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A Two-Step Hybrid Approach for Verifying Real-Time Robotic Systems

Mohammed Foughali'

Abstract—Due to the severe consequences of their possible
failure, robotic systems must be rigorously verified against
(i) behavioral properties, such as safety and (ii) real-time
properties, such as schedulability, while taking into account the
real hardware (e.g. number of cores) and operating system (e.g.
scheduling policy) specificities. Formal verification and schedu-
lability analysis are popular approaches that may help with such
verification, but suffer from limitations such as scalability issues
(for the former) and difficulty to generalize to complex robotic
tasks (for the latter), when used independently. In this paper,
we propose a two-step, efficient solution that combines both
approaches. The first step provides a sufficient condition for the
schedulability of hard-real-time tasks in a robotic application.
Then, the second step automatically generates a formal model
of the application, on which other important properties may be
verified formally using statistical model checking. The solution
is applied to an autonomous drone case study.

I. INTRODUCTION
A. Context & Addressed Problem

Robotic software, inherently complex, is majoritarily
component-based (e.g. ROS [1], Orocos [2] and G®oM3 [3]):
a number of functional components collaborate while
interacting with the hardware. Each functional compo-
nent implements complex algorithms, often organized in
tasks, to perform some computations. Computations re-
sults are communicated between components to close the
perception-action loop and fulfill the robot’s missions.

With many robotic applications being time-critical and
running on embedded platforms, robotic tasks must satisfy
real-time properties, e.g. schedulability, while sharing lim-
ited resources. In addition, it is important that the robot
behaves safely and correctly, i.e. that behavioral properties,
such as safety and liveness, are verified. Considering the
complexity of robotic components and their communi-
cation, verifying real-time and behavioral properties is a
particularly hard research problem as explained hereafter.

Scenario-based testing, often used by roboticists, is unfor-
tunately unreliable (Pecheur [4] gives an example of a full-
year test failing to detect a bug in a NASA experiment). We
must thus rely on more rigorous approaches such as formal
methods and schedulability analysis. Formal methods are
mathematically sound and can deal with both behavioral
and real-time properties, but their use in robotics is im-
peded by scalability issues. Indeed, if the formal technique
is exhaustive (e.g. model checking), the state-space explosion
problem is observed in real-world robotic systems, i.e. their
state spaces are intractable because of their sheer com-
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plexity. On the other hand, if the formal technique is non
exhaustive, such as Statistical Model Checking (SMC) [5],
the properties can no longer be evaluated with certainty,
but with some probability, which is not sufficient in critical
missions (e.g. if a task in a component is hard real-time
(HRT), its schedulability must be verified with certainty). Fi-
nally, the literature on formal verification of robotics ignores
hardware and OS constraints which restricts the results
validity (Sect. V). Likewise, the applicability of schedulability
analysis to robotic systems is limited. First, its theoretical
results are hardly generalizable to robotic tasks because the
latter models are much more complex than the task models
used in the real-time systems literature (Sect. [[I). Second,
schedulability analysis leaves other important properties
such as liveness and safety unattended.

B. Proposition & Overall Contribution

We propose a novel two-step verification approach that
combines formal methods and schedulability analysis,
where neither of the two is sufficient alone (Sect. [-A). Our
approach enables verifying both real-time and behavioral
properties while taking into account the actual specificities
of the robotic platform (mainly the number of cores and a
scheduling policy). Furthermore, we provide a high level of
automation, which makes our approach suitable for robotic
programmers with no particular knowledge in formal meth-
ods or schedulability analysis.

Step one focuses on guaranteeing schedulability with
certainty. We develop a schedulability test for HRT robotic
tasks, which belong to a (mixed-) critical application, under
a fixed-priority (FP) preemptive policy. If the original appli-
cation, or a modified version achievable by e.g. modifying
tasks deadlines, together with the number of cores on the
robotic platform satisfy this test, then schedulability of HRT
tasks is guaranteed. This will be the basis of step two,
where we verify, up to a high probability, other important
properties less crucial than schedulability. Such verification
is done with SMC on formal models that we automatically
generate from the robotic application, the number of cores
and the FP scheduler (altogether proven to satisfy schedu-
lability for HRT tasks in step one). Our approach is applied
to a real autonomous drone system, developed using the
robotic framework G®"oM3, and the verification in step two
is carried out using the formal framework UPPAAL-SMC [6].

C. Outline

The rest of this paper is organized as follows. In Sect.
we present the verification problem: we (i) introduce
robotic task models, and exemplify through presenting
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GP"MS3 and the autonomous drone case study, then (ii) give
examples of crucial properties in robotics, and analyze the
problems preventing their verification with formal methods
or schedulability analysis independently. In Sect. we
detail our approach. Sect.[[V|shows and discusses the results
of applying our approach to the drone case study. Finally,
we compare our work to the state-of-the-art in Sect. [V| and
conclude with possible axes of future work (Sect. [VI).

II. THE VERIFICATION PROBLEM
A. Robotic Software Specificities

A robotic software, which we call a system, is made
of communicating components (Sect. [[-A). To account for
timining constraints, a component encapsulates periodic
tasks, in charge of its complex algorithms. The latter are
organized within services. Because services are heavy and
share memory resources, they are broken into small pieces
of code, each attached to a state in a Finite-State Machine
(FSM), hence the popularity of FSMs in robotics. Thus, there
are four “levels” in a system (from the lowest to the highest):
pieces of code, services (FSMs), tasks and components.

Though not unanimous in robotics, the above organiza-
tion is used by most component-based robotic frameworks
designed for real-time applications, with subtle differences
(e.g. while MAUVE [7] and Orocos[2] confound components
with tasks, i.e. a component is a task, G®oM3 preserves
both levels). Note that, since there is no standard terminol-
ogy for most levels, the one we use is that of G®M3.

1) G®oM3: Ge"MS3 [3] is the robotic framework used
in this paper. We provide a generic informal description of
G®"oMS3 with a focus on concurrency and real-time aspects.
A more formal example using timed-automata is given
in Sect. Note that this description is simplified for
readability and to remain in the scope of this paper (e.g.
control tasks and aperiodic tasks are excluded).

a) Organization: The organization of a component is
shown in Fig. |1} where we can see the three component
“levels” described above. Pieces of code are called codels.
Each codel, attached to a state of a service FSM, has a
Worst Case Execution Time WCET. By abuse of terminology,
FSM states are simply called codels. Each task ¢, featuring
a period, is in charge of a set of services S;. We say that
each service s€ S; is a service of ¢, and ¢ is the task of s
(s cannot belong to any S, with ¢ # ). To perform their
computations, codels share the Internal Data Structure IDS
of the component. Finally, ports are used to communicate
with other components, and are thus accessible by the
codels in all components that use them.

b) Behavior: We briefly explain how a component
evolves in a top-down fashion (from tasks to codels),
following the scheduler-agnostic semantics developed in [8].

The component is piloted by an external client that
requests services. Each task f, at each period, executes
only the services previously requested by the client (among

services in S;) sequentially. When a service finishes exe-
cuting, the task informs the client by sending a report.
While communication between clients and tasks is taken
into account in our verification (Sect. [[Il), it is abstracted
in the rest of this paper for readability and simplicity.
Each service FSM has at least two codels: start (at which
the first execution begins) and ether (the termination
point). A service execution ends when either (i) codel ether
is reached (service is terminated) or another codel c is
reached after taking a pause transition, i.e. a transition
labeled pause (see the abstract FSM in Fig. [1), we say then
the service is paused and refer to ¢ as a pause codel. In the
latter case, the service is resumed, at the next period of its
task, starting from c.
¢) Concurrency: Tasks (in a system), each of which
executes its requested services sequentially (see previous
paragraph), are run as parallel threads (assuming enough
cores are available). To maximize parallelism, access to
shared memory is handled at the codels level: memory
resources (ports or fields of the IDS) that a codel needs
for its execution are statically defined, so two codels in
conflict (using at least a same port or a same IDS fragment)
may not execute in parallel (simultaneous readings are
allowed). Thus, while executing its requested services, a task
needs to wait when one of such services reaches a codel
in conflict with another codel, in another service being
executed by another task concurrently. Following this low-
level concurrency model, a codel may be either thread safe
(TS) (not in conflict with any codel) or thread unsafe (TU)
(otherwise). Because of ports sharing, codels in conflict may
belong to different components (example in Sect. [[II-A).
d) Specification & Templates: While we content with
graphical illustrations of G®™M3 systems, the latter are
actually specified textually. Each component is written in
a dotgen (.gen) file, in which tasks, services and codels are
specified. A system may be then built by #-including the
dotgens of the different components in another dotgen.
Templates transform G®oM3 (dotgen) specifications into
Tool Command Language (Tcl) structures for automatic
generation purposes. The robotic programmer can access
all information in the dotgen (e.g. tasks periods, FSM and
codels WCET), manipulate them and generate a text file in
any format accordingly. We have used this mechanism in
previous work to automatically generate formal models [9].
In Sect. we give examples of templates developed to
automatize the two-step approach presented in this paper.
e) Case Study: To validate our approach, we use the
Quadcopter case study from LAAS-CNRS. Fig. (1| shows its
GP"oMS3 organization in which some names are modified
for simplicity. The system contains five components collab-
orating to achieve autonomous aerial navigation. We give a
high-level description (in terms of components and ports)
on how these components collaborate (the interested reader
may refer to [9] for more details on each component).
Component MIKROKOPTER processes data from the Iner-
tial Measurement Unit (IMU) and the propellers sensors and
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Fig. 2: The quadcopter case study (only some services are listed).

uses them to write the current IMU and velocity to ports
IMU and Velocity, respectively. Component OPTITRACK pro-
cesses data from the Optitrack motion capture system
and writes it to port Mocap. Component POM reads the
IMU and captured position from, respectively, ports IMU
(MIKROKOPTER) and Mocap (OPTITRACK), to which it applies
an Unscented Kalman Filter UKF to compute the estimated
position of the drone that it writes to port Pose. Such
position is fed to (i) MANEUVER, which uses it to compute
an intermediary goal position that it writes to port Goal and
(ii) NHFC, which uses it, together with the current Velocity
(from MIKROKOPTER), to compute and update, in port Cmd,
the velocity to reach the intermediary goal position (from
Goal in MANEUVER). Finally, the perception-action loop
closes as MIKROKOPTER reads the updated velocity in Cmd
(NHEC) and applies it to the drone propellers.

B. The Verification Challenge

If the drone software above fails, the drone may crash,
inducing economic costs and/or human injuries. We give
examples of crucial properties that must be verified to
avoid such failure, and explain why their verification is
particularly challenging.

1) Properties of Interest: The drone system has three
critical components: MIKROKOPTER, NHFC and POM. That is,
tasks in these components are HRT: each must always finish
executing within its period, otherwise the drone may crash.
It follows that the schedulability property must be proven
always true for these tasks, for all possible scenarios.

In the remaining components (less critical), tasks are

allowed to miss their deadlines. However, it is still important
to verify that they are e.g. exempt of starvation, that is
being, at some point, delayed forever by critical tasks
monopolizing resources. For e.g. tasks in MANEUVER, such
starvation would make the drone hover forever without
fulfilling its mission (as it may not navigate to a final goal
position).

2) Difficulties: Now, in order to verify these properties,
using model checking (or SMC) or schedulability analysis
independently proved insufficient in robotics in general and
on this drone system in particular.

a) With model checking / SMC: Model checking does
generally not scale with complex robotic applications. For
instance, we show in [8] that, although it performs well on
the stationary flight application (i.e. component MANEUVER
is excluded), model checking with state-of-the-art tools fails
to scale on the navigation application involving all the five
components (Fig. [2), with eight tasks and over 20 services
broken into more than 80 codels. In the same work [§],
we use SMC to verify properties up to a high probability.
Though SMC provides better guarantees than scenario-
based testing, it is not suitable for the schedulability prop-
erty of HRT tasks which must be proven with certainty.

Another problem of model checking (and generally for-
mal verification) in robotics is that extending formal models
with scheduling algorithms usually penalizes their scalabil-
ity because of (i) preemption and/or (ii) the necessity to
create large models to handle schedulers [10], [11]. For the
drone navigation application, the integration of schedulers
in formal models (which already do not scale as explained
above) produces new formal models that still do not scale,
even when preemption is not allowed.

b) With schedulability analysis: From a real-time anal-
ysis point of view, we focus on three levels in G®oM3
(and generally robotic) systems: the tasks level, the services
level and the codels level (component are abstracted as
tasks map to cores). Robotic tasks models are thus more
complex than those usually considered in real-time analysis:
a robotic task executes a sequence of jobs (codels) at
each period rather than one job whose WCET is known.
A particular problem is the computation of the WCET of
tasks, which is practically intractable. Indeed, besides the
fact that a TU codel (Sect. may remain infinitely
blocked waiting for resources (robotic frameworks do not
guarantee the absence of starvation), the sequence of codels
to execute in services by a task may differ from a period
to another depending on e.g. which services are requested
(Sect. [[T-A1Db). Another problem is, even if such sequences
WCET are somehow obtained, theoretical results of schedu-
lability analysis in the literature are still unusable because
the preemption model in robotics is also different (more
in Sect. [[II-A). Finally, schedulability analysis provides no
guarantees on other properties excluding schedulability.



ITII. A TwO-STEP HYBRID APPROACH

Our approach combines both formal verification, by
means of SMC, and schedulability analysis to achieve scal-
able rigorous verification of crucial properties in robotics.
We divide properties into two types: Type I covers properties
that must be verified with certainty (schedulability of all
HRT tasks), while Type II comprises properties that may be
verified with a high probability (e.g. absence of starvation in
less critical tasks). On that basis, a key idea is the following.
Since model checking does not scale, then we may use SMC
for Type II properties, but only once properties of Type I
are verified with certainty. Thus, we first check whether
we can guarantee properties of Type I using schedulability
analysis. This is the first step of our approach, which takes
into account the actual number of cores on the robotic
platform and a scheduling policy (Sect. [[II-A). If step one
is conclusive, an UPPAAL-SMC model of the considered
application, number of cores and scheduler (already proven
to satisfy properties of Type I in step one) is generated. On
such formal model, we verify by means of SMC properties
of Type II, which concludes the second step of our approach
(Sect. [[II-A). If step one is inconclusive, we give a possible
direction on how to pass it (Sect. [[V-C).

A. Step One: Schedulability Analysis

Our approach is based on Response Time Analysis (RTA).
First, we compute tasks WCETs, taking into account delays
caused by mutual exclusion over memory (Sect. [[II-AI).
Then, we compute tasks Worst Case Response time (WCRT)
considering the concurrency over cores (Sect. [[II-A2).

1) Computing tasks WCET: In the following, we ex-
plain more where the difficulty of computing task WCET
(Sect. |lI-B2) comes from, using the UPPAAL formal model
of the G®™MS3 task main (component MIKROKOPTER) of the
drone (Fig. [2) shown in Figf3] This model, automatically
generated, is proven correct w.r.t G®oM3 semantics [12],
[8]. The model is simplified for readability purposes.

Each timed automata (TA) in UPPAAL, made of locations
and edges connecting them, and possibly having a clock
x, is called a process. Time invariants (in purple) may be
associated with locations, and edges may have guards (in
green) and operations (in blue). Processes are arranged
to fit with the “layers” vision given in Sect. the
task layer, composed of processes timer and manager, the
services layer, where each underlying G®"oM3 service FSM
is mapped to an UPPAAL process, and the codels layer,
where codels are locations in services processes. Fig.
shows that task main has two services: Init and Apply.

Shared variables and functions are used by processes to
communicate. Array tab_t holds the names and “statuses”
of all services of task . Each of its cells contains two fields:
n, a service name and st, the service status that may be
either R (requested by a client) or V (for “Void”, otherwise).
The timer of ¢ gives at exactly each period a signal, through
variable tick_t, to the manager to start execution, by tak-
ing the edge start — manage. The operation of such edge

\ Task main (component mikrokopter) \

x==period[main] exe!
tick_main:= true, tick_majf := false,
x:=0 i_main/= next (i_main, tab_main)

tick_main

lock_main &&
i_main < size_main

exe!

panage

start turn_ma|n := tab_main[i_main].n,
lock_main := false

start lock_main &&

i_main == size_main
x <= period[main] exe!
i_main:=0

Init
Vmut[starLConnomm] && exe7
Imut[poll_Connect_comm] && ‘ @
Imut[recv_Connect_comm] &&
exe
start x:= 0, .
mut[start_Init_main]:= true

x<=wcet[start_Init_

starthexec

llock_main &&
turn_njain == Init x>

mut[start_Init_main]: ¥ false,
x:=0

mut[run_Ini§_main]:= false,
tab_control[j_main].st:= V,
i_main:= neixt(i_main+1, tab_main),
lock_main :+ true

Imut[start_Connect_comm] &&
Imut[recv_Connect_comm] &&
Imut[servo_control_nhfc]

exe!
mut[run_Init_main]:= true,
x:=0

run_exec

x<=wcet[fun_Init_main]

x>0

1= next(i_main+1, tab_main),
_maip := true,

mut[run_|nit_main]:= false

llock_main &
turn_main = Init
exel

run_pause

©)

mut[end_Apply_main]:= false,
tab_control[i_main].st:= V,
i_main:= nex{(i_main+1, tab_main),
lock_main := ftrue

ehd_exec

x<=wcet[endj Apply_main]

Imut[start_Cohnect_comm]
exp!
Imut[recv_Connect_comm] &&
Imut[strat_s¢rvo_control]

x:=0,

mutlend_Apply_main]:= true
x:=0,
mut[run_Apgly_main]:= true,
run_exec

d

x <=wcet[run_Ap

mut[run_Apply_main]:= false

Fig. 3: Simplified UPPAAL model of task main in component MIKROKOPTER. Process
Urgency does not belong to any component and is added to enforce urgencies, i.e.
prevent unnecessary lazy waits (the receiver (?) edge is always ready).

searches, through function next(), for the index of the next
requested service in tab_t (having status R) starting at index
i_t (initially 0) and stores the result in i_f (the size of tab_t if
such service does not exist). At location manage, the man-
ager executes the requested services sequentially: variables
lock_t and turn_t are used to pass the control to the next
service to execute (computed previously through function

n this case, there is an additional operation: V is assigned to the service
status in fab_t to prevent ¢ from executing it again at its next period.



next()). When such service finishes execution, either by
terminating! (e.g. edge end_exec — ether in service Apply) or
pausing (e.g. edge run_exec — run_pause in service Init), it
computes the index of the next service to execute and gives
the control back to the manager. And so, the control passes
back and forth between the manager and the requested
services until each of the latter has executed once (detected
when next() hits the bottom of rab_t), so the manager
transits back to start and awaits the next period.

Now, at the codels level, a codel ¢ in a service s is
represented either by one location ¢ (if it is TS) or two
locations ¢ and c_exec (otherwise), plus a location c_pause
if such codel is targeted by a pause transition in the
underlying G®"oM3 specification. The WCET of ¢ is rep-
resented with an invariant x < wecet[c_s_t] on location ¢
(c_exec if c is TU) where wcet is an array of all codels WCET
indexed with unique identifiers. The array of Booleans mut
is used to handle concurrency: it tracks the execution
of TU codels in the system. Therefore, guards on edges
¢— c_exec ensure ¢ does not start executing unless no codel
in conflict with ¢ is currently executing, witnessed by the
falseness of the corresponding fields in mut. For instance,
codel run of service Apply is in conflict with codel recv
(in service Connect, executed by the other task comm in
MIKROKOPTER), and codel start (in service servo of task
control in component NHFC), which explains the guard on
the edge run— run_exec in process Apply. If such guard is
true, codel run starts executing by taking run— run_exec
through which it turns its own field in mut to true to
prevent, in turn, codels in conflict with it to execute.

This example shows the complexity of G®"6M3 (and gen-
erally robotic) tasks. From a real-time analysis perspective,
we identify two problems. First, the WCET of a sequence of
codels (which a task executes) is possibly infinite, because
we do not know beforehand how long a TU codel needs to
wait to secure the memory resources it needs. Second, even
if we bound such waiting times, it is practically infeasible to
compute by hand the WCETs of all possible sequences: for
instance, summing the WCETs of all codels in all services
in a task (assuming we bound and include waiting times
in TU codels WCETs) would be a naive solution (such sum
would be a coarse overapproximation that will likely prevent
finding a feasible schedule). We propose a solution for both
problems by, respectively (i) an implementation to bound
waiting times for TU codels and (ii) an algorithm to com-
pute the WCET of a task by traversing all possible codels
sequences. We explain how solution can be automated.

a) Bounding TU codels WCET: We propose an imple-
mentation to enable computing a bound B, on the waiting
time (to acquire memory resources, i.e. IDS or ports) of any
TU codel c. Then, we get the actual WCET of ¢ by summing
its WCET (from the G®™M3 specification) with B,.

The implementation is inspired from multiprocessor
memory-sharing protocols. Brandenburg [13] reviewed a
number of such protocols, mainly categorized into spin-
based (busy-wait) and suspend-based, and pointed out that

the former are easier to implement and perform better than
the latter when durations of critical sections are short. As
we explained in Sect. |lI, FSM in robotics are designed to
reduce the times of locking shared resources, which makes
spin-based protocols suitable to our case. Actually, the
previous reasoning fits with the reality of spinlocks being
widely used in robotics (e.g. ROS and G®oM3 systems).
In this paper, we use the MSRP protocol [14]. We benefit
from the judicious remark made by Brandenburg [13] as
he clears the confusion that the protocol name may create:
in MSRP, the “SRP” part refers to the priority-ceiling-based
protocol SRP [15], which is actually used to handle local
resources only on each core/processor, and thus this part
of the protocol is not relevant to our case (as all shared
resources e.g. ports are global). In contrast, the “M” part
deals with global resources (and this is exactly what we
will use to bound waiting times): a TU codel ¢ appends
itself to a FIFO and its thread is spinlocked until c gets
access to shared memory, and spinlocked threads are non
preemptible. TS codels are not concerned as they are in
conflict with no other codel in the system (Sect.[[[-Alc). The
direct disadvantage of this approach is that all TU codels
compete for the shared memory as a whole, which reduces
the overall parallelism of the system (it is possible for a
TU codel c to be blocked by another TU codel c’ in the
FIFO even though c and ¢’ are not in mutual conflict).
While we deem this loss in parallelism a fair price to pay
for bounding waiting times, we are investigating new FIFO-
spinlock algorithms to restore it (see future work in Sect.|[VI).
Let us compute B; of a TU codel ¢ in a service s in a
task . We assume there are n tasks and m cores (m< n).
In worst case scenarios, the thread trying to execute ¢
spinlocks after already m —1 threads are in the spinlock
FIFO (for accessing shared memory). Since each thread
corresponds to a G®"oM3 task that (i) is sequential and (ii)
spinlocks only when trying to execute a TU codel, the first
m—1 entries of the FIFO are occupied by TU codels each
in a distinct G®"oM3 task, different than f. In the worst
case, each 1’ of the m—1 tasks already spinlocked is trying
to execute TU codel ¢ with the largest WCET among the
TU codels of all services in . Thus, B. is upper-bounded
by the sum of the WCET of codels . To get that sum, we
proceed as follows. (1) For each task ¢’ # t, we find, within
all its services, the largest WCET of all TU codels. (2) We
sort, in a decreasing order, the values found in (1). (3) B,
is equal to the sum of the first m —1 values sorted in (2).
Once B, computed, we sum it with WCET, to get the
actual WCET of ¢ (including the maximum time it may
wait for memory access). To make codels actual WCETs
computations accessible to robotic programmers, we make
use of the template mechanism (Sect. [I-A1d). We give in
listing [1] an example that performs steps (1) and (2) of the
algorithm above, then writes (to a file) the list output by
(2) for any TU codel in any service in task ¢. The template
generator evaluates everything enclosed in <’ ’> (resp. <”
”>) in Tcl without output (resp. and outputs the result),



1 <’ set wcets_max [list] ’>

2 <’ foreach comp [dotgen components] { ’>

3 <’ foreach t_prime [$comp tasks] { ’>

4 <’ if {t_prime == t} {continue}

5 <’ set max_wcet @ ’>

6 <’ foreach s [$t_prime services] { ’>

7 <’ foreach ¢ [$s codels] { ’>

8 <’ if {[1length [$c mutex]] && ([$c wcet] >

$max_wcet)} {’>

9 <’ set max_wcet [$c wcet]} ’>

10 <’ } >

1 < 3>

12 <’ lappend wcets_max $max_wcet ’>

13 < 3>

14 <’ } ’>The list is <"[lreverse [lsort wcets_max]]">

Listing 1: Generating largest WCET of TU codels per task.

and outputs the rest as is. Line 4 excludes task t, and line 8
conditions considering codel ¢ only when it is TU through
the non-emptiness of the field [$c mutex], a ready-to-use
list containing all codels in conflict with c. The last line
writes to a file the list after sorting it in a decreasing order.

Thus, at the end of these computations, we have the
actual WCET of all codels, which we call simply WCET in the
rest of this paper (that is, the WCET provided by G®"oM3
if ¢ is TS, summed with B, if ¢ is TU). Our approach to
compute B, is generic, and may thus be pessimistic in
some cases. For instance, if the scheduler is partitioned,
some of the m—1 largest elements of wcets_max (listing [1)
may belong to tasks allocated to the same core as t, and
thus B, is overestimated. However, this generecity brings
a valuable advantage. Indeed, since the computation is
affinity-independent, the roboticist performs this step only
once and, if some HRT tasks do not pass the schedulability
test (Sect. [[[[-A2), may try to find a better affinity by
reallocating tasks based on the timing constraints already
computed (the affinity does not affect such constraints).
This is explained further in Sect. [V}

b) Deducing tasks WCET: We call each possible (full)
codel sequence executed by task t a hyperjob. The largest
WCET of all hyperjobs in ¢ is then simply the WCET of ¢.

Therefore, to compute the WCET of ¢, we proceed as
follows. (1) For each service s in task ¢, we sum the WCETs
of codels involved in each possible path (starting either at
codel start or some pause codel, and ending either at
ether or some pause codel). (2) We find, for each s, the
value of the largest among the sums computed in (1). (3)
We sum the values found in (2). (4) we repeat (1), (2), (3)
for all tasks in the G®oM3 system. Thus, this algorithm
will give the maximum time to execute the longest possible
path in all services in ¢, which corresponds to the largest
WCET of all possible hyperjobs in t (i.e. the WCET of ).

The above algorithm being classical in model checking,
the idea is to benefit from the already existing UPPAAL
template [8] to achieve it. Yet, we know that the overall
UPPAAL model of this application does not scale. The good
news is, however, we do not need to consider the system
as a whole: since WCETs are now known for all codels, we
may adapt services processes of task ¢ to allow computing
the maximum time of their possible paths (step (1) above)

without considering the rest of the system.

x<=wcet[run_Init_main]

Fig. 4: Modified process of Apply for WCET task computation.

First, locations c_exec are no longer needed: location ¢
is enough, the invariant bound of which is the WCET of
codel ¢ (Sect.[[lI-Ala). That being done, interactions of each
service with services outside ¢ cease to exist (since bounds
B are now included in TU codels WCET, all guards and
operations involving the mut array are removed). Then, we
(i) make all ether and c_pause locations urgent (time cannot
progress at them) and add, to each service process of f,
a clock y reset to 0 at all edges leaving ether or c_pause
locations. This way, y tracks the time of each possible path
from location start (or any c_pause location) to location
ether (or any c_pause location). We have thus what we need
for step (1) of the algorithm above, and may remove all the
remaining non-clock guards and operations in the services
of t. It follows that there are no more interactions between
any service process in ¢ and the rest of the system, which
means we can verify each service separately.

Fig. |4 shows the result of these changes to the UPPAAL
process of service Apply (Fig. [3). Now, all we need to
do is ask UPPAAL for the maximum value of clock y at
location ether and each location c_pause using the UPPAAL
query pattern sup{p.l}: p.y (with p being the process name
and !/ the location name), store the results and repeat the
operation for each service in task ¢, which corresponds to
step (1) of the algorithm above. Then, we perform (2) and
(3), then repeat the whole process for all other tasks (step
(4)) to get the WCET of all tasks in the G®oMS3 system.

2) Analysis: Once tasks WCET computed, we compute
their WCRT for RTA analysis. We recall that schedulability
tests from the literature are not applicable to robotic tasks
even when they take memory-sharing into account. For in-
stance, standard task and scheduling models assume a task
executes only one job at each release. This means that, if
we use available tests, we should treat each hyperjob as one
job and, since such hyperjob is likely to include a TU codel,
make it non preemptible (Sect. [[lI-Ala). Consequently, we
will most likely end up with a set of non-preemptible tasks,
which renders preemptive scheduling useless.

Thus, we need to perform schedulability analysis based
on the model in Fig. |5} each hyperjob may be preempted at
the end of each codel. The reason for this is rather straight-
forward: in robotics, elementary pieces of code (codels in



GP"oM3) are designed by roboticists as the smallest pieces
(of the algorithm they belong to) that must be performed
with no intermediary perturbations. TU codels present an-
other feature that consolidates the rationale of codels non-
interruptibility: their interruption may compromise their
memory-dependent computations.

R

codel ¢’
hyperjob

Preemption points

codel c

Fig. 5: hyperjob model.

a) Scheduling assumptions: In this paper, we use a
partitioned fixed-priority FP scheduler. There are two main
reasons. First, partitioned FP is very popular in domains
related to robotics, such as automotive systems (e.g. in
AUTOSAR [16]), since it removes the cost of task migration.
Second, global schedulers are known to perform poorly
compared to partitioned ones, even though this might result
from over-pessimism of tests in global approaches [17].

The task set of the robotic system is the union of HRT
and less critical tasks T =7, U7;. There are two priorities:
prp (rep. prp, the high (resp. low) priority, assigned to all
tasks in 7, (resp. 7;). The platform features m cores C;...Cy,
(m < |1|). Let Affi <t be the affinity of core C;, that is the
set of tasks allocated to it. Then, Aff; = AffijUAffin where
Affi =110 Aff; (esp. Affin =1 NAff) is the set of low (resp.
high) priority tasks allocated to C;. Since the algorithm is
partitioned, each task is statically allocated to only one core,
that is Vi,je 1..m, i # j: Aff;n Affj = ¢. The size of the queue
of C; is equal to the cardinality of its affinity |Aff;l.

b) Computing tasks WCRT: Following the model in
Fig. [5} a task is a set of hyperjobs ¢ = {hj;...hji;}. A hyperjob
is an ordered set of codels hj = {er...qnjil- If a codel c belongs
to a hyperjob in ¢, we may say simply that c belongs to .
When needed, we use the superscript (*) to denote that
a hyperjob or a codel belongs to task t, and the double
subscript jk to denote that a codel ¢; belongs to hyperjob
hjk. At each period P;, one (depending on the evolution of
the system) of hyperjobs in ¢ is to be executed. The WCRT
of t defines an upper bound on the time separating the
moment a;, at which a hyperjob hj; is activated (arrives in a
core queue), and the moment f;, at which it finishes its ex-
ecution and frees the core, that is WCRT; = maxc;. |1 (fi — ai)
(eq. 1). Let r; € [a;, f;) be the moment hj; is released, that is
a core is given to it and it starts to execute (f; is excluded
because hj; cannot execute in a zero time). By inserting r; in
eq. 1 we get WCRT; = maxie .|y (fi — 1i + 1: — ;) which we may
upper bound WCRT; = (maxie; 5 (fi — 1i) + maxic1.n(ri — a;))
(ineq. 2). Now, we know that the left-hand operand of the
right-hand side of ineq. 2 is the WCET of ¢ which we already
computed in Sect. We call the remaining operand
the Worst case Waiting Time WWT; = maxie;.5(ri— ai) (eq.
3). Therefore WCRT; = WWT;+ WCET; (ineq. 4).

A hyperjob hj of a high-priority task ¢ allocated to core
C; (t€ Affin) worst position in the prioritized queue of C; is
equal to |Affinl. The worst waiting time of hj corresponds
to this very position (hyperjobs of tasks in Aff;;, having the
same priority pry, as f, are already in the queue, so hj has
to wait for them to finish). Now, in this worst situation, the
worst case is when the hyperjob at the head of the queue
cannot start immediately as a low-priority task hyperjob hj’
is still not preempted (we recall that preemption points are
set at the end of each codel, Fig. . It follows that the worst
waiting time for hj is equal to the sum of the WCET of all
|Affinl — 1 hyperjobs (each belonging to a task ¢’ € Affi,\{#}) in
the queue plus the WCET of the codel of hj being currently
executed. We maximize such worst waiting time for all
hyperjobs in t to get WWT; (see eq. 3). To account for the
waiting needed for high-priority hyperjobs, we maximise
the WCET of all hyperjobs in each task ¢’ € Affj;\{f} and
sum them (1). Then, we add to the value obtained in (1) the
waiting for preemption by maximizing the WCET of codels
in low-priority tasks ¢’ € Aff;; (2). (1) is simply the sum of
the WCET of tasks ¢ € Affi;\{#} and in (2) we add the WCET
of the longest codel in tasks ¢’ € Aff;;, which gives us the
following bound for any task ¢ allocated to core C;:

WWT; < 2 eags, iy WCETy + max' ;?ﬁ?t ,
kel.hj’|

We sum WWT; with WCET; to upper-bound WCRT; (see
ineq. 4). Finally, we state the schedulability test for HRT
tasks Vte ty,: WCRT; < P; (ineq. 6).

While pessimistic, this test is sufficient: if the maximum
time a task f needs from its activation to its end is inferior
than its deadline (period), then ¢ is schedulable. We trade
off optimism for sustainability: Burns and Baruah [18] show
that RTA-based FP schedulability tests are sustainable in the
sense that they remain valid even if some tasks manage to
execute in less than their WCET.

(WCETCW) (lneq 5)
kl

B. Step Two: Formal Verification

If all HRT tasks in the G®oM3 system pass the schedu-
lability test in step one, we may verify other - less critical
- properties using SMC, otherwise we should redesign the
system (Sect. [[V). We automatize the generation of UPPAAL-
SMC models by extending the template presented in [8].

First, we make sure that the WCET computations, made
with the help of UPPAAL (Sect. [[II-A), still hold in UPPAAL-
SMC models. This is a simple proof. As shown in [8], the
only difference between UPPAAL-SMC and UPPAAL models
is at the level of services, where non-deterministic edges
may have custom probabilities. To give an example, let us
get back to Fig[3] In process Init, there are two edges out of
location run_exec. In UPPAAL, these edges are equiprobable
(chances to take one or the other are equal). In UPPAAL-
SMC, one may use custom probabilities (that sum to one)
on such edges, a mechanism which we exploited in [8]
to insert experiment-based probabilities. Now, w.r.t the
computations made in Sect. this difference has no



1 <’ for {set k 1} {$k <= [length $Aff]1} {incr k} { ’>

2 <’ if {[$t name] in [lindex $Aff $k1} { ’>

3 <’ set index $k ’>

4 <’ break} ’>

5 process manager ...

6

7 start -> ask {guard tick_<"[$t name]"”>; sync
insert_<"$index">; assign tick_<"[$t name]">:= false;},

8

Listing 2: Generating an edge for manager of task z.

impact since, for HRT tasks, we need to explore all paths
anyway, no matter how big or small is the probability to
take each of them. Second, we need to integrate the FP
scheduler in the UPPAAL-SMC model and automatize it in
the template. We show how this is done hereafter.

a) Integrating the FP scheduler: We add a process C_i
to handle the FP scheduling for each core C; on the robotic
platform. Fig. 6| shows a generic example of such process,
and how the managers processes are modified accordingly
(we show only one manager). C_i has three locations: idle
(the core is idle), decide (the core queue is dequeued) and
busy (the core is being used). On the managers side (of
each task in Aff;), an intermediary location ask (the task is
activated but still waiting to get the core) is added.

ask allow_i[t]

manager of
give_i?

task t (in Aff)

decide

lock_t &&
i_t <size_|

lock_t &&
i_t ==size_t
free_i!
i_t:=0

exel
turn_t = tab_t[i_t].n,
lock_t := false

Fig. 6: Integrating scheduler model

C_i and the managers communicate as follows. The
manager inserts (function enqueue()) the name of ¢ in Q_i,
the prioritized queue of C_i. On the edge idle— decide,
C_i dequeues Q_i, and, depending on the dequeued value,
updates the shared array of initially false Booleans allow_i,
indexed with the names of tasks in Aff; (if the dequeued
value is t, it turns allow_i[t] to true). At location decide, C;
synchronizes with the manager of the only task ¢ such that
allow_i[t] = true (computed in the previous step), through
the urgent channel give_i, which allows such manager to
move to location manage (at which it starts executing a
hyperjob) and moves C_i to location busy. C_i will then
wait till the manager finishes executing the hyperjob and
releases the core, which is done through the urgent channel
free_i. Finally, the model handles also preemption, but this
is not shown in this paper for space and readability reasons.

b) Automatization: The programmer provides the
affinity of cores Aff = {Aff;..Affm} as a Tcl list of lists. List-
ing. [2| shows how we generate the edge start — ask, in the
manager process of task ¢ in the system, in the UPPAAL .xfa
textual format. The for loop (lines 1-4) finds the i subscript
of core C; to which ¢ is allocated. Then, in line 7, the edge

start — ask, with the right subscript for channel insert_i (in
the synchronization block, keyword “sync”), is generated.

IV. RESULTS

We apply our approach to verify important properties on
the drone navigation under a partitioned FP policy and the
number of cores on the drone platform. The latter embeds
an ODROID-CO card featuring a four-core processor.

A. Step One

We comply with the notation given in Sect.
m= 4 (number of cores), T, = {main, comm, io, filter, control}
(the set of HRT, ie high-priority tasks, those of
the critical components MIKROKOPTER, POM and NHFC),
71 = {publish, plan, exec} (the set of low-priority tasks, those
of components OPTITRACK and MANEUVER). Following the
steps given in Sect. we compute the actual WCET
of all TU codels in the system and update such WCET
accordingly, then compute the WCET of the five HRT
tasks in the system (table. [[). For each of the remaining
three tasks, we identify the codel having the largest WCET
(table. [[[). We recall tasks periods in table

HRT task | WCET (ms) Task WCET of
main 0.51 as longest codel (ms)
comm 047 publish 03

10 0.68 plan 0.4
filter 0.55 exec 04
control 0.52
TABLE II: Longest-codel WCET in
TABLE I: WCET of HRT tasks. low-priority tasks.

Task Period (ms) Task Period (ms)

main 1 control 1

comm 1 publish 4

io 1 plan 5

io 1 exec 5

TABLE III: Tasks periods.
HRT task | WCRT (ms)
Core Affinity main 0.98
Cy {main, comm} comm 0.98
Co {io, plan} io 1.08
C3 {filter, publish} filter 0.85
Cy {control, exec} control 0.92
TABLE 1V: Initial affinity. TABLE V: WCRT of HRT tasks considering the
initial affinity (table [[V).

An issue that arises is how to allocate tasks to cores.
It stems from the bin-packing problem, known to be NP-
hard. In this paper, the way we allocate tasks is inspired
by the first-fit decreasing heuristic. We start by allocating
m high-priority tasks (in 75) to the m cores, then repeat
until all tasks in 7 are allocated. Then, we do the same for
low-priority tasks (thus allocation is by decreasing priority).
The first-fit part is left to after running the schedulability
test on HRT tasks (if such test fails). This allocation is not
exactly what the original heuristic does, but in our case, it
intuitively tends to reduce the WCRT of HRT tasks in the
application. Indeed, such WCRT increases with the number
of HRT tasks allocated to the core (ineq. 5), and so allocating
first HRT tasks minimizes the maximum number of HRT



tasks allocated to a core C;, upper-bounded by [7,/m]. The
(decreasing) affinity we start with is given in table

We are now ready for schedulability analysis: we apply
ineq. 5 (using the values from table. [I| and table. [[I) for each
task ¢ to upper bound WCRTy, then compare the latter with
the period P; from table [[I]] (ineq. 6). The results (table [V},
show that all HRT tasks pass the schedulability test except
for task i0, whose WCRT is 80 us larger than its period.

At this point, we may try to change the affinity without
modifying the decreasing pattern (no more than two HRT
tasks per core). Here, the generecity of the approach in
Sect. allows us to reason only using the timing
constraints from tables [l and [[I} which remain valid regard-
less of the chosen affinity. We notice that, by permuting
the allocation of low-priority tasks publish and plan, all
HRT tasks pass the schedulability test (table. [VI). This new
affinity guarantees schedulability for all HRT tasks in the
system (table. and will be thus the basis of step two.

Core Affinity HRT task | WCRT (ms)

C1 {main, comm} main 0.98

Cy {io, publish} comm 0.98

Cs {filter, plan} io 0.98

Cy {control, exec} filter 0.95

control 0.92

TABLE VI: New affinity (by permuting
tasks in blue in the initial affinity in | TABLE VII: WCRT of HRT tasks considering the
table V). new affinity (table [VI).
B. Step Two

We generate, from the affinity in table [VI} the number
of cores and the G®™oM3 system, an UPPAAL-SMC model.
In the latter, schedulability for HRT tasks (Sect. [[V-B), is
guaranteed by construction (step one).

Now, using UPPAAL-SMC, we guarantee, up to a high
probability, that low-priority tasks never starve, a less criti-
cal, yet important property (Sect. [[I-BI). To do so, we reason
as follows. We know that in any task manager (Fig. [4),
location manage denotes that a hyperjob is being executed.
Thus, the absence of starvation means that (i) location
manage is reachable and (ii) whenever it is reached, loca-
tion manage is eventually left (back to location start). (i) is
a reachability property while (ii) is a leadsto property which
UPPAAL-SMC does not support. This is a limitation of the
tool and not intrinsic to SMC.

Fortunately, there is a simple workaround if we augment
the manager model (Fig. [4) with a clock x that is reset to
0 whenever any location is left. Thus, if the value of x is
upper-bounded, then manage (i) is reachable (otherwise x
would be unbounded at start or ask) and (ii) eventually
left (otherwise x would be unbounded at manage), which
corresponds to the same (i) and (ii) above. We may thus
transform the two-step reachability-leadsto property into a
safety property as we query the UPPAAL-SMC verifier to es-
timate the probability of x being bounded by value max_x,
e.g. for task plan: Pri< bl([lmanager_plan.x < max_x) (with
b being a time bound for SMC simulations). We call prob;
the probability of satisfying this property by a task .

prob; €
t Xmax =4 Xmax =5 Xmax = 6 Xmax =7
optitrack [0, 0.004] [0, 0.004] [0.996, 1] [0.996, 1]
plan [0, 0.004] [0, 0.004] [0.996, 1] [0.996, 1]
exec [0, 0.004] | [0, 0.004] [0, 0.004] | [0.996, 1]

TABLE VIII: Verification results (step two).

We set the statistical parameters to a high confidence
(@ =0.02) and precision (e = 0.002), which means that the
highest probability we can obtain for prob; is 99.8% +¢
i.e. prob; € [0.996, 1] with a confidence 100% — @ = 98%. For
each task t, we set max_x to P, and raise it until such
highest probability is reached. Table gives the results
for all low-priority tasks. In sum, all low-priority tasks
are starvation-free with a 99.8% probability as soon as
x_max = 7ms. UPPAAL-SMC takes up to 25 minutes to
verify each property, a value that grows exponentially if we
try to tighten the precision further: with € tending toward
zero SMC tends toward classical model checking and thus
scalability is threatened as we noticed in [8].

C. Discussion

We prove, with certainty, the schedulability for all HRT
tasks in the application, while proposing a scheduling
policy on the drone platform. Also, we prove with a high
probability that low-priority tasks never starve for cores.
Thus, considering the real robotic platform and the affinity
and scheduling algorithm we propose, the G®"oM3 system
of the drone guarantees the latter does not crash because
HRT constraints are not met, and is highly likely to fulfill
its navigation missions (Sect. [[I-BI).

However, it is possible, for other applications, that step
one (Sect. is not conclusive, that is we fail to find
an affinity that allows all HRT tasks to pass the schedula-
bility tests. In this case, we may consider redesigning the
application by e.g. changing the periods, which is however
not always feasible because periods may be dictated by
hardware constraints (e.g. sensor frequency).

V. RELATED WORK
A. Rigorous Verification of Real-Time Robotic Applications

Popular robotic environments like ROS [1] are not suit-
able for real-time applications [19]. This is one consequence
of the hard research problem of verifying time-constrained
robotic systems. Schedulability analysis and formal meth-
ods have been explored to tackle this problem.

One of the main issues hindering the use of schedu-
lability analysis is the generalization of tests to robotic
task models [7]. Some robotic software initiatives try to
tackle this issue [2], [20], [7]. In particular, MAUVE [7]
supports specification, implementation and analysis of real-
time constraints. However, such initiatives focus on schedu-
lability analysis and thus leave important properties such
as reachability and bounded response unattended.

On the other hand, a major challenge of using for-
mal verification is bridging robotic software, not formally



founded, with formal methods. Proposed solutions range
from ad-hoc non-reusable formalization [21], [22] to formal
frameworks for robotics [23]. Another difficulty is the lack
of scalability of exhaustive verification techniques due to
the complexity and size of robotic systems. Non-exhaustive
techniques such as SMC, used in [24], are not suitable for
critical applications where schedulability of HRT tasks must
be verified with certainty. Besides, to the best of our knowl-
edge and except for our efforts (Sect. , the literature on
formal verification in robotics (including works cited here)
ignores hardware and OS scheduling constraints, which
restricts the results validity to the unrealistic assumption
of all tasks running in parallel at all times.

B. Our previous work

In [25], [L1], [10] we proposed automated support to
verify various properties of robotic applications under dif-
ferent scheduling policies by means of model checking.
Such support is not suitable for the drone navigation
application because of scalability issues. In [8], we proposed
an automated approach based on SMC to verify, up to a
high probability, a number of properties. This approach
is not suitable either for the drone system because SMC
guarantees are not enough for critical properties such as
the schedulability of HRT tasks.

C. Comparison to related work

In this paper, we combine both schedulability analy-
sis and formal verification to achieve a rigorous verifica-
tion of complex robotic systems. Unlike related work, we
cover both schedulability and other important properties,
while taking into account hardware and OS constraints, on
robotic systems that do not scale with model checking.
Furthermore, we provide an automated support to enable
using our approach with no prior knowledge of either
schedulability analysis or formal verification.

VI. CONCLUSION

We describe an automated two-step approach to rigor-
ously verify complex (mixed-) critical robotic applications.
It combines schedulability analysis and formal verification
and is suitable for robotic applications that do not scale
with model checking. Our approach is automated for non-
expert users and validated on a real drone case study.

We give two examples of future work directions. First,
as said in Sect. [V} UPPAAL-SMC does not support lead-
sto properties and nesting operators in general. Though
we often find alternatives to formulate the properties we
want to verify, this limitation may be disabling for non
experts. We are investigating strengthening our approach
with automated modeling in BIP-SMC [26], supporting
full Bounded LTL and Weighted MTL logics with nesting.
Second, the “global memory” FIFO spinlock that we borrow
from MSRP leads to a loss in parallelism (Sect. [[lI-Ala). We
are working on a new shared-memory-locking algorithm
inspired from group locks [27], where locking overheads
need to be carefully considered.
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