,1),q3,1),q4,1) L=vpa(L,6) %===============================================================%The stiffness matrix of a bi-quadrate with the nodal coordinates
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Deriving the load vector of the rectangular ACM-plate bending element

The element load vector results in from evaluating the second term of Eqn. ( 10)

The load intensity ) , ( 2

at an arbitrary point of the rectangular element subjected to an arbitrary loading function with the intensities