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ABSTRACT
Exploring architectural design space is often beyond human ca-
pacity and makes architectural design a difficult task. Model-based
systems engineering must include assistance to the system designer
in identifying candidate architectures to subsequently analyze trade-
offs. Unfortunately, existing languages and approaches do not in-
corporate this concern, generally favoring solution analysis over
exploring a set of candidate architectures.

In this paper, we explore the advantages of designing and con-
figuring the variability problem to solve one of the problems of
exploring (synthesizing) candidate architectures in systems engi-
neering: the resource allocation problem. More specifically, this
work reports on the use of the Clafer modeling language and its
gateway to the CSP Choco Solver, on an industrial case study of
heterogeneous hardware resource allocation (GPP-GPGPU-FPGA).

Based on experiments on the modeling in Clafer, and the impact
of its translation into the constraint programming paradigm (per-
formance studies), discussions highlight some issues concerning
facilities for modeling and synthesis of architectures and recommen-
dations are proposed towards the use of this variability approach.
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1 INTRODUCTION
The conceptualization, a core process according to the ISO 42020 [15],
aims at characterizing the problem space and determine (by synthe-
sis) suitable solutions in the solution space that address stakeholder
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concerns, achieve architecture objectives and meet relevant require-
ments. Due to the increasing system complexity, architects have
to choose among a combinatorially growing number of design op-
tions: exploring architectural design spaces, and bringing the best
alternatives out of the solution space has often become beyond
human capacity [12]. The need for automated design space ex-
ploration that improves an existing architecture specification has
been recognized [2, 5, 16, 24, 26], but searching through a large
number of possibilities is often time- and cost-consuming [9], and
error-prone [6].

Model-Based Systems Engineering (MBSE) must include assis-
tance to the system designers in identifying candidate architectures
to subsequently analyze trade-offs. Unfortunately, efforts in the
systems engineering community generally favors solution analysis,
e.g. in providing system modeling languages and tools (e.g. SysML,
Capella), over exploring a set of candidate architectures (architec-
tures synthesis), a feature needed in the early stages.

Kang et al. [17] pointed out the wish of some effective frame-
works, and [28], emphasizes the one to have declarative solving
tools to tackle design problems like allocation, configuration, siz-
ing, and architectural design. The need goes towards the modeling
and solving of sub-defined systems, offering variants in the design
and free-ranged parameters, something close to the product-line
community concerns. Therefore, in this paper, we explore the ad-
vantages of designing and configuring variability problems to solve
one of the problems of exploring (synthesizing) candidate architec-
tures in systems engineering: the resource allocation one.

This article follows a report on the use of the Clafer modeling
language [5] and its gateway to the Choco Solver[8] Constraint
Solver Programming (CSP), on an implemented industrial case study
of heterogeneous hardware resources allocation which involves
General Purpose Processors (GPP), General-Purpose Computing
on Graphics Processing Units (GPGPU, or GPU for short), and Field
Programmable Gate Arrays (FPGA). The size of the case study high-
lights the problem of scaling up (over 4 billions possibilities). The
article puts forwards some observations from modeling activities
and performance studies on the impact of the ways problems can be
modeled in Clafer and their translation into the constraint program-
ming paradigm for an efficient resolution. With the objective to
outline some characteristics for architecture exploration modeling
and for an associated resolution tooling, the discussions highlight
some issues concerning facilities for modeling and synthesis of
architectures, and recommendations are proposed towards the use
of the Clafer approach.

The remainder of the paper is organized as follows. Section 2
highlights the motivations towards the needs concerning facilities
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for modeling and synthesis of architectures in Systems Engineering,
the motivations regarding this empirical study and positions related
work in the domain. Then, in Section 3, the allocation resource case
study is introduced. Section 4 describes the experiments conducted
to encode the model into Clafer, and summarizes the observations
on the impact of alternative modeling choices on the resolution.
Later, Section 5 highlights generic issues and provides recommen-
dations towards the use of the approach. Finally, the last Section
draws our conclusion and narrows down possible future works.

2 MOTIVATIONS
Motivations highlight needs for synthesis in MBSE, related works,
and introduce our approach.

2.1 MBSE needs for architecture synthesis
Classic MBSE activities, like function analysis and structural design,
are not adapted to early design phases where many parameters are
still free/undefined, and it is expensive to build analysis models to
explore the space of possible solutions. Indeed, as summed-up in
[21], some design parameters may not be fixed, some components
may not be selected, some resources may not be allocated, and the
structure of the architecture may not be fixed, resulting in many
try-and-test iterations. Some facilities for modeling and synthesis
of architectures in systems engineering is required.
More generally, an effective framework is depicted in [16] as com-
posed of a suitable representation, an efficient analysis tooling, and
an adequate exploration method. Besides, we highlight two essen-
tial needs in terms of modeling language and associated solving
capabilities:

• Providing to the architect a language capable of representing
a complex system, with degrees of freedom (as called in [2])
like: free parameters, sub-defined allocations, free selection
of alternatives;

• Having resolution facilities to explore automatically the de-
sign space to find eligible architectures, i.e. those compatible
with the various system requirements. Considering parame-
ter values, types to consider can be integer (discrete problem),
real (continuous problem), or both (mixed problem).

2.2 Related work
The research activities are scattered across many research commu-
nities, and a plethora of architecture optimization approaches based
on formal architecture specifications have been developed.

First, and obvious, a body-of-knowledge exists on dedicated soft-
ware optimization, which consider heterogeneous computation
nodes that use combination of CPUs, GPUs and FPGAs in alloca-
tion problems. For example, [7, 10], where an optimization model
is defined and a mixed-integer programming (MIP) solver and a
framework for constraint integer programming. A similar problem
is addressed by Svogor et al. by using a genetic algorithm based
method [29]. This work discusses a possible approach to compute
allocation schemes for hardware platforms with CPUs, GPUs and
FPGAs nodes. Although it deals with allocation, our concerns do
not go towards a specific resolution (direct CSP encoding), but to-
wards the search for a higher level design language, allowing an
easier formalization a non-optimal but satisfying resolution.

Then, in considering more generic approaches and problems,
some related work concerns approaches to extend MBSE practices.
In [1], Min et al. propose a multi-objective optimization from SysML
model, with a process integration and design optimization (PIDO)
framework (using the ModelCenter tool). An analytic and non-
synthetic approach. Besides, the approach from [21] extends SysML
and the OOSEM methodology [11] to allow modeling a large num-
ber of variants by using “decision points” (e.g. in allocation). Vari-
ability is not native. The generation is based on Choco [8] or PyOpt1,
for discrete or continuous problems, missing performance details.

In product-line engineering, variability models have been exten-
sively researched and are now widely used to represent configura-
tion spaces. Variability is commonly addressed bymodeling features
and their inter-dependencies as a feature model (FM) [17]. Con-
sidering open range properties, an extension of FMs exists where
features have quality attributes, e.g. [23, 27]. Considering allocation
problems, in [14], the designer creates the various alternatives of
allocations with the MARTE profile and annotations and propose
a transformation from a FM to a mathematical representation of
an optimization problem. Besides, in [19, 20], the authors propose
an approach to deal with the variability (with FM) at the applica-
tion level (data-flow), resource (hardware) and mapping. They also
show that variability-aware methods are convenient to analyse the
behaviour of alternative designs because they can exploit the com-
monalities between the design variants to reduce the computation
involved. Making explicit the allocation mapping into FMs could
result in huge FMs, not our choice in the following.

No standard is defined tomodel variability. Among the variability
language initiatives is Clafer [5], that combines variability and
metamodeling facilities, for architecture description: an interesting
characteristic. A set of works binding the architectures exploration
need and this variability language and tool-chain was proposed
[18, 22, 25, 26]. The authors define modeling methodologies for
architectural modeling, as well as Clafer modeling patterns usage.
They provide an approach to assess non-functional properties and
some optimizations.

2.3 Motivations of the empirical study
In order to model multiple candidates, variability (degrees of free-
dom [2]) has to be expressed in the model. It can be expressed as
features, free instances generation, and free property ranges.

Based on the works in [18, 22, 25, 26], the basic idea behind our
study is to experiment the approach on an industrial case study
of heterogeneous hardware resource allocation. Some modeling
alternatives in Clafer are described to understand the capabilities
and analyze the impact the translation into the constraint program-
ming paradigm. We consider the tool-set as it is, without making
any changes, in the 0.4.3 version, which is not the latest one but
seems more stable (the 0.4.4 seems to offers less performance res-
olution, the 0.4.5 less features). Besides, contrary to [22, 26] that
restrict their reasoning performance perspectives to the number
of Clafer elements compiled (i.e. All clafers, Abstract, Concrete,
Reference, and Constraints) and execution time, we went a step
further, looking at the resolution variables at the CSP level, and
resolution branching priorities.

1http://www.pyopt.org/
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3 ALLOCATION PROBLEM & CASE-STUDY
In many domains of embedded systems, task allocation is typically
addressed as a sub-problem of scheduling real-time multi-core sys-
tems. The idea is to use models of the system under development
to obtain performance predictions with sufficient accuracy, already
prior to the implementation, and thus get an indication on whether
a particular allocation is good or bad in terms of performance. Be-
fore analyzing architecture candidates performances for trade-offs
(e.g. end-to-end response times, deadline misses), these architec-
ture candidates must be synthesized. In our case, the modeling
consists of i) a data processing application (i.e., the set of neces-
sary functions represented as a data-flow oriented graph), and ii) a
resource-constrained hardware platform (i.e., set of available hetero-
geneous hardware components like non-programmable processors,
generic or specialized processors and communication connections).

3.1 Data-flow oriented software modeling
The architecture is characterized by an oriented graph (F , 𝑓 _𝑐𝑛𝑥)
for which the set of nodesF = {𝑓1, . . . , 𝑓𝑚} designates the functions
(ProcFunction) and the set of edges 𝑓 _𝑐𝑛𝑥 ⊆ F × F , representing
the communications between the functions (AFConnector). An edge
𝑓𝑐𝑛𝑥 (𝑓𝑖 , 𝑓𝑗 ) models the sending of a message from 𝑓𝑖 to 𝑓𝑗 .

The functions to be deployed on hardware computing units
may differ in terms of resource usage. This type of heterogene-
ity presents a challenge for designers when deciding where to
place software components on the compute units. Functions and
communication AFConnectors are annotated with properties. First,
considering functions, from experimental results execution time
(execTime performance property) on specific processor are taken
(expressed in ms); 𝑐𝑜𝑠𝑡𝐹 : F → R>0.

Then, the specification of interactions between functions are de-
scribed by the tokenSize property which is the length of data transfer
between the two connected processing functions (expressed in Kb);
𝑐𝑜𝑠𝑡𝐶 : 𝑓 _𝑐𝑛𝑥 → R>0.

In themodel, functions are specialized (in an object orientedmod-
eling meaning) into FPGA, GPP, and GPGPU ones, and as already
mentioned, performances pre-calculated (estimations).

As explained later in Section 3.4, the application has a known
fixed period (equal to the input frame period), which implies, among
other things, that no processor or communication connection should
take longer than this period to do its job. Each processor in the
architecture may be in charge of one or more functions (nodes),
when alone on its processor, is approximated by a known duration
(which is necessarily less than the input frame period).

3.2 Hardware modeling
The heterogeneous platform is modeled defining boards, connected
to each other via Ethernet. Briefly, a Hardware Architecture is seen
as ⟨𝐵, 𝑃, 𝑐𝑎𝑝𝑎𝑃, 𝑐𝑈𝑠𝑒𝑃,𝐶𝑜𝑚𝑐𝑜𝑛, 𝑐𝑎𝑝𝑎𝐶𝑜𝑚𝑐𝑜𝑛, 𝐹𝑃𝐺𝐴, 𝑓 𝑝𝑔𝑎,𝐺𝑃𝑃,

𝑔𝑝𝑝, 𝑝𝑒𝑛,𝐺𝑃𝑈 ,𝑔𝑝𝑢, 𝑃𝐶𝐼, 𝑝𝑐𝑖, 𝐸, 𝑐𝑈𝑠𝑒𝐸, 𝑐𝑜𝑛, 𝐻𝑤𝐶⟩, such as: 𝐵 is a fi-
nite set of boards; 𝑃 is a finite set of abstract processors; 𝑐𝑎𝑝𝑎𝑃 :
𝑃 → R>0, the processors capacity; 𝐶𝑜𝑚𝑐𝑜𝑛 is a finite set of ab-
stract communication connections; 𝑐𝑎𝑝𝑎𝐶𝑜𝑚𝑐𝑜𝑛 : 𝐶𝑜𝑚𝑐𝑜𝑛 → R>0,
the communication connections capacity; 𝐹𝑃𝐺𝐴 ⊆ 𝑃 is a finite
set of FPGA; 𝑓 𝑝𝑔𝑎 : 𝐵 → {𝐹𝑃𝐺𝐴|∅} indicates the optional con-
tainment relation from a board; 𝐺𝑃𝑃 ⊆ 𝑃 is a finite set of GPP;

𝑔𝑝𝑝 : 𝐵 → 𝐺𝑃𝑃 indicates the containment relation from a board;
𝑝𝑒𝑛 : 𝐺𝑃𝑃 → R>0, represent the communication transfer penal-
ties; 𝐺𝑃𝑈 ⊆ 𝑃 is a finite set of GPGPU; 𝑔𝑝𝑢 : 𝐵 → 𝐺𝑃𝑈 indi-
cates the containment relation from a board; 𝑃𝐶𝐼 ⊆ 𝐶𝑜𝑚𝑐𝑜𝑛 is
a finite set of Peripheral Component Interconnect (PCI) connec-
tions; 𝑝𝑐𝑖 : 𝐵 → 𝑃𝐶𝐼 indicates the containment relation from a
board; 𝐸 ⊆ 𝐶𝑜𝑚𝑐𝑜𝑛 is a finite set of Ethernet wire connections;
𝑐𝑜𝑛 ⊆ 𝐵 × 𝐸 is the set of vertices relating boards and Ethernet con-
nections;𝐻𝑤𝐶 ∈ 𝐶𝐿𝐶 is set of domain Hardware Constraints. Note
that, our modeling only reifies Ethernet communication equipment
allocations, PCI allocations are integrated through capacity penal-
ties in 𝑝𝑒𝑛 for the GPP on the given Board. For a given allocation,
a processor (resp. Ethernet) current usage (𝑐𝑈𝑠𝑒𝑃 : 𝑃 → R>0, resp.
𝑐𝑈𝑠𝑒𝐸 : 𝐸 → R>0), is seen as the sum of the nodes (resp. vertices)
of the data-flow graph that it is in charge of (totalExecTimebyP, resp.
currentBWBytesPerMs). In the GPP case, different penalties (𝑝𝑒𝑛)
are added to this sum depending of the incoming and outgoing
data exchanges between nodes host by heterogeneous processors
as described in Table 1.

3.3 Deployment/Allocation schemes
Determining feasible allocation schemes requires knowledge on
the functional and non-functional properties of the system, the
hardware architecture and the system requirements. Globally, from
a mathematical viewpoint, an allocation represents a permutation
with repetition which assigns one computational unit to each func-
tion or data flow communications2. The deployment/allocation are
expressed as follows:

• 𝑑𝑒𝑝𝑙 ⊆ 𝐹 × 𝑃 is the set of vertices of functions deployment
onto processors;

• 𝑑𝑒𝑝𝑙𝐶 ⊆ 𝑓 _𝑐𝑛𝑥 × 𝐸 is the set of vertices of communications
AFConnector deployment onto Ethernet connections;

Deployment/allocation is subject to constraints and costs.

3.3.1 Constraints. The defined allocation constraints are:
• C1: Residence constraints: A dedicated function (FPGA, GPGPU
or GPP) must be deployed onto its dedicated processor.

• C2: Unique deployment: Any function (resp. data flow com-
munications) has to (resp. may) be deployed to one and only
one computation resource (resp. connection). Note that for
communication connection, only Ethernet allocation is rei-
fied, the deployment is therefore optional; other paths, i.e.
internal memory or PCI bus are not, but considered in the
penalties constraints. One or more functions (resp. data flow
communications) can be allocated on the same computa-
tional unit, depending on the capacity of the unit.

• C3: Exactly one variant of each task must be allocated. All
functions must to be deployed; indeed, the modeling of the
functional architecture corresponds to the linking of all the
functions necessary for the system with all the resources
made available. Each of the modeled functions has an impor-
tant role for the global system, so it is necessary to ensure
that no function is orphaned during the allocation process.

• C4: Compatible connections: If a data flow communication
is deployed on a communication connection then its origin

2implying that the search space increases exponentially with the number of data-flow
or hardware elements
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function should be deployed to the first resource in this com-
munication connection and the destination function should
deployed to the last resource in this connection.

• C5: The capacity of any processor must not be exceeded:
An allocation is feasible if the resources consumed by the
computation functions deployed to any computational unit
do not exceed the resource capacities that the computational
unit provides (given a defined usage ratio), cf. Table 3.

• C6: The bandwidth of any communication connection must
not be exceeded: The sum of the token size message of all
data flow connectors (AFConnector) deployed on a network
bus (Ethernet) must not exceed the bandwidth capacity that
the communication connection provides (given a defined
usage ratio), more details in Table 3.

• C7 : The bandwidth of any PCI bus must not be exceeded:
The sum of the token size messages of all local data flow
communications (AFConnector) must not exceed the band-
width capacity that the PCI bus provides (given a defined
usage ratio), more details in Table 3.

3.3.2 Costs. Different penalties (𝑝𝑒𝑛) are modeled to represent the
Costs of the data exchanges between nodes host by heterogeneous
processors. The different Costs are:

• P1: On the same board, the use of GPGPU and GPP implies
a cost related to the data transfer via the PCI bus;

• P2, and P4: An incoming communication with its source from
another board implies a penalty related to the size of the
token of the exchange message;

• P3: A communication from a GPGPU or GPP to other boards
via Ethernet implies a penalty related to the token size of
the exchange message;

• P5 and P6: A communication between two FPGA on distinct
boards doesn’t use Ethernet, and thus implies only a penalty
of 1 ms on the GPP hosted by the FGPA’s board;

• P7 : A communication between between an FPGA and a GPU
or GPP on distinct boards (via Ethernet) implies a penalty of
2.5 ms on the GPP hosted by the FGPA’s board and a penalty
related to the token size of the exchange message;

• P8: On the same board, a communication between an FPGA
and a GPGPU or GPP implies a communication cost related
to the data transfer via the PCI bus and a penalty of 1 ms on
the GPP hosted by this board;

• P9: On a board hosting an FPGA, ten percent of the sum of
nodes processing time in charge of this FPGA are added to
the GPP hosted by the same board;

• P10: On a board hosting an FPGA, if the FPGA is allocated
to at least a node, the GPP maxload is divided by two.

The different Costs taken into account on our resource allocation
problem are summarized in Table 1, and illustrated in Figure 1.

3.4 Application description
The application taken as an example is representative of a class of
data-flow signal or image processing applications hosted in real-
time sensor sub-systems, generally subject to strong constraints
on SWaP (Size, Weight and Power) and/or processing latency. In
the present case, it implements an image processing chain that

Table 1: Penalties

ID src tgt link TK GPP pci
P1 GPU GPP local pen-gpu - +
P2 Any GPU|GPP in ethernet - -
P3 GPU|GPP Any out ethernet - -
P4 Any FPGA in ethernet - -
P5 FPGA FPGA in - 1 -
P6 FPGA FPGA out - 1 -
P7 FPGA GPU|GPP out - 2.5 -
P8 FPGA GPU|GPP local - 1 +
P9 FPGA - - - +10% -
P10 FPGA - - - GPP/2 -

takes periodic 2D frames as input and performs a sequence of trans-
formations to detect and process objects of interest. Operations
range from systematic high data rate operations such as image
corrections in the early stages to progressively less regular oper-
ations at lower data rate in the later stages. The former are good
candidates for massively parallel architectures like GPGPU and/or
dedicated parallel IPs implemented in an FPGA, while the latter,
being less regular and partially data-dependent, can only be hosted
in a general purpose processor.

Four boards, each containing a GPP, GPGPU and optionally one
FPGA as shown in Table 2, are provided to host the application.
Processing sites communicate via a PCI bus on-board and via Eth-
ernet connections between boards. Each node of the application
graph is pre-allocated to a particular type of processor, but choosing
the appropriate board hosting the processor is the objective of the
mapping phase. In our experimentation, two nodes (D2 and E2) are
kept open to be allocated to a GPP or a GPGPU.

Each node consumes at each firing some processing time on its
hosting processor, which is approximated as a fixed value. Similarly,
transferring tokens between processing sites consume time on the
communication connections on the way, each of which offering a
fixed bandwidth budget to share between all its users: the expected
time for a communication is then the size of the token divided by
this fixed bandwidth. In the specific case of the GPP, which in fact
contains 4 individual cores, the processing time of a node is its
estimated computation time on one core.

As mentioned above, the scheduling of actors in the application
graph follows a data-flow token-based policy (Kahn Process), a
given actor producing after each firing a fixed-sized token to each
of its sink actors. Tokens are propagated via the relevant commu-
nication link(s) to the processing site that holds their destination
application node, or are just considered available when both the
sender and the receiver are on the same processor. The application
is triggered at every period P by the initial token which is the in-
put frame, and all actors, and consequently all necessary tokens
communications, fire exactly one time per period P. Mapping esti-
mations are done considering an execution model that determines
the conditions and order in which functions are fired. The execution
model also assumes that the graph is repeated with a given known
period for inputs, which leads to a fixed scheduling scheme for
functions, supposed to repeat identically at each period. In the cur-
rent example, the graph is acyclic and the execution model follows
a blocking read policy, where a function becomes eligible when all



Facilities for Modeling and Synthesis of Architectures for Resource Allocation Problem SPLC ’20, October 19–23, 2020, MONTREAL, QC, Canada

Table 2: Boards

Boards GPP GPU FPGA

Board0 X X -
Board1 X X -
Board2 X X X
Board3 X X X

Table 3: Processors, Ethernet and PCI capacities

Processors Maxload usage Capacity Max usage

GPP 20.44 4*7 73%
GPGPU 5.6 7 80%
FPGA 6.65 7 95%

WireConnection

Ethernet 848 893 95%
PCI 5428 5715 95%

its inputs for the period are available in its memory. In the case of
an acyclic graph, the same approach can be used, as long as one
can find a periodic static scheduling policy.

All processors and communication links, being respectively in
charge of potentially several computing actors or tokens that derive
from the mapping, must be fast enough to perform their job in
less than their time budget. As shown in Table 3, which considers
a period P=7, each type of resource has only a percentage of the
period as budget, which leaves some useful margin before the actual
implementation (GPPs have their budget equal to the percentage
of 4*P , i.e. 18.2 ms). Similarly, communication links have only a
percentage of their nominal bandwidth available.

The application graph is shown in Figure 1. Nodes of the graph
are annotated with their computing cost (inms), and edges between
nodes have the size of their token (in Kb).

4 CLAFER ENCODING, EXPERIMENTS &
RESULTS

The allocation problem and application are encoded in Clafer.

4.1 Clafer and Choco
The Clafer approach binds a high level language to a reasoning par-
adigm. On the one side, the Clafer constructs are [5]: Clafer (unified
concept of classes, associations and properties), Single inheritance,
Clafer nesting, Reference clafer, Bag, Set, Multiplicity. Clafer sup-
ports constraints written in first-order predicate logic. It has both
existential and universal quantifiers, sets, and relations, cf. [13].

On the other side, the Choco domain is a typical CSP, which
is usually defined by a triplet ⟨𝒳,𝒟,𝒞⟩ where 𝒳 is a set of vari-
ables (resolution variables), 𝒟 is a set of domains, and 𝒞 is a set
of constraints: ∀𝓍𝑖 ∈ 𝒳, 𝒟𝑖 is the domain of possible values of
𝓍𝑖 ; ∀𝒸𝑖 ∈ 𝒞, 𝒸𝑖 is a constraint expressed as a relation between
{𝓍𝑗 } ⊆ 𝒳. A relation should be any kind of mathematical lin-
ear or nonlinear equations, inequalities, logical formulas, and so
forth. Solving a CSP consists in finding one or all the possible solu-
tions (allowed by the constraints). The problem consists in finding

an assignment of values to the set of variables (called variable in-
stantiation) such that all constraints are satisfied. Solving is based
on three main operations: i) Domains reduction: The solver non-
deterministically assigns a variable with a value in its domain; ii)
Constraints propagation: The solver checks and possibly removes
values that cannot occur in any solution, and iii) Backtracking: The
solver restores the domains in case of a dead-end and records the
solution in case of a success.

The Clafer tool-chain [3] includes a Clafer compiler, which trans-
lates models in Clafer into an intermediate format, for reasoning
and processing with back-ends tools. In our case, the Chocosolver3
compiles the intermediate model down to a set of variables and
constraints from the Choco constraint programming library [8].
Chocosolver extends the Choco library to handle Clafer-specific
features, such as reasoning over relational logic [26]. Any solution
in the Choco domain gets mapped back to a solution in the Clafer
domain. Note that, the Chocosolver module defines specific prop-
agators for Clafer constructs. Please also note that, Clafer/Choco
has no support of real numbers, so techniques like scaling down
and rounding to a nearest integer needed to be used [25].

4.2 Approach & experimental protocol
followed

From the description in Section 3, different Clafer models where
encoded, defining benchmarks to construct the experiments. We
provide the full details of the modeling in a GitHub repository4. In
the following sections are described some incremental experiments:
i) on modeling strategies to encoding the deployment problem
in an heterogeneous context (partial modeling XP#1); ii) on im-
proving the resolution thanks to customized resolution strategy
(partial modeling XP#2, and partial modeling XP#3, with domain
constraints added), iii) on improving the constraints for resolution
(XP#4, redundancy constraints). The design space size is always the
same in these experiments, i.e. includes 17 functions and 4 boards,
without capacity constraint taken into account, greater than 1 bil-
lion. For XP#4, the completeness and soundness of the solution
was checked against an internal dedicated algorithm made by our
domain experts. The last experiment (XP#5) increase the previous
one with one initialization function and the variability described in
Section 4.3.5 (performance evaluation only).

Performance analysis observed the first instance (10-tries aver-
age), and the overall solutions (all instances). Moreover, the reso-
lution variables (Choco paradigm) and their initialization domain
were observed. Experiments were carried out with the following
spec.: Intel® Xeon CPU @ 2.00 GHz, Windows 2012R2 Standard,
64-bit operating system; with a JVM - Java (Oracle), Version 8.

4.3 Encoding the problem in Clafer - Domain
modeling

The formalized elements from the software, hardware and allocation
problem described in Section 3 are reified into Clafer as abstract
clafers (more details in Listing 1). The following highlights specific
attempts, observations and choices on the Clafer encoding.

3https://github.com/gsdlab/chocosolver
4https://github.com/IRT-SystemX/allocation-clafer-splc2020

https://github.com/gsdlab/chocosolver
https://github.com/IRT-SystemX/allocation-clafer-splc2020
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Figure 1: Application overview

4.3.1 Modeling properties and range variability. As noted above,
Clafer/Choco has no support of real numbers, so techniques like
scaling down and rounding to a nearest integer needed to be used [25],
to represent properties like execution time (𝑐𝑜𝑠𝑡𝐹 ), capacities (𝑐𝑎𝑝𝑎𝑃 ,
𝑐𝑈𝑠𝑒𝑃 ) introduced in Section 3. Two observations are made:
Obs#1: The CSP performs its calculations on Integers (the original
scales have to be transposed according to the truncation - rounding),
calculation are limited to basic arithmetic operators, within the
range of Big Integers (the original scales have to be transposed to
ensure that they do not overflow);
Obs#2: Integer variables management is extremely costly at reso-
lution time (large bounded resolution variable domain), modeling
properties should be limited to the minimum needs. Therefore,
pre-calculations should be done as much as possible, to go from
variables to constants (reduce open ranges), and limit operations.

4.3.2 About the DeployedTo/AllocatedTo Free Variability Model-
ing. The deployedTo/AllocatedTo relation between functions and
processors raises the question of how to model it in a generic and
efficient way. As starting point, we reuse the micro level pattern
defined in [22] to model a many-to-one (equivalently, one-to many)
relationship between two sets of objects. Indeed, the open problem
deployedTo/AllocatedTo relation is encoded as a bidirectional (oppo-
site) one-to-many relationship (to respect the following constraints
from Section 3.3.1: C2 and C3). As indicated, functions and proces-
sors are specialized by dedicated FPGA, GPU, GPP elements. The
question is how to encode them, as well as a specialized relationship
between them (C1 constraint).
XP1. In this first experiment, themaxloadusage of the GPPmust not
exceed 12000 (55% maxusage). At this stage models do not contain
penalty rules. The following patterns are tested to encode the case5:

• deplCase1: Defining a constraint using a concrete collection
of a given type to restrict allocatedTo reference as shown in
listing 5. Note: the object model is not respected here.

5Models and files are in the GitHub repository, some listings in appendix

• deplCase2: Defining a constraint in the specialized Clafer
to restrict the bidirectional deployedTo/AllocatedTo relation.
Constraint is applied on the many multiplicity side.

• deplCase3: Defining a constraint in the specialized Clafer
to restrict the bidirectional deployedTo/AllocatedTo relation.
Constraint is applied on the one multiplicity side as shown
in listing 6.

• deplCase4: Defining two constraints in the specialized Clafers
to restrict the bidirectional deployedTo/AllocatedTo relation.
Constraints are applied on both sides.

• deplCase5: Using the redefinition (e.g. deployedFTo -> FP-
GAProcessor for abstract FPGAFunction : ProcFunction). This
feature is not available in the version 0.4.3.

• deplCase6: Defining specialized relations at the specialization
level, i.e. directly between FPGAFunction and FPGAProcessor,
not at a generic level.

• deplCase7 : Defining a specialization using features, and fea-
ture groups on one side as shown in listing 7, and a constraint
on the feature selection.

• deplCase8: Defining a specialization using features, and fea-
ture groups on both sides, and two constraints on the feature
selections.

Experimental results shown in Table 4 indicates big differences
between cases that provides the 96768 instances in days, and others
in more than a week. The start of the resolution (1 instance) is
quite similar except for feature modeling patterns which seems
inappropriate in our case. Clafer stats on the cases are also provided.

To further investigate the difference between the deplCase2 and
the deplCase3 cases, let us take a look at the CSP resolution variables
and their initialization domains, cf. Table 5 (the complete data set is
on the GitHub). The free degree of variability in Clafer models are
translated into Choco resolution variables, e.g. deployedFTo, into
an explicit number of instances c0_deployedFTo@RefX, associated
with an enumerate domain relating other variables, here specific
processors. A finer analysis seems to be made by the Chocosolver
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Table 4: Performance results - patterns to specialize the allocation (C1 constraint)

File name deplCase1 deplCase2 deplCase3 deplCase4 deplCase5 deplCase6 deplCase7 deplCase8
T. Avrg 1 instance 03min16s 03min13s 03min14s 03min14s not feasible 04min26s 02h25min59s 04h28min20s
T. All instances >week >week 1d22h08min10s 2d22h36min23s not feasible 3d17h32min07s >week >week

Abstract 8 11 11 11 11 11 8 5
Concrete 37 34 34 34 40 38 38 42

Constraints 42 39 39 42 36 40 42 59
References 10 7 7 7 13 11 7 7

Table 5: Comparison of domain variable initialization

File name deplCase2 deplCase3
Choco var
domains
(extract)

c0_deployedFTo@Ref0 =
{0,1,2,3,4,5...,9}

c0_deployedFTo@Ref0 =
{8,9}

c0_deployedFTo@Ref4 =
{0,1,2,3,4,5...,9}

c0_deployedFTo@Ref4 =
{0,1,2,3}

in the translation with the constraint on the 1 side of the 1-to-
many relation. Although it concerns only the initialization of the
Choco variables, surprisingly the gain seems important on a global
resolution (cf. Table 4), therefore we suggest this way of modeling
the relation and constraints. Note that, dealing alsowith the variable
domain translation, there is no difference on the solver side between
a reduced cardinality of a reference, e.g. allocatedTo -> ProcFunction
0..17, than a 0-to-many one: the domain is calculated during the
translation.

Furthermore, the comparison between deplCase3 and deplCase4
shows that, in this case, adding constraints does not facilitate the res-
olution. Finally, the comparison between deplCase3 and deplCase6
shows that, considering the low size of the enumerate domain of
the resolution variables, it seems more efficient to have less variable
types with larger domains than more specialized variables with
reduced enumerated domains. Thus, we recommend modelling the
references that lead to resolution variables in abstract Clafers.

From this experiment we kept the deplCase3 pattern as solution
for modeling, and three observations are made at this stage:
Obs#3: Feature modeling seems not adapted to our resolution prob-
lem to represent free allocation variability;
Obs#4: Modeling of reference specializations on a 1-to-many re-
lation seems more efficient on the one hand side (Choco domain
initialization reduction, and reduced execution time);
Obs#5:Modeling free resolution variables in abstract Clafers, which
reduces the Choco variables generated (with slightly larger enu-
merated domains) seems more efficient.

4.3.3 Generic Allocation Problem. From the previous experiments,
observations and recommendations, the generic resource allocation
problem (i.e. without domain penalties) is encoded as represented
in Listing 1. In comments in the listing are the references to the
constraints made explicit in Section 3.3.1.

Listing 1: Generic allocation problem
1 a b s t r a c t P ro cFunc t i on
2 execTime −> i n t e g e r
3 deployedFTo −> P r o c e s s o r / / C2 , C3
4 [ pa r en t in t h i s . a l l o c a t e dTo ]
5 a b s t r a c t FPGAFunction : P ro cFunc t i on
6 [ deployedFTo in FPGAProcessor ] / / C1
7
8 a b s t r a c t P r o c e s s o r

9 maxloadusage −> i n t e g e r
10 to t a lExecT imebyP −> i n t e g e r
11 [ to t a lExecT imebyP < maxloadusage ] / / C5
12 a l l o c a t e dT o −> ProcFunc t i on ∗
13 [ t h i s . deployedFTo = pa r en t ]
14 hostedBy −> Board
15 [ pa r en t in t h i s . p r o c e s s o r s ]
16
17 a b s t r a c t GPProcessor : P r o c e s s o r
18 maxload −> i n t e g e r = 280
19 maxusage −> i n t e g e r = 65
20
21 a b s t r a c t WireConnect ion
22 maxloadusage −> i n t e g e r
23 c u r r e n t l o a d −> i n t e g e r
24 [ c u r r e n t l o a d < maxloadusage ] / / C6 , C7
25
26 a b s t r a c t PCI : WireConnect ion
27 [ maxloadusage = 5428 ]
28
29 a b s t r a c t E t h e rn e t : WireConnect ion
30 s r c 2 −> Board
31 d e s t 2 −> Board
32 [ s r c 2 . r e f != d e s t 2 . r e f ]
33 [ maxloadusage = 848 ]
34 dep loyedAFConnectors −> AFConnector ∗
35 [ t h i s . deployedTo = pa r en t ]
36 [ a l l a f c : AFConnector | ( a f c in dep loyedAFConnectors ) <=>( a f c . s r c

. deployedFTo . hostedBy . r e f = s r c 2 . r e f && a f c . d e s t .
deployedFTo . hostedBy . r e f = d e s t 2 . r e f ) && ( ! ( ( a f c . s r c .
deployedFTo . r e f = s r c 2 . fpga ) &&( a f c . d e s t . deployedFTo . r e f =
d e s t 2 . fpga ) ) ) ] / / C4

37 [ c u r r e n t l o a d = ( i f dep loyedAFConnectors then sum
deployedAFConnectors . t o k enS i z e e l s e 0 ) ]

4.3.4 A Focus on the Penalties. As previously said, incoming and
outgoing data exchanges between nodes host by heterogeneous
processors induce extra execution time for the GPP, modeled as
penalties (cf. Section 3.3.2).

Listing 4 represents the encoding of the P8 penalty related to a
local transfer on the PCI. The calculation requires two steps: a query
to isolate a subset, and an operation on it. By queries we assume
extraction of relevant clafers from a set of clafers. The encoding
requires intermediate variables (e.g. collections like Localfpgagpx-
Connectors) to perform some operations on the restricted subsets.
Queries are represented by constraints with quantifiers, and are
very expensive in terms of resolution performance. The Localfp-
gagpxConnectors variable is used to calculate two penalties (p8GPP
and p8Pci). Observations are made at this stage:
Obs#6: Domain rules requires intermediate Clafer variables, these
variables are translated into resolution variables and induce i) less
understanding of the results, and ii) extra execution time. It is
important to limit their use and factorize the variables.
Obs#7: Using quantifiers (like all) applied on collection when build-
ing queries means repeating the operation during the resolution.
These are necessary, however, we observed that the impact can
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be reduced limiting the domains on which they apply (i.e. by re-
stricting types and collections, like FPGAAFConnector in Listing 4,
a specialization of AFConnector).
Obs#8: Building queries to implement domain rules (here penalties)
is not trivial, setting them at the architecture language level (as
opposed to directly in a CSP) make it easier for the designers.

4.3.5 Task Variant Modeling. As described in our resource alloca-
tion problem (cf. Section 3.4), the D2 function is kept open to be
deployed to either a GPP or a GPGPU (with a reduced execution
time). In the data-flow, D2 sends a message to F1. As the encoding
favors the use of Clafer specialisations to reduce sets on which quan-
tifiers are applied (cf. previous section), on the connector side the
variability has an impact on the specialized connector concerned
(GPxAFConnector xor GPuAFConnector). Listing 2 represents an
extract of the Clafer model. The encoding in Clafer follows the
Typecasting micro level pattern defined in [22].

At the end, two sources of extensive variability exist:
• The one in the allocation problem: modeling various ways of
mapping and deploying on a specific platform;

• The one in the application modeling: i) at the application
level, multiple data-flows variants can achieve the functional
requirements, differing in the choice between functionally-
equivalent tasks executed on different processors: GPU or
GPP; ii) two different hardware platforms which can differ
in including an FPGA or not.

Listing 2: Task variant
1 xor D2 −> ProcFunc t i on
2 d2Gpp : GPPFunct ion
3 [ pa r en t = t h i s ]
4 [ execTime = 900 ]
5 d2Gpu : GPUFunction
6 [ pa r en t = t h i s ]
7 [ execTime = 300 ]
8
9 gD2F1 : GPxAFConnector ?
10 [ s r c = D2 ]
11 [ d e s t = F1 ]
12 uD2F1 : GPuAFConnector ?
13 [ s r c = D2 ]
14 [ d e s t = F1 ]
15 [ d2Gpp <=> gD2F1 ]
16 [ d2Gpu <=> uD2F1 ]
17 [ gD2F1 xor uD2F1 ]

4.4 Resolution phase - problem and application
specific concerns

In the CSP paradigm, the topology of the search tree depends en-
tirely on the order in which the resolution variables are instantiated,
as well as the order in which the values are evaluated. The resolu-
tion variables choice heuristic determines the order in which the
variables are instantiated. The value choice heuristic, on the other
hand, sets the order in which the values are assigned (branching
strategy). As introduced before, the Chocosolver binds the Clafer
encoding to a set of variables and constraints from the Choco con-
straint programming library. In our approach, our goal is not to
define a dedicated strategy from scratch, but to use the available
parameters accessible in the Clafer tools.

From observing Chocosolver implementation, we noticed that:

Table 6: Performance results - branching priority effects

File name deplCase3 deplCase3bD deplCase3bA
Size 1 073 741 824 1 073 741 824 1 073 741 824
Instances 96768 96768 96768
Time 1d22h08min10s 0d14h27min28s 0d15h19min46s
Diff 0 -69% -67%

Obs#9: The main ordering resolution variables of the Chocosolver is
an implementation of the Tarjan’s strongly connected components
algorithm.
Obs#10: The Chocosolver takes into account some order in the
modeling, order in collections and order in some declarations in the
model. The optimallity of the specific orders is out of the concerns
of this study.

4.4.1 Branching Priorities. In these experiments, the goal is not to
define a dedicated strategy from scratch but to use the available
parameters accessible in the Clafer tools. The following parameters
are available:

• For the variable selection Clafers tools exhibits the “Branch-
ingPriority” parameter from the Choco Solver library. Note
that, branching priority affects the resolution variable order
list as well as the solver resolution policy.

• For the value selection, the options are PreferSmallerInstances
or PreferLargerInstances (not investigated in this study).

For our allocation problem, the identified resolution variables
of first order are the allocatedTo and the deployedFTo references
(allocation schema, bidirectional relations), cf. example in Listing 3.

Listing 3: A branching priority setup via escape
1 [ choco |
2 b r a n c h i n g P r i o r i t y ( [ [ c 0 _ a l l o c a t e dTo ] ] )
3 | ]

XP2. In this experiment, the maxloadusage of the GPP must not
exceed 12000 (55% maxusage). At this stage, models still contain
17 functions (without the variability from Section 4.3.5), and do
not contain penalties rules. On such a case, different branching
priorities were tested from the deplCase3 model, mainly:

• deplCase3: the reference model, without any branching prior-
ity; Ordering of decision variables are computed by Tarjan’s
strongly connected components algorithm;

• deplCase3bD: a branching priority on deployedFTo;
• deplCase3bA: a branching priority on allocatedTo;

Results in Table 6 show that without branching, the resolution
time is about two days, and that the gain is up to 69% with the
deployedFTo priority (down to 14h27min). The gain from the de-
ployedFTo priority over the allocatedTo one is less important (6%).
Other non-significant branching (pair combinations) were tested,
providing results even worse than the reference case.
Obs#11: The branching as a significant impact, and therefore the
resolution variables selection is essential. The Tarjan’s algorithm
from the Chocosolver module, which is a resolution strategy in
itself, does not seem to fit our allocation problem and our image
processing application (deployedFTo or allocatedTo never top at the
beginning of the list). Depending on the targeted problem, algo-
rithms dedicated to taking into account equations or, conversely,
inequalities are to be preferred.
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XP3. In this experiment, the GPP max-usage is raised up to 75%,
as the domain rules were included (i.e. constraints defining the
penalties). At this stage models still contains 17 functions (with-
out the variability from Section 4.3.5). Clafer stats are: Abstract
21; Concrete 105; Reference 46; and Constraints 227. With these
parameters, 316 instances are generated in:

• deplCase10bD file (branching deployedFTo): 05h56min21s
• deplCase10bA file (branching allocatedTo): 04h24min46s

Note the gain of 25% and the inversion of advantage between
deployedFTo and allocatedTo compared to the previous (less con-
strained) case.
Obs#12: The partial model (with less constrained) shows good
performances when setting a priority onto deployedFTo, while the
complete model shows good performances when setting a priority
onto allocatedTo. Intuitively, the branching effectiveness depends
on the efficiency of the constraint in the search tree (its ability to
contract the search space). One may note that, in the complete case,
most of the domain constraints are set up onto the deployedFTo rela-
tion, which is not the best branching priority. As allocatedTo is the
opposite of deployedFTo, it may implies more constraint. Additional
work is needed to improve the understanding of the management
of the constraints translated in the solver.

From the experiments, we cannot advice a generic way to choose
branching priority set-ups, therefore, we recommend exploring and
testing (on the first instances retrieved).

4.4.2 Application Specific Enhancements. Another way to improve
the resolution performances is to add redundant constraints dedi-
cated to our application. As indicated by [4], in a general context
minimizing the number of constraints (and/or the number of vari-
ables) in a CSP does not necessary implies lower solving time in
practice. A redundant constraint is a constraint which does not
change the set of valuations satisfying a given CSP when adding
this constraint to the CSP. In practice, adding well-chosen redun-
dant constraints may speed up the solving process, or obtain a
scale-up. In our case, the domain expert analyze of the application
emphasizes the following redundancy constraints:

• Functions C20 and C21, GPGPU dedicated, have to be de-
ployed to different processors in order to satisfy the capacity
constraint for the GPGPU (see C5);

• Functions C20 and C30 have to be deployed on the same
board in order to satisfy the bandwidth constraint of the
Ethernet connection (see C6);

• FunctionsC21 andC31 have to be deployed on the same board
in order to satisfy the bandwidth of the Ethernet connection
constraint (C6).

XP4. In this experiment, the above redundancy constraints are
added to the model, which includes: 17 functions (without the
variability) and domain rules (i.e. constraints defining the penalties).
Clafer stats are: Abstract 21; Concrete 105; Reference 46; Constraints
232. The GPP maxusage was set up to 74%, and the solutions set
are 44 instances, provided in:

• deplCase11bD file (branching deployedFTo): 04h11min12s
• deplCase11bA file (branching allocatedTo): 00h07min53s

Note the extreme gain (97%) obtained with the best branching.

Table 7: Performance results - allocation problem

File name deplCasebANoRC deplCasebA deplCasebD
Size 4 294 967 296 4 294 967 296 4 294 967 296
Instances 704 704 704
Time 9h59min45s 1h00min25s 1d02h12min41s
Constraints 269 272 272

4.4.3 Experiments on the complete version of the case study. Before
analyzing architecture candidates performances for trade-offs, e.g.
end-to-end response times, deadline misses, these architecture can-
didates must be synthesized. As quality attributes are not defined
on the allocation problem at this time, optimizations strategies are
impossible to define, and an exhaustive exploration of all candidate
architecture is needed.

XP5. In this last experiment, variability (cf. Section 4.3.5) and
an initialization function is added to the 17 functions, redundancy
constraints (except for deplCasebANoRC) and domain rules set, and
the GPP maxusage is set up to 73%. Table 7 shows the performance
results for the different branchings (comparison of deplCasebA -
branching allocatedTo, deplCasebANoRC same branching without
redundancy constraints, and deplCasebD - deployedFTo). Note that,
with a dedicated computing machine (Intel® CoreTM i9-9900K CPU
@ 3.60GHz), the time is reduced to 16 min 00 sec. for deplCasebA.

From these results, we can conclude that it is feasible to model
and synthesize candidate architectures for this resource allocation
problem, and that the Clafer tool-set is able of handling it. However,
efforts have to be provided towards resolution to reach such a goal.
When creating the case short time (<1 min) is acceptable to find 1
solution. For global final modeling few hours (<5h) is acceptable
to find all solutions, which is the case with deplCasebA (1h with a
basic set-up, or 16 min with a dedicated machine), and even with
deplCasebANoRC (02h 59 min with the computing machine).
One may note the symmetry of the case of application, concerning
the material resources, the constitution of the boards, and their
arrangement (2 boards with FPGA, and 2 boards without). Conse-
quently, some of the solutions proposed by the solver are equivalent.
This is a problem identified in the literature, and the filtering of
these solutions by applying a specific algorithm is generally more
efficient to eliminate “duplicate” solutions.

5 DISCUSSIONS
First, a sum-up of the observations is made:

• Obs#1 and Obs#2 point out the limits of the Integers to deal
with properties from different dimensions and scales;

• As revealed by Obs#3, with the experimented version of the
tool, the classical feature modeling approach is not (whereas
it could intuitively be) the best option to use when modeling
an allocation problem;

• Obs#4 and Obs#5 set the limits of the current Chocosolver
implementation, and highlights areas for improvement re-
garding translation in the resolution space;

• Obs#6, Obs#7, Obs#8 focus on constraints and queries and
underlines the benefits of having to deal with (“high level”)
architectural concepts to express them;

• The essential element of the study is summed-up by the
last 4 observations (Obs#9, Obs#10, Obs#11, and Obs#12): the
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importance of the resolution. In the study, we explore some
features provided, and observed that it is clearly difficult to go
generic on this subject. However, focusing on the resolution
is essential to address large problems. Besides, the results on
the experiments show that the applied strategy needs to
evolve when developing the model.

With this work, we outline some characteristics for architecture
exploration modeling and for an associated resolution tooling.

5.1 Modeling and synthesis architectures
First, knowing how to manage different types and scales of data is
a key element in addressing engineering problems.

Then, one difficulty is to maintain a genericity and modularity
in the modeling, which can be done at the expense of the efficiency
of the resolution. A compromise must be found between: modelling
at the architectural level, which is and must be generic in nature for
the architect; modelling for resolution, which to be most effective
must be specific, depending on the type of problem to be solved.

Several approaches are possible to help the efficiency of the
resolution: i) An implementation of specific declarative resolution
strategies (which would imply adapted means of expression of
these strategies) or, ii) An analyze of the model to suggest/apply
adapted strategies, and iii) Guidelines to assist in the modeling and
resolution.

5.2 On the use of the Clafer/Choco approach
for the resource allocation problem

First of all, it is important to mention that it was possible to model
an allocation problem application case and solve it with Clafer and
its back-end Choco. However, efforts have to be provided towards
resolution to reach such a goal.

The Clafer language provides all the constructs to address our
application case study. Note that we agree with the observation
from [22], that from a modeling perspective, said that an inverse
relationships (opposite) can be marked. Nevertheless, as shown in
our experiments, it has to be distinguished in the resolution phase
(to have access for the branching).

As said before, the resolution is important. An interesting part
of the Clafer approach is that the reasoning over Clafer models can
naturally benefit from all performance improvements achieved in
the underlying Choco library, e.g. to gain in performances from
distributed solving.

As pointed out in [22], native deficiencies of Clafer like scala-
bility issues and debugging are critical and may become the most
impeding factors in modeling using Clafer. The last aspect is not
trivial, and all the more necessary as the constructions of the lan-
guage are not standard. As it is hard to observe and understand the
solver resolution, and identify the constraints closing the resolution,
we recommend that the user construct incrementally of the model,
with a step-by-step verification on the result of the resolution. That
is to say, applying the problem solving community approach, start-
ing small on the domain modeling (metamodel), and also on the
instances. Indeed, a model that compiles perfectly, and therefore,
that is syntactically correct can rapidly be over-constrained and
provide no results.

Therefore, validation could be enhanced at Clafer compile time to:
i) validate the definition/instance conformity, and ii) highlight the
free resolution variables. As it is costly to let free resolution variables
by inadvertence (furthermore integer variables), resolution variables
could be detected at validation, or could by tagged and set visible
at the architecture language level in the Clafer language.

5.3 Threats to validity
Internal. The main threat to internal validity is the selection of the
used case study. Although it was built with system and platform
experts to be representative in terms of shape and complexity of
the modeling, it is a single case. One other threat is our level of
knowledge and expertise with Clafer, its Chocosolver module. We
made our best to understand the capabilities of the tool consulting
published works, and observing the implementation, as can bemade
in industrial practices. However, in future work the threat could be
further mitigated by having experts from Clafer and Choco.
External. Several threats to external validity exist. We expect the
proposed discussion to be applicable in other domains and applying
to other engineering problems, but do not have any evidence yet of
this generalization possibility. Future work will consider it.

6 CONCLUSION
In this paper, we explore the advantages of designing and configur-
ing the variability problem to solve one of the problems of exploring
(synthesizing) candidate architectures in systems engineering: the
resource allocation problem.

With this work, we outlined some characteristics for architec-
ture exploration modeling and for an associated resolution tooling.
Based on the experiments, and we have successfully encoded the
industrial application in Clafer, 12 observations are carried out on
i) the use of the language, ii) the importance of resolution strategy.

Experiments shows that the approach of variability design prob-
lems, and more particularly Clafer, offers interesting features to
address Systems Engineering problems resolution. However, works
have to be done towards filling the gap between architectural for-
malisms and constraint programming solving paradigm, in order to
obtain a gain in the resolution efficiency and a viable approach. Res-
olution is essential, and we suggest a practical technique to scale
the existing approach to larger systems by using the branching
options in the generation tool.

Facing the translation into integer problem, future work will
consider extensions to Numerical Constraint Satisfaction Problems.
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Listing 4: P8 Penalty
1 Loca l f pgagpxConnec to r s −> FPGAAFConnector ∗ / / i n t e rme d i a t e var
2 [ a l l a f c : FPGAAFConnector | ( a f c in Loca l f pgagpxConnec to r s ) <=>

( ( a f c . s r c . deployedFTo . r e f = t h i s . fpga ) && ( ( a f c . d e s t .
deployedFTo . r e f = t h i s . gpp ) | | ( a f c . d e s t . deployedFTo . r e f =
t h i s . gpu ) ) ) ] / / query

3 p8GPP −> i n t e g e r / / i n t e rme d i a t e var
4 [ p8GPP = ( i f Loca l f pgagpxConnec to r s then # Loca l f pgagpxConnec to r s

∗ 1000 e l s e 0 ) ]
5 p8Pc i −> i n t e g e r
6 [ p8Pc i = ( i f Loca l f pgagpxConnec to r s then sum

Loca l f pgagpxConnec to r s . t o k enS i z e e l s e 0 ) ]

Listing 5: Constraint on concrete collection
1 a b s t r a c t P ro cFunc t i on
2 deployedFTo −> P r o c e s s o r
3 [ pa r en t in t h i s . a l l o c a t e dT o ]
4 a b s t r a c t P r o c e s s o r
5 a l l o c a t e dT o −> ProcFunc t i on ∗
6 [ t h i s . deployedFTo = pa r en t ]
7 / / FPGA s p e c i a l i s a t i o n example
8 a b s t r a c t FPGAProcessor : P r o c e s s o r
9 [ a l l o c a t e dT o in myda t aF l owArch i t e c tu r e . l o ca l FPGAFunc t i ons ] / / C1
10 / / F un c t i o n a l da t a f low a r c h i t e c t u r e
11 a b s t r a c t F u n c t i o n a l A r c h i t e c t u r e
12 l o ca l FPGAFunc t i ons −> ProcFunc t i on ∗
13 A r c h i t e c t u r e
14 myda t aF l owArch i t e c tu r e : F u n c t i o n a l A r c h i t e c t u r e

Listing 6: Constraint on specialised Clafer
1 a b s t r a c t P ro cFunc t i on
2 deployedFTo −> P r o c e s s o r
3 [ pa r en t in t h i s . a l l o c a t e dT o ]
4 a b s t r a c t FPGAFunction : P ro cFunc t i on
5 [ deployedFTo in FPGAProcessor ] / / C1
6 a b s t r a c t P r o c e s s o r
7 a l l o c a t e dT o −> ProcFunc t i on ∗
8 [ pa r en t in t h i s . deployedTo ]
9 a b s t r a c t FPGAProcessor : P r o c e s s o r

Listing 7: Feature modeling of the specialization
1 a b s t r a c t P ro cFunc t i on
2 deployedFTo −> P r o c e s s o r
3 [ pa r en t in t h i s . a l l o c a t e dT o ]
4 a b s t r a c t FPGAFunction : P ro cFunc t i on
5 [ deployedFTo . p r o c e s s o rK ind . FPGA] / / C1
6 a b s t r a c t P r o c e s s o r
7 a l l o c a t e dT o −> ProcFunc t i on ∗
8 [ pa r en t in t h i s . deployedTo ]
9 xor p ro c e s s o rK ind
10 FPGA
11 GPP
12 GPU

https://github.com/gsdlab/clafer/raw/master/doc/clafer.pdf
https://github.com/gsdlab/clafer/raw/master/doc/clafer.pdf
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