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Unknown Dynamics Decoupling to overcome unmeasurable premise

variables in Takagi-Sugeno Observer design

H. Arioui and L. Nehaoua

Abstract— This paper discusses a new approach to overcome
unmeasurable premise variables in observer synthesis for
Takagi-Sugeno models. The main idea is based on the
decoupling of the nonlinear dynamics in order to manage
unmeasured state existing into the membership functions. The
obtained structure is a system with membership functions
subjected only to measured variables. The stability analysis
of the observer is carried out using Lyapunov theory. The
observer gains were computed from the resolution of the Linear
Matrix Inequality constraints. The present result alleviates
the strong conditions assumed in the design of observers for
TS systems with unmeasurable premise variables. Simulation
results are provided to demonstrate the effectiveness of the
proposed approach.

Keywords: Unknown Input Observer, Polytopic Systems,
Unmeasurable Premise Variables, LMI constraints, Lyapunov
Theory.

I. INTRODUCTION

Sensor technologies are more and more forward-thinking.

Miniaturization saves space and digitization improves system

reliability and robustness. Nevertheless, these technologies

remain restricted or insufficient to measure some physical

quantities and dynamic states. Hence, researchers have been

moving towards the use, since the 1960s, of model-based

observers [1], [2] or more recently deep learning techniques

[3] as virtual sensors. This new issue allows, in many

application fields, to overcome many technical limitations

related to sensor deployment, cost and effectiveness.

If the observation problem seems to be solved for a large

class of linear systems, the same cannot be claimed for

nonlinear systems. In fact, different philosophies have been

adopted to overcome the mathematical limitation introduced

by time varying parameters and nonlinearities as reviewed in

[4], [5]. In particular, input-output linearization of nonlinear

systems had opened an active research field towards the

generalization of linear control tools to solve the observation

problem for nonlinear systems.

Since two decades, Takagi-Sugeno (TS) fuzzy model pro-

poses an attractive way to deal with a wide range of nonlinear

system structure for control and estimation purposes. In the

polytopic scheme [6], and by using the sector transformation

[7], the nonlinear system is transformed in a well-defined

compact set to a local linear models smoothly weighted by

membership functions. These last depend on the so-called

premise variables (PV) which are considered in almost cases

to be measurable and then, the problem of designing state
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observer is straightforward. However, in the opposite case,

the problem of designing a state observer should be seriously

reconsidered.

Several systematic approaches for observer design for a

class of TS systems with unmeasurable premise variables

are proposed. In particular, based on Lipschitz hypotheses, a

sliding-mode fuzzy observer is presented in [8]. Unfortuna-

tely, the low value of the Lipschitz constant, which ensures

the existence of observer gains, limits the applicability of

this technique. Other approaches are also developed, based

on the mean value theorem (MVT) [9] or with the quasi Input

to State Stability (qISS) property in [10]. Other ways with

nonlinear consequents are also investigated [11]. Here also,

even if the Lipschitz condition is relaxed, a new condition is

introduced, known as incremental quadratic constraint.

More recently, the immersion techniques have been inves-

tigated [4], [12]–[16]. To deals with unmeasurable premise

variables, auxiliary dynamics are generated to immerse a

given nonlinear system in a new dimension with a suitable

structure. In [17], the authors propose a new immersion al-

gorithm for a class of TS systems to transform the weighting

functions depending on unmeasured states into a TS system

with large dimension where the weighting functions depend

only on measured variables. Nevertheless, the immersion

technique can lead to a high order problem dimension or

simply fail in the immersion transformation due to the

recursive derivations. An illustrative example is studied in

section II which introduces our starting argumentation for

our development in section III.

This work focuses on the observer design for TS systems

with state-dependent PV. The main idea is based on the

decoupling of the nonlinear dynamics responsible for unmea-

surable PV. The observer design problem is reformulated to

overcome the restrictive condition of Lipschitz and hence

can be applied to a large class of nonlinear systems. In

addition, this approach yields to a simple observer synthesis,

quite similar to the design of observers for TS systems

with measurable PV [18]–[21]. More, the proposed approach

estimates both states and unmeasurable premise variables

ensuring asymptotic convergence.

The paper is organized as follows. In section II, the

problem of designing observers for TS systems with un-

measurable premise variables is highlighted. Sections III

and IV state the key result of the paper: a new observer

design algorithm and its comparison with the immersion

technique is given. Simulations and analysis with existing

results are provided in section V. Finally, section VI draws

some conclusions and future works.
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II. PROBLEM STATEMENT AND MOTIVATIONS

Lets consider the following nonlinear system:

{ ẋ(t) = f(x(t), u(t))
y(t) = Cx(t) (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

p is the

control input and y(t) ∈ Rm is the output vector ; f(⋅) is a

nonlinear function.

Thanks to the sector transformation, the q existing non-

linearities can be exactly represented by r = 2
q linear

sub-models weighted by membership functions µi(ν(t)),
satisfying the convex-sum property in the compact set of

the state space, i.e.

r

∑
i=1

µi(ν(t)) = 1 with µi(ν(t)) ≥ 0 (2)

where ν(t) is the so-called PV vector depending on

system’s state. Then, the mathematical formulation of the

TS model of system (1) is given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ(t) = r

∑
i=1

µi(ν(t)) (Āix(t) + B̄iu(t))
y(t) = Cx(t) (3)

A. Classical observer design for TS Systems

If the PV are measured, a classical Luenberger-like obser-

ver can be used :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̂x(t) = r

∑
i=1

µi (ν(t)) (Āix̂(t) + B̄iu(t) + L̄i(y − ŷ))
ŷ(t) = Cx̂(t)

(4)

with x̂(t) is the estimated state vector. The state estimation

error, e(t) = x(t) − x̂(t), is governed by:

ė(t) = r

∑
i=1

µi(ν(t)) (Āi − L̄iC) e(t) (5)

The stability analysis of the error dynamics (5) may be

achieved with sufficient LMI conditions to get the observer

gains [23] and [24].

However, if the PV ν̂(t) are unmeasurable, the previous

observer is given by:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
˙̂x(t) = r

∑
i=1

µi (ν̂(t)) (Āix̂(t) + B̄iu(t) + L̄i(y − ŷ))
ŷ(t) = Cx̂(t)

(6)

In this case, the observer synthesis is not easy and the error

dynamics is described by the following pseudo-disturbed TS

system:

ė(t) = r

∑
i=1

µi (ν̂(t)) (Āi − L̄iC) e(t) + δ(t) (7)

where the perturbation term is :

δ(t) = r

∑
i=1

(µi(ν(t)) − µi(ν̂(t))) (Āix(t) + B̄iu(t)) (8)

and the stability study of the error dynamics becomes

more complex with many approaches based on Lipschitz

hypotheses [8], MVT [9] or qISS [10] techniques.

B. Immersion techniques: Pros & Cons

As for the principle of the immersion approach, auxiliary

dynamics must be added, allowing the transition to a new

base as follows:

{ v̇(t) = Ã (y(t)) v(t) + B̃ (y(t))u(t)
y(t) = [C 0]v(t) (9)

where the corresponding TS form, with measured PV, is:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v̇(t) = r1

∑
i=1

µi (ξ(t)) (Ãiv(t) + B̃iu(t))
y(t) = [C 0]v(t) (10)

where r1 is the number of sub-models and ξ(t) are

measured PV (different from ν̂(t) unmeasured ones).

Hence, the observer governed by equations (5-9) can be

synthesized easily.

Let us study the following example:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −x1(t) + x2(t)x3(t)
ẋ2(t) = x1(t) − x2(t) − x1(t)x3(t) + 0.5u(t)
ẋ3(t) = − (x1(t) + 1)x3(t) + x1(t)x2(t) + u(t)
y(t) = x2(t)

(11)

The quasi-LPV form of the previous system (11) is:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ẋ(t) =

⎡⎢⎢⎢⎢⎢⎣
−1 0 x2(t)
1 −1 −x1(t)

−x2(t) 0 −1 − x1(t)
⎤⎥⎥⎥⎥⎥⎦
x(t) +

⎡⎢⎢⎢⎢⎢⎣
0

0.5

1

⎤⎥⎥⎥⎥⎥⎦
u(t)

y(t) = [ 0 1 0 ]x(t)
(12)

The observer synthesis will lead to a TS system with a

PV depending on the unmeasured states x1(t) or x3(t).
Unfortunately, the immersion technique fails to provide a

TS system with measurable PV. Definitely, the number of

variable changes is unlimited. Hence, the degree of the new

variables will increase definitely.

III. MAIN RESULT

This section aims to decouple the nonlinear dynamics

responsible for unmeasurable PV, ν̂(t). The system (1)

and its TS form (3) are reformulated to get a new qLPV

structure with a new membership functions σi(t) with only

measurable PV ξ(t). This last, is a subset of the whole PV,

ν̂(t). The PV ξ(t) depends only on outputs y(t) and/or

inputs u(t). This leads to a less conservative condition in

the observer design of the proposed approach. The resulted

system can be written by the following equation:
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{ ẋ(t) = A (y(t))x(t) +B (y(t))u(t) +Dg (x(t), u(t))
y(t) = Cx(t)

(13)

where D is a constant matrix with appropriate dimension

and g (x(t), u(t)) is a nonlinear function containing sub-

dynamics giving rise to an unmeasurable PV.

The corresponding TS structure, with ξ(t) as measured

PV, is as following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ(t) = r2

∑
i=1

σi (ξ(t)) (Aix(t) +Biu(t)) +Dg (x(t))
y(t) = Cx(t)

(14)

with r2 is the number of sub-models of the new structure

such that r2 < r.

IV. UNKNOWN DYNAMICS OBSERVER DESIGN

The present section introduces the design of the unknown

input observer considering the qLPV model (14) and the

observer structure proposed in [18] and [19]. The conditions

for the observer’s asymptotic convergence are derived from

Lyapunov analysis and the corresponding LMI optimisation

problem is stated.

In this context, the following non restrictive assumptions

are considered:

Assumption 1: In what follows, it is supposed that:

— the state vector x(t) is supposed bounded,

— rank(CD) = rank(D) [22],

— the pair ((A(ξ(t)), C) is observable, al least detec-

table, for all ξ(t) in the compact set.

Remark 1: If the third condition in assumption (1) is

not satisfied, it is possible to add sub-dynamics in matrix

A(y(t)) and to subtract them in function g(x(t), u(t)) in a

way that, at the end, the new structure remains observable

without affecting the original system (1). In such case, for the

design of the observer, the last modified matrices A(y(t))
and D must be considered.

A. Observer design

Let us consider the following nonlinear observer for the

new structure (14), [18] :

{ ż(t) = N (ξ(t)) z(t) +G (ξ(t))u(t) +L (ξ(t))y(t)
x̂(t) = z(t) −Hy(t)

(15)

where the observer’s matrices Nξ ∈ R
n×n, Gξ ∈ R

n×p,

Lξ ∈ R
n×m and H ∈ Rn×m are to be determined to ensure

asymptotic convergence of the estimation error. Here, and

for the rest of the paper, we use the abbreviated notation

M (ξ(t)) =Mξ.

Also, Nξ and Lξ have the same quasi-LPV form as the

matrix Aξ and may be written in a TS form as follows:

Nξ =

r2

∑
i=1

σiξNi, Gξ =

r2

∑
i=1

σiξGi, Lξ =

r2

∑
i=1

σiξLi (16)

We recall here that the weighing functions σiξ depend only

on the outputs.

According to equations (13), (14) and (15), the state

estimation error is given by:

e(t) = x(t) − x̂(t) = (I +HC)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P

x(t) − z(t) (17)

Hence, the state estimation error is governed by the

following differential equation:

ė(t) = PAξx(t) + (PBξ −Gξ)u(t) + PDg (x(t), u(t))
−Nξz(t) −LξCx(t)

= Nξe(t) + (PAξ −NξP −LξC)x(t)
+ (PBξ −Gξ)u(t) + PDg (x(t), u(t))

(18)

B. Convergence study

Under the following conditions:

PBξ −Gξ = 0 (19)

PAξ −NξP −LξC = 0 (20)

PD = 0 (21)

the estimation error dynamics will be reduced to:

ė(t) = Nξe(t) (22)

To obtain the observer gains, the linear matrix equalities

(19), (20) and (21) must be satisfied. In that cas, the

asymptotic convergence of the estimation error’s vector e(t)
is governed by the behavior of the matrix Nξ in (22).

First, the matrix H is computed from (21):

(I +HC)D = 0 ⇔ HCD = −D

⇔ H = −D(CD)+ (23)

where: (CD)+ = [(CD)T (CD)]−1 (CD)T is the left

pseudo-inverse of the matrix CD. This equality constraint

is equivalent to the rank condition in assumption (1).

After computing the matrix H , the matrix P is computed

and replaced in the equality (20) which, after a simple

calculation leads to:

PAξ±
Γξ

−Nξ − (NξH +Lξ´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Kξ

)C = 0 ⇔ Nξ = Γξ −KξC

Then, the state estimation error’s dynamics becomes:

ė(t) = (Γξ −KξC) e(t) (24)

Let us consider the following quadratic Lyapunov function

to address the stability analysis:

V (e(t)) = eT (t)Xe(t), X =XT
> 0 (25)

whose time derivatives V̇ (e(t)) leads to:
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V̇ (e(t)) = eT (t) (NT
ξ X +XNξ) e(t)

= eT (t) ((Γξ −KξC)TX +X(Γξ −KξC)) e(t)
= eT (t)∑r2

i=1 σiξ ((Γi −KiC)TX
+X (PAi −KiC)) e(t)

(26)

By considering the following change of variable K̄iξ =

XKiξ for i = 1,⋯, r2, we have:

V̇ (e(t)) < 0⇔ ΓT
iξ
XT
−CT K̄T

iξ
+XTΓiξ − K̄iξC < 0, ∀i

(27)

If these conditions hold then V̇ (e(t)) < 0.

Hence, from (27), an optimization problem is derived with a

compact set of the following LMIs constraints to be solved:

AT
i P

TX−CT K̄T
iξ
+XPAi−K̄iξC < 0, for i = 1, ..., r2 (28)

Finally, the observer design procedure is summarized as

following:

1) Compute matrix H from (21) and matrix P from (17),

2) Deduce the matrix Gξ from (19),

3) Solve the LMIs in (28) and compute the observer gains

Kiξ ,

4) Deduce Ni and Li from (29),

5) Use (16) to determine the observer’s matrices.

Kiξ = X−1K̄iξ

Ni = Γiξ −KiξC

Li = Kiξ −NiH

(29)

The unknown input observer allows to estimate the whole

of state vector x(t) but does not give information about

unknown dynamics, that is why we need to proceed into a

reconstruction of the unknown dynamics based on estimated

states and output derivatives. To estimate the state and output

time derivatives, a High-Order sliding mode differentiator is

used. For more details on this type of signal differentiation

algorithm, please refer to [26].

The nonlinear dynamics, which we decouple, can be

reconstructed by the following approach. From the state

space of the system, one can write:

˙̂x(t) = A (y(t)) x̂(t)+B (y(t))u(t)+Dg (x̂(t), u(t)) (30)

Multiplying this last equation by matrix C and after slight

calculations, one can get:

g (x̂(t), u(t)) = (CD)+ (ẏ(t) −CA(y)x̂(t) −CB(y)u(t))
(31)

V. SIMULATIONS AND DISCUSSIONS

In this section we will study two different examples. The

first example is the oscillator studied in [17] where the im-

mersion technique and the proposed approach converge. The

second example is a system which highlights the advantages

of the proposed approach while the immersion approach

fails.

The gains of the Unknown Dynamics Observer (UDO)

are computed from the equations (23)-(29) applied to both

examples.

A. Illustrative Example 1

Consider the Lorenz system given by the following state

space:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −10 (x1(t) − x2(t))
ẋ2(t) = 28x1(t) − x2(t) − x1(t)x3(t)
ẋ3(t) = −

8

3
x3(t) + x1(t)x2(t)

y(t) = x2(t)
(32)

The synthesis of the proposed observer implies the new

structure (13) of the system with:

A (y(t)) =
⎡⎢⎢⎢⎢⎢⎣
−10 10 0

28 −1 −1

y(t) 0 −
8

3

⎤⎥⎥⎥⎥⎥⎦
,B (y(t)) =

⎡⎢⎢⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎥⎥⎦
and

D =

⎡⎢⎢⎢⎢⎢⎣
0

1

0

⎤⎥⎥⎥⎥⎥⎦
where g (x(t), u(t)) = − (x1(t) − 1)x3(t) and C =[0 1 0]. With respect to remark 1, an additional dynamics

±x3(t) has been added to the system state space (ẋ2(t)) to

ensure observability of the targeted system.
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Fig. 1: State estimation errors, UDO technique.

By using Sedumi & Yalmip [25] LMI toolbox, one can

solve (28) and (29) and find the following observer gains:

N1 =

⎡⎢⎢⎢⎢⎢⎣
−10 0.7 0

0 −21.37 0

50 146.07 −2.67

⎤⎥⎥⎥⎥⎥⎦
,

N2 =

⎡⎢⎢⎢⎢⎢⎣
−10 6.16 0

0 −17.01 0

50 −137.55 −2.67

⎤⎥⎥⎥⎥⎥⎦
and
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Li =

⎡⎢⎢⎢⎢⎢⎣
10

0

0

⎤⎥⎥⎥⎥⎥⎦
,H =

⎡⎢⎢⎢⎢⎢⎣
0

−1

0

⎤⎥⎥⎥⎥⎥⎦
and G =

⎡⎢⎢⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎥⎥⎦
Taking x0 = [0.5 4 − 1]T , simulation results are shown

in Fig. 1.

Fig. 1 shows results of the proposed unknown dynamics

TS observer, synthesized under the same conditions for

the observer based on immersion approach. The observer

convergence is very good and no need to Lipschitz assump-

tion neither to the immersion technique to obtain correct

convergence of the state estimation.
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Fig. 2: State estimation errors, Immersion technique.

In Fig. 2 are depicted the estimation errors given by the

observer based on the immersion technique, on the same

system. The calculated gains here are exactly the ones given

in paper [17].

B. Illustrative Example 2

Consider the example (11) where the immersion technique

fails.

The system states are depicted in Fig. 3 with external

excitation of sinusoidal form.
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Fig. 3: System states evolution.

The synthesis of the proposed observer implies the new

structure (13) of the second example with:

A (y(t)) =
⎡⎢⎢⎢⎢⎢⎣
−1 0 y(t)
1 −1 0

−y(t) 0 −1

⎤⎥⎥⎥⎥⎥⎦
,B (y(t)) =

⎡⎢⎢⎢⎢⎢⎣
0

0.5

1

⎤⎥⎥⎥⎥⎥⎦
and

D =

⎡⎢⎢⎢⎢⎢⎣
0

1

1

⎤⎥⎥⎥⎥⎥⎦
where g (x(t), u(t)) = −x1(t)x3(t) and C = [0 1 0]. The

input signal is u(t) = 2 sin(2t)∗ sin(20t). The observability

matrix O of example 2 is given by:

O =

⎡⎢⎢⎢⎢⎢⎣
0 1 0

1 −1 0

−2 1 y(t)
⎤⎥⎥⎥⎥⎥⎦

otherwise, the system is uniformly observable if and only

if y(t) is non zero. One can easily avoid the related singula-

rities by adding the same dynamics, for example ±x3(t), to

the state space dynamics ẋ2(t) and ẋ3(t). In this case the

rank of the observability matrix O is output free.
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Fig. 4: State estimation errors, UDO technique.

By using Sedumi & Yalmip LMI toolbox, one can solve

(28) and (29) and find the following observer gains:

N1 =

⎡⎢⎢⎢⎢⎢⎣
−1 −0.00005 50

0 −0.5 0

−51 0.00009 −1

⎤⎥⎥⎥⎥⎥⎦
,

N2 =

⎡⎢⎢⎢⎢⎢⎣
−1 −0.00005 −50

0 −0.5 0

49 −0.00008 −1

⎤⎥⎥⎥⎥⎥⎦
and

Li =

⎡⎢⎢⎢⎢⎢⎣
(−1)i50

0

0

⎤⎥⎥⎥⎥⎥⎦
,H =

⎡⎢⎢⎢⎢⎢⎣
0

−1

−1

⎤⎥⎥⎥⎥⎥⎦
and G =

⎡⎢⎢⎢⎢⎢⎣
0

0

0.5

⎤⎥⎥⎥⎥⎥⎦
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Taking x0 = [0.5 4 − 1]T , simulation results are shown

in Fig. 4.

Fig. 5 presents the evolution of the unknown dynamics

estimation error. By subtracting equations (13) and (31), this

last error is governed by the following equation:

eg(t) = g (x(t)) − g (x̂(t)) = −(CD)+CA(y)e(t) (33)

0 2 4 6 8 10 12 14 16 18 20

-100

-50

0

50

100

150

Fig. 5: Unknown dynamics estimation errors.

It is clear, that if the error of the state estimation converge

asymptotically to zero, the error estimation of the unknown

dynamics also converge to zero.

VI. CONCLUSIONS

In the present work, we addressed a new approach to

overcome the unmeasurable premise variables in observer

synthesis for Takagi-Sugeno models. The approach consists

in transforming a nonlinear system into a new structure by

isolating a part of system dynamics. This part is directly

responsible of the occurrence of unmeasurable premise va-

riables in the observer design. After that, and under some

conditions, an unknown dynamics observer is used to esti-

mate the state vector with membership function depending

only on the output vector under less conservative synthesis.

Numerical results confirm the overview offered by the

proposed approach compared to the classical or immersion

approaches. Future results will concern the generalization of

the proposed approach when the matching condition in not

met.
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