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) and (17). Section §14 contains figures with captions to complement the discussion.

§1 Vectors and matrices

1. An m-vector is an m-tuple of real numbers, x = (x j ) m j=1 = (x 1 , . . . , x m ) ∈ R m . This vector has a row matrix [x] = [x] 1×m with one row, m columns and entries x j ; and has also a column matrix which has m rows, one column, entries the same x j and is the transpose of the row matrix

[x] = [x] 1×m = [x 1 . . . x m ] [x] = [x] m×1 =    x 1 . . . x m    m×1 = [x] τ 1×m 
2. For x ∈ R n the symbol [x] can indicate either a row matrix or a column matrix, with cases discerned by indexes, like [x] 1×m and [x] m×1 , but often to be sorted by the context.

3.

A q multivector in R m is a sequence M = (x i ) q i=1 = (x 1 , . . . , x q ) ∈ (R m ) q = R m × q • • • ×R m having q terms with each term equal to an m-vector, hence x 1 = (x 11 , . . . , x 1m ) . . .

x q = (x q1 , . . . , x qm )

4. The multivector M determines a q × m matrix [M ] = [M ] q×m with q rows and m columns

[M ] =    x 1 . . . x q    q×m =    x 1 1 • • • x 1 m . . . . . . x q 1 • • • x q m    q×m 5.
The transposition of matrices will be symbolized with the exponent τ or the exponent * , this last being preferred for the transpose Jacobians. The Jacobian notation J * f (a), J * E f (a) and J * G f (a) remind that these are the matrices of the transposes D * f (a), D * E f (a) and D * G f (a) of the derivatives Df (a), D E f (a) and D G f (a).

6. The spaces of matrices will be usually indicated by the letters E, F , G indexed, as done with the matrices themselves, with a cross product that indicates the number of rows and columns. For example the following matrix spaces are of respectively columns (q rows and a single column), rectangular (q rows and m columns), and rows (single row and m columns)

E q×1 = {[M ] | M ∈ R q } G q×m = {[M ] | M ∈ (R m ) q } F 1×m = {[M ] | M ∈ R m } 7.
In the case of 1×1 matrices the brackets can be ignored hence for any x ∈ R we have [x] = [x] 1×1 = x and the space of one-dimensional matrices is any of

E 1×1 = G 1×1 = F 1×1 = R.
8. Maintaining a distinction between q-tuples M ∈ (R m ) q = R qm and matrices [M ] ∈ G q×m helps in organizing the exposition and provides notational as well as typographical conveniences useful in our approach to semilinear networks.

9.

Any vector space of matrices, say G q×m , is equipped with the standard inner product, namely the product for which the squared norm is the sum of the squares of the entries of the matrix. Then (R m ) q and G q×m are isometrically isomorphic.

10. Let n = {1, . . . , n} ⊆ N, q = {1, . . . , q} ⊆ N and for each (i, j) ∈ q × m consider the Kronecker delta δ ij : q×m → {0, 1} defined as the characteristic function of the singleton {(i, j)} ⊆ q × m. Then [δ ij ] is a q × m matrix, [δ ij ] ∈ G q×m . This set of matrices will be given the lexicographic order of the index pairs, that is, ij ≤ i j means that i ≤ i or, if i = i then j ≤ j .

11. The canonical basis of G q×m is the lexicographically ordered collection of Kroneker deltas

{[δ ij ] | 1 ≤ i ≤ q 1 ≤ j ≤ m}.
The canonical basis is orthonormal.

12. For a vector x = (x 1 , . . . , x m ) ∈ R m its biased vector, 1 ∨ x ∈ R m+1 , is the result of attaching to x the unit 1 as first component

1 ∨ x = (1, x 1 , . . . , x m )
The index affecting the attached component is zero: 1 ∨ x = (x 0 , x 1 , . . . , x m ) with x 0 = 1. §2 Weights 13. A weight vector for m-inputs and single output, denoted w, is an (n + 1)-tuple of real numbers, w = (w j ) m j=0 . Equivalently, w ∈ R m+1 is a vector with the first coordinate indexed by 0 w = (w 0 , w 1 , . . . , w m )

14. There is for w ∈ R m+1 a corresponding row matrix [w] = [w] 1×(m+1) ∈ M 1×(m+1) and also a column matrix

[w] = [w] (m+1)×1 ∈ M (m+1)×1 . [w] = [w] 1×(m+1) = [w 0 w 1 . . . w m ] [w] = [w] (m+1)×1 =      w 0 w 1 . . . w m     
15. The bias of a weight vector w ∈ R m+1 is its component w 0 indexed with 0, and the unbiased weight vector w u ∈ R m is obtained removing from w the bias

w u = (w 1 , . . . , w m )
with corresponding unbiased 1 × m row matrix and m × 1 column matrix

[w u ] = [w u ] 1×m = [w 1 . . . w m ] [w u ] = [w u ] m×1 =    w 1 . . . w m    16.
A weight multivector for m inputs and q outputs is a q-tuple of weight vectors, W =

(w i ) q i=1 = (w 1 , . . . , w q ) ∈ R m+1 × q • • • ×R m+1 = (R m+1 ) q = R q(m+1)
often displayed as w 1 = (w 10 , w 11 , . . . , w 1m ) . . . w q = (w q0 , w q1 , . . . , w qm )

17. The weight matrix of the weight multivector W is the following matrix having q rows and (m + 1) columns

[W ] = [W ] q×(m+1) =    w 1 . . . w q    q×(m+1) =    w 10 w 11 • • • w 1m . . . . . . . . . w q0 w q1 • • • w qm    (1) 
18. The bias vector of the multivector W is defined as the vector w b = (w i0 ) q i=1 = (w 10 , . . . , w q0 ) ∈ R q with components the bias terms of the weight vectors. Note that while w i ∈ R m+1 we have that w b ∈ R q .

19. The bias column of W is the column matrix of the bias vector

[w b ] =    w 10 . . . w q0    20.
The unbiased weight multivector of W , W u = (w 1u , . . . , w qu ), consists of the unbiased weight vectors obtained removing all the bias terms w 1u = (w 11 , . . . , w 1m ) . . . 

w qu = (w q1 , . . . , w qm ) 21. The unbiased weight matrix of W is [W u ] q×m =    w 1u . . . w qu    q×m =    w 11 • • • w 1m . . . . . . w q1 • • • w qm    (2 
A W ([x]) = [w b ] + [W u ][x] =    w 10 . . . w q0    +    w 1u , x . . . w qu , x    =    w 10 + w 11 x 1 + • • • + w 1m x m . . . w q0 + w q1 x 1 + • • • + w qm x m    (3) 
24. For a given [W ] ∈ G the affine map A W is a non-homogeneous F -valued polynomial of degree at most one in the matrix variable [x] ∈ E. Equivalently the components π i • A W are real valued polynomials of degree at most one in m real variables,

π i • A W ([x]) = w i0 + w i1 x 1 + • • • + w im x m . The degree is zero if the unbiased matrix is null, [W u ] = 0; the component π i • A W has degree zero if w iu = 0.
25. The m input, q output affine pencil is defined as the function

A = A q m : E × G → F
equal to the sum of the bias vector and the product of the unbiased weight matrix and the column vector

A([x], [W ]) = A q m ([x], [W ]) = [W b ] + [W u ][x]
26. The affine pencil A = A q m can be considered as a parametrized collection of maps

{A W | W ∈ R q(n+1 )}
containing all the affine transformations A W : E → F . The parametrization is one-to-one. 29. For the derivative of linear and bilinear transformations see [START_REF] Dieudonné | Foundations of Modern Analysis[END_REF], Chapter VIII, p. 150.

The affine pencil

A = A q m is a non-homogeneous F valued polynomial of degree 2 in the "matrix pair" variable ([x], [W ]) ∈ E × G. All the components π i • A W are real valued polynomials of degree two in m + q(m + 1) real variables, π i • A([x], [W ]) = w i0 + w i1 x 1 + • • • + w im x m .

The affine pencil

A = A q m : E × G → F is

30.

The affine pencil A is continuously differentiable with derivative, calculated at ([x], [W ]) and evaluated on ([∆x], [∆W ]), equal to

DA([x], [W ]) • ([∆x], [∆W ]) = [∆W b ] + [∆W u ][x] + [W u ][∆x]
(4) §4 The E-partial Jacobian of affine pencils 31. The E-partial derivative of A is obtained setting [∆W ] = 0 in equation (4) hence

D E A([x], [W ]) • [∆x] = [W u ][∆x]
32. The E-partial Jacobian of the affine pencil at ([x], [W ]) is equal to the unbiased weight matrix

J E A([x], [W ]) = [W u ] =    w 1 1 • • • w 1 m . . . . . . w q 1 • • • w q m    33.
The transpose E-partial Jacobian of the affine pencil calculated at ([x], [W ]) is equal to the transpose of the unbiased weight matrix

J * E A([x], [W ]) = [W u ] =    w 1 1 • • • w q 1 . . . . . . w 1 m • • • w q m    (5) §5
The G-partial Jacobian of affine pencils 34. The G-partial derivative of the affine pencil A results from equation (4) imposing the condition [∆x] = 0 therefore

D G A([x], [W ]) • [∆W ] = [∆W b ] + [∆W u ][x] = [∆W ][1 ∨ x] (6) 
35. The relation defining transposes, T * (y), w = y, T (w) , will be applied to the above 

G-partial T = D G A([x], [W ]),
D * G A([x], [W ]) • [∆y], [∆W ] = [∆y], D G A([x], [W ]) • [∆W ] = [∆y], [∆W ][1 ∨ x] =    ∆y 1 . . . ∆y q    ,    ∆w 10 + x 1 ∆w 11 + • • • + x m ∆w 1m . . . ∆w q0 + x 1 ∆w q1 + • • • + x m ∆w qm    = ∆y 1 w 10 + x 1 ∆y 1 ∆w 11 + • • • + x m ∆y 1 ∆w 1m + • • • • • • + ∆y q w q0 + x 1 ∆y q ∆w q1 + • • • + x m ∆y q ∆w qm =    ∆y 1 x 1 ∆y 1 • • • x m ∆y 1 . . . . . . . . . ∆y q x 1 ∆y q • • • x m ∆y q    ,   
J * G A([x], [W ]) [∆y] =    ∆y 1 x 1 ∆y 1 • • • x m ∆y 1 . . . . . . . . . ∆y q x 1 ∆y q • • • x m ∆y q    (7) 
37. The previous equation can be written as a product of three matrices:

1.-the column matrix [∆y] 2.-the 1 × (m + 1) row matrix with 1 in all entries [1 1 • • • 1] 3.-the diagonal matrix of (1, x 1 , . . . , x m ) J * G A([x], [W ]) [∆y] =      ∆y 1 ∆y 2 . . . ∆y q      1 1 • • • 1      1 0 • • • 0 0 x 1 • • • 0 . . . . . . . . . 0 0 • • • x m      (8) 
38. The transpose partial Jacobian J * G A([x], [W ]) has q(n + 1) rows and q columns. The left hand terms in equations ( 7) and ( 8) are (m + 1) × q matrices hence are not the transpose G-partial Jacobian of the affine pencil, which is a q(m + 1) × q matrix. Nevertheless the equations give the product of the transpose partial Jacobian with an arbitrary [∆y] ∈ F q×1 . This suffices for backpropagation while going back and forth between q(n + 1) × q rectangular matrices and q 2 (n + 1) × 1 column matrices is avoided. §6 Transfers 39. A transfer function, or simply transfer, is any real valued function of a real variable σ : R → R 40. In the differentiable case, of major concern for us, it will be assumed that σ is continuously differentiable, σ ∈ C 1 (R, R). Most often all the differentiable transfer functions are taken equal to the sigmoid, σ = s, where s(t) = 1/(1 + e -t ).

The classical perceptrons of McCulloch and

Pitts have all their transfer functions equal to the Heaviside map which takes the value 0 if t < 0 and 1 if t ≥ 1. This transfer is differentiable with derivative identically zero everywhere except at the origin where it has a jump discontinuity; the null derivative values makes it unsuitable for backpropagation. The almost everywhere zero derivative makes the classical perceptrons unsuitable for backpropagation. The sigmoid is much used because, in a certain sense, it is a differentiable analogue (approximation?) to the Heaviside map, as seen when their graphs are compared.

42.

Excluding backpropagation and derivatives in general, much of the perceptron formalism can be elaborated using arbitrary transfer functions σ ∈ R R , classical discontinuous perceptrons included.

43.

A multitransfer for q outputs is a q-tuple of transfer functions, usually assumed differentiable

t = (σ r ) q r=1 = (σ 1 , . . . , σ q ) ∈ C 1 (R, R)× q • • • ×C 1 (R, R) 44. A multitransfer t induces a column map c t : F q×1 → F q×1 that transforms [x] ∈ F q×1 into c t ([x]) =    σ 1 (x 1 ) . . . σ q (x q )    45. The column map is continuously differentiable with derivative at [x] equal to the linear transformation Dc t ([x]) : F q×1 → F q×1 that sends [∆x] ∈ F q×1 to Dc t ([x]) • [∆x] =      σ 1 (x 1 ) ∆x 1 + 0 ∆x 2 + • • • + 0 ∆x q 0 ∆x 1 + σ 2 (x 2 ) ∆x 2 + • • • + 0 ∆x q . . . 0 ∆x 1 + 0 ∆x 2 + • • • + σ q (x q ) ∆x q     
46. The Jacobian matrix calculated at [x] of the column map c t of the multitransfer t is the following diagonal matrix

Jc t ([x]) =      σ 1 (x 1 ) 0 • • • 0 0 σ 2 (x 2 ) • • • 0 . . . . . . . . . 0 0 • • • σ q (x q )      (9) 47. Consider a sequence of n + 1 positive integers (m k ) n+1 k=1 = (m 1 , m 2 , . . . , m n+1 ) or, equiva- lently, consider a sequence of column matrix spaces E m 1 ×1 , E m 2 ×1 , . . . , E m n+1 ×1 . A trans- fer array is adapted to the sequence if it is an n-tuple of multitransfers T = (t k ) n k=1 = (t 1 , . . . , t n ) such that the k-th multitransfer is for m k+1 outputs t 1 = (σ 11 , . . . , σ 1m 2 )
. . .

t n = (σ n1 , . . . , σ nm n+1 )
Note that in general the integers m 2 , . . . , m n+1 are different, hence the transfer functions of the array T do not fit, when all are taken together, into a rectangular matrix. Also, m 1 and E m 1 ×1 are mentioned for consistency but are irrelevant in this definition. §7 States of a network

The standard terminology to be now recalled applies to general neural networks and should be attached to section §1 of reference [START_REF] Crespin | Theory and Formulas for Backpropagation in Hilbert Spaces[END_REF], whose notation is kept here for items 48 to 53.

48. Consider an unilayer neural network f : U × W → V . Each weight w ∈ W specifies a state of the network defined as the map f w : U → V given by

f w (x) = f (x, w)
49. The unilayer network f : U × W → V can be viewed, by application of the exponential law V (U ×W ) = (V U ) W , as the parametrized collection of its states

f = {f w | w ∈ W } 50. Consider an n layer neural network f = (f k ) n k=1 with f k : U k × W k → U k+1 and let f w k = (f k ) w k be the state of the k-th layer at the weight w k . Each multiweight w = (w 1 , . . . , w n ) ∈ W = W 1 × • • • × W n specifies a state of the network which is defined as the composable sequence f w = (f w k ) n
k=1 of the states that are attained by the layers at the components of the multiweight.

51.

The state f w of the multilayer network f at the multiweight w can be displayed as the following obviously composable sequence of maps involving domains and states of layers

U 1 f w 1 ----→ U 2 f w 2 ----→ • • • f w n-1 ----→ U n f wn ----→ U n+1
52. By adaptation of the exponential law to the case of the sequences of maps f = (f k ) n k=1 , an n layer neural network can be considered as the parametrized collection of its states

f = {(f w k ) n k=1 | w = (w 1 , . . . , w n ) ∈ W = W 1 × • • • × W n } 53.
The forward pass sequence of a 1 ∈ U 1 under the multilayer network f in the state w ∈ W , defined in reference [START_REF] Crespin | Theory and Formulas for Backpropagation in Hilbert Spaces[END_REF] section §2, is the sequence that consists of a 1 and its successive images under the states of the layers,

a k = f w k-1 (a k-1
). §8 Semilinear perceptron layers 54. The semilinear differentiable perceptron layer with

1.-m-inputs [x] (with inputs [x] ∈ E = E m×1 ) 2.-weight matrices [W ] ∈ G = G q×(m+1) 3.
-q-multitransfer t = (σ 1 , . . . , σ q ), and 4.-q outputs (with outputs [y]

∈ E = E q×1 )
is the function P = P qt m : E m×1 × G q×(m+1) → F q×1 defined as the composition of the affine pencil A = A q m with the column map of t

P ([x], [W ]) = P qt m ([x], [W ]) = c t (A([x], [W ])) =    σ 1 (w 10 + w 11 x 1 + • • • + w 1m x m )
. . .

σ q (w q0 + w q1 x 1 + • • • + w qm x m )   
See Figures 3 and4.

55.

From the above definition of perceptron layer it follows that P is a unilayer neural network with linear architecture hence the open domains are equal to the full matrix spaces. In the notation of reference [START_REF] Crespin | Theory and Formulas for Backpropagation in Hilbert Spaces[END_REF] §1

U 1 = E = E m×1 W 1 = G = G q×(m+1) V 1 = F = F q×1
56. The linear architecture of a perceptron layer P = P qt m is completely specified by m=number of inputs and q=number of outputs as these integers determine the linear spaces E m×1 , G q×(m+1) and F q×1 .

57.

A perceptron layer is fully specified by m, q (architecture) and t (multitransfer). If it is agreed in advance that all the transfer functions are sigmoids σ i = s, or that all the transfers are identities σ i = 1 R where 1 R (t) = t, then the multitransfer t is understood and m and q suffice to determine P = P qt m .

58.

A sigmoid perceptron layer is a layer with all transfer functions equal sigmoids, σ(t) = s(t).

An affine perceptron layer is a layer with all transfer functions equal to the identity, σ = 1 R .

59.

A perceptron layer P can be considered as the parametrized collection of its states

P = {P W | [W ] ∈ G} See section §7.

60.

A semilinear perceptron unit is, by definition, a single output perceptron layer, that is, a layer with q = 1.

61.

The definition means that for an m input perceptron unit P there exists a transfer function σ : R → R such that

P = P σ m : E m×1 × G 1×(m+1) → F 1×1 = R is the function defined for [x] ∈ E m×1 and [W ] ∈ G 1×(m+1) by the expression P ([x], [W ]) = σ(A 1 m ([x], [W ])) = σ(w 0 + w 1 x 1 + • • • + w m x m )
62. With the notion parametric product as given in [START_REF] Crespin | Neural Network Formalism[END_REF] and in [START_REF] Crespin | Generalized Backpropagation[END_REF], an m input q output semilinear perceptron layer is equal to the parametric product of q semilinear perceptron units where each of these has m inputs. §9 Semilinear perceptron networks 63. A semilinear perceptron network is a multilayer differentiable neural network P = (P k ) n k=1 such that each layer P k is a semilinear perceptron layer.

64.

For an n layer semilinear perceptron network P = (P k ) n k=1 by the above definition and by the definition of perceptron layer given in 54 there exist positive integers m 1 , . . . , m n , m n+1 and a transfer array T adapted to the integers such the layers

P k = P m k+1 t k m k : E m k ×1 × G m k+1 ×m k +1 → E m k+1 ×1
are given by the expressions

P m k+1 t k m k ([x k ], [W k ]) = c t k (A m k+1 m k ([W k ], [x k ])) k = 1, . . . , n (10) 
65. The architecture for the semilinear perceptron network P is linear with spaces

E k = E m k ×1
where k = 1, . . . , n + 1, and G k = G m k +1×m k+1 with k = 1, . . . , n + 1. The integers m 1 , . . . , m n , m n+1 fully determine the linear architecture.

66.

A semilinear perceptron network is completely specified by its linear architecture and an adapted transfer array T , equivalently by m 1 , . . . , m n , m n+1 and the array. Actually m 1 and T suffice since the integers m 2 , . . . , m n+1 can be obtained from the array layout. If all the transfer functions are sigmoids then T becomes redundant and the integers m 1 , . . . , m n , m n+1 are enough to determine the semilinear perceptron network.

67.

A sigmoid perceptron network is a network with all transfer functions equal to the sigmoid. An affine perceptron network is a network with all its layers linear, equivalently with all its transfer functions equal to the identity, σ ij = 1 R .

Consider a weight multimatrix

W = ([W k ]) n k=1 ∈ G = G 1 × • • • × G n .
The state of the perceptron network P = (P k ) n k=1 at W is by definition the composable sequence of maps

P W = (P W k ) n k=1
where

P W k : E k → E k+1 is the state of P k at the weight matrix [W k ].
69. The state P W of a perceptron network can be displayed as the following diagram with objects that are matrix spaces and maps that are states of layers with transfer array T = (t 1 , . . . , t n ) and with affine pencils for the layers

E 1 P W 1 ----→ E 2 P W 2 ----→ • • • P W n-1 ----→ E n P Wn ----→ E n+1
A k = A m k+1 t k m k : E m k ×1 × G m k+1 ×m k +1 → E m k+1 ×1 which have components (see 22) whose values at ([x k ], [W k ]) ∈ E k × G k will be denoted A ki = π i (A m k+1 t k m k ([x k ], [W k ]))
72. The transpose E k -partial Jacobian of the k-th semilinear perceptron layer

P k = P m k+1 t k m k calculated at ([x k ], [W k ]) ∈ E k × G k is an m k × m k+1 matrix expressible as the product of two factors: 1.-the m k × m k+1 transpose unbiased weight matrix [W u ] τ 2.
-the diagonal m k+1 × m k+1 matrix with entries equal to the derivatives σ ki of the transfer functions of t k calculated at the affine pencil component values A ki

J * E k P k ([x k ], [W k ]) = =      w 11 w 21 • • • w m k+1 1 w 12 w 22 • • • w m k+1 2 . . . . . . . . . w 1m k w 2m k • • • w m k+1 m k           σ k1 (A k1 ) 0 • • • 0 0 σ k2 (A k2 ) • • • 0 . . . . . . . . . 0 0 • • • σ km k+1 (A km k+1 )      =         σ k1 (A k1 )w 11 σ k2 (A k2 )w 21 • • • σ km k+1 (A km k+1 )w m k+1 1 σ k1 (A k1 )w 12 σ k2 (A k2 )w 22 • • • σ km k+1 (A km k+1 )w m k+1 2 . . . . . . . . . σ k1 (A k1 )w 1m k σ k2 (A k2 )w 2m k • • • σ km k+1 (A km k+1 )w m k+1 m k         (11) 

Proof of equation (11):

By definition the layer is a composition P k = c t k • A k . Use the chain rule for transpose derivatives; then restrict to the subspace E k ; next apply equations (5) and (9) (with m = m k , q = m k+1 and x i = A ki ) to obtain the formula. See Figure 4.

74.

If the derivatives of all the transfer functions are never zero, σ kj (t) = 0 for all t ∈ R (as is the case for the sigmoid transfer functions) then the transpose E k -partial is zero if and only if the weight matrix is zero

J * E k P k ([x k ], [W k ]) = [0] ⇐⇒ [W k ] = [0]
Proof: A diagonal matrix with non-zero entries along the diagonal is invertible.

75. Equation (11) describes, in a format that includes relevant matrix terms, an effective procedure to obtain the numerical values of the entries of the n-tuple of transpose E kpartial Jacobian matrices, calculated at the pairs ([

x k ], [W k ]), of P = (P k ) n k=1 (J * E k P k ([x k ], [W k ])) n k=1 ( 12 
)
76. The effective procedure is based on functional data, numerical data and elementary calculations as outlined in the following six items:

Functional data:

1.-specification of the multitransfer functions t k = (σ ki ) -the numerical values σ ki (A ki ) of the derivatives of the transfer functions calculated at previously obtained values of the components of the affine pencil evaluated on pairs. §11 Transpose G-partial Jacobians of perceptron layers 77. The assumptions and notation of section 10 above will be maintained.

m k+1 i=1 , 1 ≤ k ≤ n 2.-specification (or calculation) of their derivatives t k = (σ ki k ) m k+1 i=1 , 1 ≤ k ≤ n

78.

The transpose G k -partial Jacobian of the k-th layer P

m k+1 t k m k calculated at the forward pair ([x k ], [W k ]
) and multiplied by a column matrix [∆x k+1 ] ∈ E k+1 is a matrix that belongs to G m k+1 ×(m k +1) and is equal to the following product

J * G k P k ([x k ], [W k ])[∆x k+1 ] = =      ∆x 1 x 1 ∆x 1 • • • x m k ∆x 1 ∆x 1 x 1 ∆x 1 • • • x m k ∆x 1 . . . . . . . . . ∆x m k+1 x 1 ∆x m k+1 • • • x m k ∆x m k+1           σ k1 (A k1 ) 0 • • • 0 0 σ k2 (A k2 ) • • • 0 . . . . . . . . . 0 0 • • • σ km k+1 (A km k+1 )      (13)
79. Proof of equation (13):

Apply the chain rule for transpose derivatives to P k = c t k • A k then restrict to the matrix space G k and apply equations ( 7) and (9). Check Figure 4.

80.

The transpose G k -partial Jacobian of the k-th layer P

m k+1 t k m k calculated at the forward pair ([x k ], [W k ]
) and multiplied by a column matrix [∆x k+1 ] ∈ E k+1 is also equal to the following product, consequence of equations ( 13) and (8)

J * G k P k ([x k ], [W k ])[∆x k+1 ] = =      ∆x k+1 1 ∆x k+1 2 . . . ∆x k+1 m k+1      1 1 • • • 1      1 0 • • • 0 0 x 1 • • • 0 . . . . . . . . . 0 0 • • • x m k           σ k1 (A k1 ) 0 • • • 0 0 σ k2 (A k2 ) • • • 0 . . . . . . . . . 0 0 • • • σ km k+1 (A km k+1 )      (14)
81. The G k -partial Jacobian matrix when multiplied by [∆x k+1 ] results in a matrix that has rank at most equal to one. Proof: The factor [∆x k+1 ] m k+1 ×1 (and also [START_REF] Crespin | Theory and Formulas for Backpropagation in Hilbert Spaces[END_REF] 1×m k+1 ) has rank one. 

∈ E k+1 = E m k+1 ×1 ( J * G k P k ([x k ], [W k ])[∆x k+1 ] ) n k=1 ∈ G = G 1 × • • • × G n (15)
83. The routine requires functional data, numerical data and elementary calculations much like 76, as sketched in the following seven items:

Functional data:

1.-Specification of the transfer array T = (t k ) with t k = (σ ki )

m k+1 i=1 , 1 ≤ k ≤ n 2.-Specification of the derivatives t k = (σ ki k ) m k+1 i=1
Numerical data: 

∈ G = G 1 × • • • × G n 5.-A numerical column vector as initial input [a 1 ] ∈ E 1 6.-A numerical column vector as desired final output [b m+1 ] ∈ E n+1 7.
-Calculate by iteration the numerical column vectors of the forward pass sequence 

[a k+1 ] = P k ([a k ], [W k ]) with 1 ≤ k ≤ n 8.-Calculate the numerical values A ki ([a k ], [W k ])
[∆w k ] = J * G k ([a k ], [W k ])[∆b k+1 ].
89. The just performed computation of the lifted errors, together with §17 in reference [START_REF] Crespin | Theory and Formulas for Backpropagation in Hilbert Spaces[END_REF], provides the numerical entries of the quadratic error

The gradient calculated at the weight multimatrix W of the total quadratic error function of a multilayer semilinear perceptron neural network with a single initial input a 1 having desired output b n+1 is equal to twice the multimatrix of the lifted errors

∇Q a 1 →b n+1 (W ) = 2([∆w 1 ], . . . , [∆w n ]) (16) 
90. The gradient of the sum of quadratic errors in 87 is equal to the sum of the gradients of the summands hence

The gradient ∇Q 

∇Q A d →B (W ) = ∇Q a 1 1 →b 1 n+1 + • • • + ∇Q a s 1 →b s n+1 = 2([∆w 1 1 ] + • • • + [∆w s 1 ], . . . . . . , [∆w 1 n ] + • • • + [∆w s n ]) (17) 
91. The goal of expressing in terms of matrices the gradients of the quadratic error functions of multilayer differentiable semilinear perceptron networks has now been attained. §14 Figures

r 1 d d d d d d r x 1 . . . x m [x] = r r r r r j r ¨¨¨B r E σ y w 0 w 1 w m               Figure 1:
The connectionistic diagram for an m input semilinear perceptron unit P σ m : E m×1 × G 1×(m+1) → F 1×1 = R is a mathematical drawing inspired in the anatomy and physiology of neurons. The bias 1 and the input column [x] with components x j are displayed at left as tags for the tails of the arrows. These arrows are understood as "connections", sort of "mathematical dendrites" that forward the various inputs to the "mathematical soma" represented by the circle. The "strengths" of the connections are the entries w j of the weight matrix [W ] = [w 0 , w 1 , . . . , w m ] shown above as labels for the arrows. The inputs x j "travel" along the connections undergoing a kind of preliminary "dendrite preprocessing" that produces "values at arrival" equal to the products w j x j received by the soma; they can be "excitative" if w j x j > 0 or "inhibitory" when w j x j < 0. The weight w 0 which labels the arrow with bias 1 provides w 0 = 1 • w 0 as arrival value (there is no variable input x 0 to multiply) and depends only on the dendrite, not on the input values. The soma acts first as an "adder", , that sums the arrival values and produces the "weighted average" which is the value of the affine pencil A([x], [W ]) defined in 25. Then the soma applies the transfer σ resulting in the final output or "outgoing neural impulse"

y = P σ m ([x], [W ]) = σ(A([x], [W ])) = σ(w 0 + w 1 x 1 + • • • + w m x m
) which comes out of the soma and "travels" along the horizontal arrow until reaching its tip. The idea of signals received at entry points, processed while traveling and exiting at the other end is consistent with certain basic aspects of neurons, except that perceptron output values are usually understood as amplitudes, strengths or intensities while biological neurons codify by frequency, but amplitudes and frequencies are formally interchangeable. The original perceptrons of McCulloch and Pitts had transfer functions equal to the Heaviside function which has zero derivative except at the origin where it is discontinuous. The favorite for backpropagation is the logistic function s(t) = 1/(1 + e -t ) which is differentiable with a strictly positive derivative that decreases very rapidly away from the origin. The concept of perceptron is discussed in [START_REF] Hecht-Nielsen | [END_REF], in [START_REF] Hertz | Introduction to the Theory of Neural Computation[END_REF], in many older and recenter books on Artificial Intelligence, and in hundreds of Internet pages. For more about the mathematical formalism of perceptrons see [START_REF] Crespin | Neural Network Formalism[END_REF], [START_REF] Crespin | Generalized Backpropagation[END_REF] and [START_REF] Crespin | A Primer on Perceptrons[END_REF]. A biologically realistic description of neurons, and much more within the books, can be found in reference [START_REF] Kandel | Essentials of Neural Science and Behavior[END_REF], Section 1 and reference [START_REF] Levitan | [END_REF], Chap. 1. 

G 1×(m+1) × A P = σ • A E 1×m r r r r r r r r j d d d d E σ R R
= σ • A 1 m = σ • A (see 54). Here A = A 1
m is the affine pencil. The input, weight and output domains are the matrix spaces E 1×m , G 1×(m+1) and F 1×1 = R. A neurophysiological justification of this definition has been outlined in the caption of Figure 1. The perceptron unit P is not a biological structure but a function, a mathematical entity equal to the composition of the linear pencil and a transfer function. This unit has domain, codomain and functional expression σ • A which together specify P completely. Perceptrons are mathematical metaphors of neurons that allow to partially translate biological knowledge into formally manipulable abstractions. All the properties of perceptrons should be deductible from their mathematical definition. But biological neurons could exhibit (and most certainly do) important properties not reflected by the perceptron model in which case appropriated generalizations, restrictions, refinements or modifications of the model, as the case may be, should be introduced. 

σ 1 σ 2 σ q-1 σ q E t t
v v v v v v v v v v v v v d d d d d E E E E E 1 x 1 . . . x m [x] = = [y]                                                              
: E × G → F . Here E = E m×1 , G = G q×(m+1) , F = F q×1 , t = (σ 1 , . . . , σ q ),
x ∈ E and y ∈ F . See definition in 54. The symbol appearing in Figure 1 although now omitted should be understood atop all the circles. This layer is a q-tuple of m-input perceptron units. Each member of the q-tuple is a single output layer that independently processes the common input [x] using its own weights and transfer. The layer is the "parametric product" of the units, in the sense of [START_REF] Crespin | Neural Network Formalism[END_REF] and in [START_REF] Crespin | Generalized Backpropagation[END_REF]. If q = 1 the diagram reduces to Figure 1. The bias 1 and the input column [x] with x = (x 1 , . . . , x m ) are placed at the sources of the input arrows, with q arrows emerging from each source, spreading the inputs among the q circles labeled by corresponding transfers, and where "spreading" simply means that x j is an independent variable for the functions represented by the various circles. At each of the circles q arrows arrive for a total count of q(m + 1) input arrows. Ideally the arrows joining the bias 1 to the i-th circle would be tagged with w i0 and the one from x j to the same i-th circle or "soma" would have tag w ij , but this could clog the graphic, so only two weight labels explicitly appear above. As with perceptron units, the input value x j arrives at the i-th circle "preprocessed" (biologically corresponding to some synapse? dendrite?) so that the value received by the circle is w ij x j . The i-th circle is a "soma" that adds the arrival values and then applies the transfer function σ i thus producing the i-th output value y i = σ i (w i0 + w i1 x 1 + • • • + w i1 x m ) that comes out of the soma at the tails of the output arrows traveling toward the tips to become entries of the column matrix [y] which can then be further processed.

G q×(m+1)

×

A P = c t • A E 1×m r r r r r r r r j d d d d E c t F q×1 F q×1
Figure 4: This is the diagram, with spaces of matrices as objects and certain specific functions as arrows, of a semilinear perceptron layer with m inputs, q outputs and multitransfer t = (σ 1 , . . . , σ q ). The input, weight and output spaces are respectively equal to the matrix spaces E 1×m , G q×(m+1) and F q×1 . The layer, defined in 60, is the composition

P = P qt m = c t • A q m = c t •
A where c t is the column map of t (see 44) and A = A q m is the affine pencil with m inputs and q outputs (see 25). Additional diagrams pertaining the chain rule, Jacobians, partial Jacobians and transpose partial Jacobians are obtainable form this. 

f f f f f f f x ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ! 1 1 1 [W 1 ] [W 2 ]
x 11

x 12

x 1m 1 . . .

[x 1 ] =                     σ 11 σ 12 σ 1m 1 σ 21 σ 22 σ 2m 2 σ n1 σ n2 σ nm n+1 σ n-1 1 σ n-1 2
σ n-1 mn q q q q P m 2 t 1 m 1 . . . The number m k+1 of circles varies with the layer, hence the somas do not make a rectangular array within the network.

If a state of the network is given by means of a numerical weight multimatrix

W = ([W k ]) n k=1 ∈ G = G 1 × • • • × G n
then the states P kW k of the layers are composable and their composition is the forward pass. The entries x 1j of the initial input [x 1 ] are placed next to the tails of the input arrows where they are "feed" to all the somas of the first layer. The 1i-th soma adds the received values, w 1ij x ij , j = 1, . . . , n 1 , and applies its transfer function resulting in values x 2i = σ 1i (w 10 +w 1i1 x 11 +• • •+w 1in 1 x 1n 1 ) which are the entries of the output [x 2 ] ∈ E 2 of the first layer. This output of the first layer is the input of the second layer whose entries are multiplied by weights and feed to the somas of the second layer which in turn output [x 3 ∈ E 3 ]. The process is repeated until the final output [x n+1 ] ∈ E n+1 is produced. 

G 1 × P 1 E 1 z G 2 × P 2 E 2 z E 3 • • • • • • • • • G n-1 × P n-1 P n E n-1 z z E n × G n E n+1 z
m k+1 t k m k = c t k • A k : E k × G k → E k+1 .
The diagram is related to Figure 1, Figure 10 and Figure 11 of reference [START_REF] Crespin | Theory and Formulas for Backpropagation in Hilbert Spaces[END_REF].

) 22 .

 22 Sending a weight matrix to its bias column, [W ] → [W b ], and to its unbiased weight matrix, [W ] → [W u ], are linear transformations with domain G q×(m+1) and respective codomains F q×1 and G q×m . Similarly the projections π i : F q×1 → R that send [y] ∈ F q×1 to y i are linear. §3 Affine pencils 23. The affine map or "non-homogeneous linear map" associated to a given weight matrix [W ] ∈ G is the function A W : E → F sending [x] ∈ E to the sum of the bias column and the product of the unbiased weight matrix with [x]

  a function equal to the sum A = L + B of a linear transformation L : E × G → F and a bilinear transformation B : E × G → F 1.-the linear projection over the bias column L([x], [W ]) = [w b ] 2.-the bilinear matrix product of the unbiased weight matrix and the input B([x], [W ]) = [W u ][x].

  70.A perceptron network P can be considered as the parametrized collection of its statesP = {P W | W ∈ G} §10 Transpose E-partial Jacobians of perceptron layers 71. Consider an n layer differentiable semilinear perceptron network, as defined in the previous section P = (P k ) n k=1 = (P m k+1 t k

  Numerical data: 3.-the numerical values of the entries w kij of the weight matrices [W k ] (n k+1 ×n k +1) appearing in the weight multimatrix W = ([W k ]) n k=1 4.-the n-tuple of numerical vectors ([x k ]) n k=1 Calculations: 5.-the numerical values of the components A ki of the affine pencil evaluated on the pairs ([x k ], [W k ]). Here 1 ≤ k ≤ n and 1 ≤ i ≤ m k+1 6.

82.

  Equation (13), or equivalently (14), indicates a routine to calculate the numerical values of the entries of the n-tuple of transpose G k -partial Jacobian matrices of P k calculated at the pairs ([x k ], [W k ]) and multiplied by given column matrices ∆x k+1

  3.-The numerical values of the entries w kij of the weight matrices [W k ] (n k+1 ×n k +1) , 1 ≤ k ≤ n 4.-The n-tuple of numerical vectors ([x k ]) n k=1 5.-The n-tuple of numerical increment vectors ([∆x k+1 ]) n k=1 Calculations: 6.-The numerical values of the components A ki of the affine pencil evaluated on the pairs ([x k ], [W k ]). Here 1 ≤ k ≤ n and 1 ≤ i ≤ m k+1 7.-The numerical values σ ki (A ki ) of the derivatives of the transfer functions calculated at the components of the affine pencil evaluated on pairs ([x k ], [W k ]). §13 The numerical gradient of the quadratic error 88. The steps outlined in 76 and 83 require the following functional and numerical data as well as the execution of the indicated calculations: 1.-An n layer linear neural network architecture specified by m 1 , . . . , m n , m n+1 . 2.-An adapted transfer array T consisting of multitransfers t k = (σ k1 , . . . , σ km k+1 ) with 1 ≤ k ≤ n where each transfer function σ ki is continuously differentiable; a semilinear network P is then completely specified. 3.-The derivatives σ ki of the transfer functions 4.-A numerical weight multimatrix W

  of the components of the affine pencils on the pairs ([a k ], [W k ]) 9.-Calculate the numerical values σ ki (A ki ([a k ], [W k ])) of the derivatives of the transfers on the components of the affine pencil values 10.-Compute the output error as a numerical column vector [∆b n+1 ] = [a n+1 ] -[b n+1 ] 11.-Apply equation (11) to obtain the values of the entries of the transpose E k -partial Jacobian matrix J * E k ([a k ], [W k ]) 12.-Starting with k = n and by recursive descent on the indexes k calculate the backpropagated errors [∆b k ] = J * E k ([a k ], [W k ])[∆b k+1 ] 13.-Use equation (13) (or (14)) to compute the numerical values of the lifted errors

→B

  calculated at the weight multimatrix W of the quadratic error function for the initial input set A with desired output function d is equal to the sum of the gradients of the quadratic errors of the individual inputs a r 1 with desired output b r n+1

Figure 2 :

 2 Figure 2: This diagram shows an m input semilinear perceptron unit with transfer σ, which has already been pictured in the preceding figure. The unit was defined (see 60) as a perceptron layer with a single output P= P σ m = σ • A 1 m = σ • A (see 54). Here A = A 1m is the affine pencil. The input, weight and output domains are the matrix spaces E 1×m , G 1×(m+1) and F 1×1 = R. A neurophysiological justification of this definition has been outlined in the caption of Figure1. The perceptron unit P is not a biological structure but a function, a mathematical entity equal to the composition of the linear pencil and a transfer function. This unit has domain, codomain and functional expression σ • A which together specify P completely. Perceptrons are mathematical metaphors of neurons that allow to partially translate biological knowledge into formally manipulable abstractions. All the properties of perceptrons should be deductible from their mathematical definition. But biological neurons could exhibit (and most certainly do) important properties not reflected by the perceptron model in which case appropriated generalizations, restrictions, refinements or modifications of the model, as the case may be, should be introduced.

Figure 3 :

 3 Figure3: This is a typical connectionistic diagram for an m-input, q-output semilinear perceptron layer P = P qt m : E × G → F . Here E = E m×1 , G = G q×(m+1) , F = F q×1 , t = (σ 1 , . . . , σ q ), x ∈ E and y ∈ F . See definition in 54. The symbol appearing in Figure1although now omitted should be understood atop all the circles. This layer is a q-tuple of m-input perceptron units. Each member of the q-tuple is a single output layer that independently processes the common input [x] using its own weights and transfer. The layer is the "parametric product" of the units, in the sense of[START_REF] Crespin | Neural Network Formalism[END_REF] and in[START_REF] Crespin | Generalized Backpropagation[END_REF]. If q = 1 the diagram reduces to Figure1. The bias 1 and the input column [x] with x = (x 1 , . . . , x m ) are placed at the sources of the input arrows, with q arrows emerging from each source, spreading the inputs among the q circles labeled by corresponding transfers, and where "spreading" simply means that x j is an independent variable for the functions represented by the various circles. At each of the circles q arrows arrive for a total count of q(m + 1) input arrows. Ideally the arrows joining the bias 1 to the i-th circle would be tagged with w i0 and the one from x j to the same i-th circle or "soma" would have tag w ij , but this could clog the graphic, so only two weight labels explicitly appear above. As with perceptron units, the input value x j arrives at the i-th circle "preprocessed" (biologically corresponding to some synapse? dendrite?) so that the value received by the circle is w ij x j . The i-th circle is a "soma" that adds the arrival values and then applies the transfer function σ i thus producing the i-th output value y i = σ i (w i0 + w i1 x 1 + • • • + w i1 x m ) that comes out of the soma at the tails of the output arrows traveling toward the tips to become entries of the column matrix [y] which can then be further processed.

P mnt n- 1 m n- 1 P m n+1 tn mn 1 Figure 5 :

 1115 Figure 5: This connectionistic diagram represents an n layer semilinear perceptron network P = (P k ) n k=1 = (Pm k+1 t k m k ) n k=1 with: 1.-Linear architecture E k = E m k ×1 , G k = G m k+1 ×(m k +1) , k = 1, . . . ,n, and E n+1 , specified by the dimensions m 1 , m 2 , . . . , m n , m n+1 . See 65 and 66. 2.-Transfer array T = (t 1 , . . . , t n ), adapted to the given dimensions, with multitransfers t k = (σ k1 , . . . , σ km k+1 ). See 47.The architecture and the transfer functions specify the network. Here the weight tags are the (m k + 1) × m k+1 weight matrices [W k ] = [w kij ] placed on top; individual weight labels w kij attached to the input arrows would overcrowd the diagram. The k-th layer consists of: 3.-The k-th column of circles, each of these circles is a "mathematical soma" labeled with a transfer function σ ki (some index pairs, like n -1 m n , inelegantly exceed the boundary the the circle) 4.-The k-th set of input arrows with tag [W k ] over the set.

Figure 6 :

 6 Figure 6: This objects and arrows diagram represents an n layer semilinear perceptron network P = (P k ) n k=1 = (Pm k+1 t k m k ) n k=1 with: 1.-dimensions m 1 , m 2 , . . . , m n , m n+1 2.-linear spaces E k = E m k ×1 and G k = G m k+1 ×m k +1 3.transfer array T = (t 1 , . . . , t n ) and 4.-perceptron layer maps P k = P

The final output, and therefore the the error, require an iteration, hence a functional expression for the error involves the composition of n maps. 

is the square of the norm of the error function