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EMPIRICAL MEASURES: REGULARITY IS A COUNTER-CURSE

TO DIMENSIONALITY

Benôıt R. Kloeckner*

Abstract. We propose a “decomposition method” to prove non-asymptotic bound for the convergence
of empirical measures in various dual norms. The main point is to show that if one measures convergence
in duality with sufficiently regular observables, the convergence is much faster than for, say, merely
Lipschitz observables. Actually, assuming s derivatives with s > d/2 (d the dimension) ensures an
optimal rate of convergence of 1/

√
n (n the number of samples). The method is flexible enough to

apply to Markov chains which satisfy a geometric contraction hypothesis, assuming neither stationarity
nor reversibility, with the same convergence speed up to a power of logarithm factor. Our results are
stated as controls of the expected distance between the empirical measure and its limit, but we explain
briefly how the classical method of bounded difference can be used to deduce concentration estimates.
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1. Introduction

1.1. Empirical measures and quadrature

Consider a discrete-time stochastic process (Xk)k≥0 taking its values in some domain Ω ⊂ Rd. We are
concerned with the random atomic measure

µ̂n =
1

n

n∑
k=1

δXk ,

called the empirical measure of the process, and its convergence. We shall either assume that the (Xk)k≥0 are
independent identically distributed of some law µ, or assume they form a Markov chain with weak long-range
dependence and convergence of the law of Xk to µ as k →∞.

To quantify the convergence, we are interested in distances on the set P(Ω) of probability measures defined
by duality. Given a class F of functions f : Ω → R (sometimes called “test functions” or “observables”), one
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defines for ν0, ν1 ∈ P(Ω):

‖ν0 − ν1‖F = sup
f∈F

∣∣ν0(f)− ν1(f)
∣∣

(note that we write indifferently ν0(f) or
∫
f dν0).

One particularly important case is obtained by taking F = Lip1(Ω), the set of 1-Lipschitz functions. The
corresponding metric is the 1-Wasserstein metric W1 = ‖·‖Lip1

, which by virtue of Kantorovich duality (see e.g.
[10], Thm. 11.8.2) can be written equivalently as

W1(ν0, ν1) := inf
X∼ν0,Y∼ν1

E
[
‖X − Y ‖

]
(1.1)

here ‖·‖ here is the Euclidean norm and the infimum is over all pairs of random variable with the given measures
as individual laws. It is long-known [1] that, when the (Xk)k≥0 are independent and uniformly distributed on
[0, 1]d , we have

E
[

W1(µ̂n, λ)
]
�



1√
n

if d = 1,

√
log n

n
if d = 2,

1

n
1
d

if d ≥ 3

(1.2)

where � expresses upper and lower bounds up to multiplicative constants and λ denotes the Lebesgue measure.
This problem and generalizations have been studied in several works, e.g. [2, 3, 9, 12, 26, 27, 30].

The bounds (1.2) are interesting theoretically, but are rather disappointing for the practical application to
quadrature. Computations of integrals are in many cases impractical using deterministic methods, and one often
has to resort to Monte Carlo methods, i.e. approximate the unknown µ(f) by µ̂n(f). When one has to compute
the integrals of a large number of functions (fm)1≤m≤M with respect to a fixed measure µ, one would rather
draw the random quadrature points X1, . . . , Xk once and for all, and use them for all functions fm; while usual
Monte Carlo bound will ensure each individual estimate µ̂n(fm) has small probability to be far from µ(fm), if
M is large compared to n these bounds will not ensure that all estimates are good with high probability. On the
contrary, convergence in W1 (or in duality with some other class F ) ensures good estimates simultaneously for
all fm, as long as they belong to the given class, independently of M . This makes such convergence potentially
useful; but the rate given above, n−

1
d , is hopelessly slow in high dimension which is precisely the setting where

Monte Carlo methods are most needed. We shall prove that if the functions of interest are regular enough, then
this “curse of dimensionality” can be overcome. We shall be interested in the duality with Cs

1 the set of functions
with Cs norm at most 1 (precise definitions are given below; when s = 1 this is the set of 1-Lipschitz functions);
but other spaces could be considered, e.g. Sobolev or Besov spaces. An approach similar in spirit, but in fact
quite different, is developped by Berthet and Weed in [31]: they show that good estimators (constructed from
a sample of i.i.d. random variables with law µ, but different from the empirical measure) exist for probability
measures with smooth enough density. This is quite orthogonal to our setting, where the measure is arbitrary
and the observables are smooth.

Another issue is that in many cases, drawing independent samples (Xk)k≥0 of law µ is not feasible, and one is
lead to instead rely on a Markov chain having µ as its stationary measure; this is the Markov Chain Monte Carlo
method (MCMC). While the empirical measure of Markov chains have been considered by Fournier and Guillin
[12], these authors need quite strong assumptions: a spectral gap in the L2 space (or similarly large spaces), and
a “warm start” hypothesis (X0 should have a law absolutely continuous with respect to µ). In good cases, one
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can achieve this by a burn-in period (start with arbitrary X0, and consider (Xk0+k)k≥0 for some large k0); but
in some cases, each Xk has a singular law with respect to µ (for example the natural random walk generated
by an Iterated Function System). We shall consider Markov chains satisfying a certain geometric contraction
property, but again the method can certainly be adapted to other assumptions.

1.2. Markov chains

Our main result handles Markov chains of arbitrary starting distribution and with a spectral gap in Lip (e.g.
positively curved chains in the sense of Ollivier [23]).

Theorem 1.1. Assume that (Xk)k≥0 is a Markov chain defined on a bounded domain Ω of Rd, whose iterated
transition kernel (mt

x)x∈Ω,t∈N defined by

mt
x(A) = P(Xk+t ∈ A | Xk = x)

is exponentially contracting in the Wasserstein metric W1, i.e. there are constants D ≥ 1 and θ ∈ (0, 1) such
that

W1(mt
x,m

t
y) ≤ Dθt‖x− y‖.

Denote by µ the (unique) stationary measure of the transition kernel and let s be a positive integer.
Then there exists a constant C = C(Ω, d,D, s) > 0 such that for all n, letting n̄ = (1− θ)n, we have

E
[
‖µ̂n − µ‖Cs1

]
≤ C



(log n̄)
d

2s+1

√
n̄

when 2s > d

log n̄√
n̄

when 2s = d

(log n̄)d−2s+ s
d

n̄
s
d

when 2s < d.

(1.3)

Note that the hypothesis that the Markov chain is exponentially contracting corresponds to its Markov
operator (acting on the space of Lipschitz functions) having a spectral gap. Let us stress two strengths of this
result:

– for s = 1, recalling ‖·‖C11 = ‖·‖Lip1
= W1, the bounds are only a power of logarithm factor away from the

optimal bounds for i.i.d. random variables,
– for s large enough, we almost obtain the optimal convergence rate � 1/

√
n

– we assume neither reversibility, stationarity, nor warm start hypotheses (the distribution of X0 can be
arbitrary),

– the rate of convergence does not depend on the specific feature of the Markov chain, only on D and θ.

Note that for fixed θ, n̄ has the same order than n, but if θ is close to 1, 1/(1 − θ) is the typical time scale
for the decay of correlations. One thus cannot expect less than (1− θ)n Markov samples to achieve the bound
obtained for n independent samples.

Examples of Markov chains which are exponentially contracting in W1 (equivalently, that have a spectral
gap in the space of Lipschitz observables) are numerous (and include many Markov chains that fail to converge
to the stationary measure in the total variation distance); it is a slightly more general condition than “positive
curvature” in the sense of Ollivier [23] (close to the “one-step contracting” condition in [7]), see e.g. [15] and
[17] for concrete examples, or in the context of dynamical systems [18] and [16]. The case of continuous-time
processes also produce many relevant examples, see e.g. [11] and [22].
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Under the assumption of Theorem 1.1, it is well-known that uniform concentration and bias estimates hold:

sup
f∈F

P
(
|µ̂n(f)− µ(f)| > ε

)
→ 0 and sup

f∈F
E
[
|µ̂n(f)− µ(f)|

]
→ 0 (1.4)

with F = Lip1 (or any smaller class); see [15] and [24] for explicit rates, in particular Gaussian concentration

rates (i.e. of the form 2e−cnε
2

) when ε is small enough.
The problem of convergence in duality to the class F is thus to invert the supremum and the probability (or

expectation), to bound from above

P
(

sup
f∈F
|µ̂n(f)− µ(f)| > ε

)
or E

[
sup
f∈F
|µ̂n(f)− µ(f)|

]
.

We shall disregard the potential issue of non-measurability: as we shall only deal with classes F having a
countable subset which is dense in the uniform norm, we can always replace the supremum with a supremum
over a countable set of functions.

The idea of the proof of Theorem 1.1 is to take an arbitrary f ∈ Cs
1(Ω) and decompose it using Fourier series.

The regularity hypothesis gives us a control on both the uniform approximation by a truncated Fourier series,
and on the Fourier coefficients. Combining these controls, we bound from above |µ̂n(f) − µ(f)| by a quantity
that does not depend on f at all, but depends on the Fourier basis elements (ek)k∈Zd up to some index size.
Taking a supremum and an expectation, this leaves us with the simple task to optimize where to truncate the
Fourier series.

This decomposition method can in principle be used under various assumptions on the process (Xk)k≥0, the
point being to identify a decomposition suited to the assumption; in particular, one can easily adapt the method
to study geometrically ergodic Markov chains. I chose to present Theorem 1.1 in part because its hypothesis is
relevant to several Markov chains I am interested in, and in part because it presents specific difficulties: a blunt
computation leads to non-optimal powers of n. To obtain good rates, we translate the contraction hypothesis
to frame part of the argument in the space Holα, where the Fourier basis has smaller norm; and instead of
bounding the Fourier coefficients of a Lipschitz function directly, we use Parceval’s formula and the injection
Cs → Hs which turns out to give a better estimate. Another functional decomposition, and another path in
computations might improve the power in the logarithmic factor.

We restrict to the compact case, but the method can in principle be adapted, or truncation argument be
used, to deal with non-compactly supported measure.

In order to introduce the decomposition method and show its flexibility, we shall state some simpler results
below.

1.3. Explicit bounds in the i.i.d case, for the Wasserstein metric

The decomposition method enables one to get a very explicit version of (1.2) with a few computations but
very little sophistication.

Theorem 1.2. If µ is any probability measure on [0, 1]d and (Xk)k≥0 are i.i.d. random variable with law µ,
then for all n ∈ N we have

E
[

W1(µ̂n, µ)
]
≤



1

2(
√

2− 1)
· 1√

n
when d = 1,

log2(n) + 8√
8n

when d = 2,

Cd

n
1
d

when d ≥ 3

(1.5)



412 B.R. KLOECKNER

where C3 ≤ 6.3, Cd ≤ 3
√
d for all d ≥ 4, and Cd/

√
d→ 2 as d→∞.

The order of magnitude of these bounds is sharp in many regimes:

– in dimension 1, the order of magnitude 1/
√
n is optimal; however the constant 1/(2(

√
2 − 1)) is not

asymptotically optimal when µ is Lebesgue measure,
– when d = 2 and µ is Lebesgue measure, as previously mentioned the correct order is

√
log n/n, however

see Theorem 1.3 below: the same method provides similar upper bounds for some fractal measures, and
when the fractal dimension is 2 the rate log(n)/

√
n is actually sharp.

– when d ≥ 3, both orders of magnitude n−1/d as n→∞ and
√
d as d→∞ are sharp up to multiplicative

constants (see Rem. 2.2). The asymptotic constant 2 is certainly quite larger than the asymptotic constant

lim
d→∞

lim
n→∞

n
1
d

√
d
E
[

W1(µ̂n, λ)
]

which has been computed for the related, but slightly different matching problem by Talagrand [26]; but
our bound holds for all n and all d (and also all µ). An even more general bound has been given by
Boissard and Le Gouic [3], but their constant is larger by a factor approximately 10.

Let us stress that the main purpose of this result will be to expose our method in an elementary setting:
indeed many previous similar bounds are available in this case. For example more general non-asymptotic
results have been obtained by Fournier and Guillin [12], building on previous work by Dereich et al. [9]. They
are more general in that they consider q-Wasserstein metric for any q > 0 (while we will only be able to consider
q ≤ 1), and apply to non-compactly supported measures µ under moment assumptions. However their constants,
though non-asymptotic, have not been made explicit, and their behavior when the dimension grows has not
been studied.

The available methods are able to prove similar upper bounds for some fractal measures; we shall prove that
in some cases, these upper bound are sharp even at the critical dimension.

Theorem 1.3. Let µ be the uniform measure on a self-similar, strongly separated fractal (see definitions in
Sect. 2.4) and let (Xk)k≥0 be i.i.d. random variables of law µ and q ∈ (0, 1]. Let D be the fractal dimension of
µ. Then

E
[

Wq(µ̂n, µ)
]
�



1√
n

if D < 2q,

log n√
n

if D = 2q,

1

n
q
D

if D > 2q.

The sharpness of the bound log n/
√
n in the critical case here contrasts with the case of the uniform measure

on the square (1.2). Methods that rely on a multiscale decomposition in any way applicable to self-similar fractal
measure thus cannot yield the optimal estimate of [1] in the case of Lebesgue measure.

Note that a self-similar fractal of dimension 2 with the strong separation condition does not admit a bi-
Lipschitz embedding in R2, and the following question, already stressed in [12], is left open: is it true that
E
[

W1(µ̂n, µ)
]
.
√

log(n)/n for all µ ∈ P([0, 1]2)?

1.4. Regular observables and independent samples

In the i.i.d. case, we can improve Theorem 1.1 by removing most of the logarithmic factors.
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Theorem 1.4. If µ is any probability measure on [0, 1]d and (Xk)k≥0 are i.i.d. random variable with law µ,
then for all s ≥ 1, for some constant C = C(d, s) > 0 (not depending upon µ), and all integer n ≥ 2 we have

E
[
‖µ̂n − µ‖Cs1

]
≤ C



1√
n

when s > d
2 ,

log n√
n

when s = d
2 ,

1

ns/d
when s < d

2 .

(1.6)

It is possible to prove this result with previous, more classical methods. Indeed, combining the “entropy
bound” for the class Cs

1 ([28, Thm. 2.7.1]) and the “chaining method” (see e.g. [29, Ex 5.11, p. 138]) leads to
Theorem 1.4; I am indebted to Jonathan Weed for pointing this out to me. The proof by the decomposition
method we provide here is very simple, but non-elementary as it relies on a wavelet decomposition. It is well-
known that all functions in Cs

1 can be written as a linear combination of a few elements of a wavelet basis, with
small coefficients, up to a small error. Then controlling |µ̂n(f)− µ(f)| for all f ∈ Cs

1 simultaneously reduces to
controlling this quantity for the few needed elements of the wavelet basis.

1.5. Concentration inequalities

Up to know, we have restricted to estimates on the expectation, while in many practical situations one would
need concentration estimates. This is in fact not a restriction, as we shall explain briefly in Section 5: the
classical bounded difference method enable one to get concentration near the expectation. In particular, we get
the following.

Corollary 1.5. Under the assumptions of Theorem 1.1, there exist ε = ε(θ,D, diam Ω) > 0, C = C(Ω, d,D, θ) >
0 such that for all n ≥ N and all M ≥ C we have:

– when s > d/2

P

[
‖µ̂n − µ‖Cs1 ≥M

(log n)
d

2s+1

√
n

]
≤ e−ε(M−C)2(logn)

2d
2s+1

, (1.7)

– when s = d/2

P

[
‖µ̂n − µ‖Cs1 ≥M

log n√
n

]
≤ e−ε(M−C)2(logn)2 , (1.8)

– when s < d/2

P

[
‖µ̂n − µ‖Cs1 ≥M

(log n)d−2s+ s
d

n
s
d

]
≤ e−ε(M−C)2n1−2s/d

. (1.9)

(The last inequality is not optimal as we relaxed the poly-logarithmic factor for simplicity.) For example,
when d

2 < s < d− 1
2 we deduce that

√
n

(log n)
d

2s+1

‖µ̂n − µ‖Cs1
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is bounded almost surely.
The recent article [8] gives related deviation inequalities. Compared to Corollary 1.5, on the one hand they

restrict to the i.i.d. case and Wasserstein distances, but on the other hand they allow for non-compactly sup-
ported measures µ and consider p-Wasserstein distances with p ≥ 1. They only make weak moment assumptions,
which leads to an unavoidable polynomial part in the bounds; in the cases where both apply, our bounds above
are thus stronger for fixed M and large n. The question remains of what order of concentration one should
expect in the case of a Markov chain with non compactly supported stationary measure.

Structure of the paper Sections 2–4 are independent and contain respectively the proofs of Theorems 1.2
and 1.3, 1.4, 1.1: we start with the most elementary proofs, follow with the simplest one, and end with the most
sophisticated).

Section 5, dealing with concentration estimates, is mostly independent from the previous ones, which are
only used to deduce Corollary 1.5.

We shall write a . b for a ≤ Cb, the dependency of the constant C being left implicit unless it feels necessary;
the constants denoted by C will be allowed to change from line to line.

2. Wasserstein convergence and dyadic decomposition

The goal of this section is to prove (a refinement of) Theorem 1.2. We consider a sequence (Xk)1≤k of
independent, identically distributed random points whose common law shall be denoted by µ; we assume that
µ is supported on the cube [0, 1]d and consider the convergence of the empirical measure µ̂n :=

∑n
k=1

1
nδXk in

the q-Wasserstein distance where q ∈ (0, 1], i.e.

Wq(µ0, µ1) := sup
f∈Holq1

∣∣µ0(f)− µ1(f)
∣∣

where Holq1 is the set of functions f : [0, 1]d → R such that for all x, y ∈ [0, 1]d:

|f(x)− f(y)| ≤ ‖x− y‖q

(note that this is the usual Wasserstein distance with respect to the “snowflake” metric ‖·‖q, and thus benefits
from all its usual properties; in particular Wq is a metric).

While we are mostly interested in the Euclidean norm ‖·‖, our method is sharper in the case of the supremum
norm1 ‖·‖∞, with respect to which the analogue of the aforementioned objects are denoted by Wq,∞ and Holq,∞1 .
We will work with ‖·‖∞, and then deduce directly the corresponding result for the Euclidean norm by using
that ‖·‖ ≤

√
d‖·‖∞ (and thus Wq ≤ d

q
2 Wq,∞).

Our most precise result is the following.

Theorem 2.1. For all q ∈ (0, 1] and all n, it holds:

E
[

Wq,∞(µ̂n, µ)
]
≤



2
d
2−2q

1− 2
d
2−q
· 1√

n
when d < 2q,

(
2 +

log2(n)

2q+1q

) 1√
n

when d = 2q,

2
( d

2 − q
2q(1− 2q−

d
2 )

) 2q
d
(

1 +
q

2q(d2 − q)

) 1

n
q
d

when d > 2q.

1The same notation is used for the uniform norm of functions, but the type of the argument will prevent any confusion.



EMPIRICAL MEASURES: REGULARITY IS A COUNTER-CURSE TO DIMENSIONALITY 415

We deduce several more compact formulas below, including Theorem 1.2. Observe that for fixed q and large
d, the complicated front constant converges to 2.

Remark 2.2. It is not difficult to see that for µ the Lebesgue measure and an optimal, deterministic
approximation µ̃n with n = kd Dirac masses, one has

W1,∞(µ̃n, µ) ≥ d

(d+ q)2q
1

n
q
d

(use that the ‖·‖∞-spheres have (d− 1)-dimensional volume equal to 2d× (2r)d−1: in the best-case scenario, all
support points of µ̃n are coupled exactly with ‖·‖∞-balls, all of the same radius r+; a simple integration similar
to the one below gives the claimed bound). It follows that in high dimension, for the `∞ norm and in the worst
case q = 1 our estimate is off by a factor of approximately 4 compared to a best approximation.

With the Euclidean norm, an easy lower bound in the case of the Lebesgue measure is obtained by observing
similarly that a mass at most

π
d
2

Γ(d2 + 1)
Rdn

is at distance R or less of one of the n points (be they random or not). This leads, for any measure µ̃n supported
on n points, to

Wq(µ̃n, µ) ≥ n
∫ R0

0

d
π
d
2

Γ(d2 + 1)
Rd dR = n

dπ
d
2

(d+ 1)Γ(d2 + 1)
Rd+1

0

where R0 is defined by n π
d
2

Γ( d2 +1)
Rd0 = 1. Finally,

W1(µ̃n, µ) ≥
dΓ(d2 + 1)

1
d

(d+ 1)
√
π︸ ︷︷ ︸

∼
d→∞

√
d

2eπ

· 1

n
1
d

and again our order of magnitude Cd �
√
d is the correct one.

The results of [26] show that, at least for the bipartite matching problem, this seemingly crude lower bounds
are in fact attained asymptotically, taking renormalized limits as n → ∞ and then d → ∞. This indicates
that our constant are not optimal, and it would be interesting to have a non-asymptotic bound with optimal
asymptotic behavior.

2.1. Decomposition of Hölder functions

The method to prove Theorem 2.1 consists in a multiscale decomposition of the functions f ∈ Holq,∞1 . In
its spirit, it seems quite close to arguments of [3], [9] and [12]; our interest is mostly in setting this multiscale
analysis in a functional decomposition framework.

We fix a positive integer J to be optimized later, representing the depth of the decomposition. For each
j ∈ {0, . . . , J}, set Λj = {j} × {0, . . . , 2j − 1}d ; then define Λ =

⋃J
j=0 Λj , acting as the set of indices for the

decomposition.
For each j ∈ {0, . . . , J}, let {Cλ : λ ∈ Λj} be the regular decomposition of [0, 1]d into cubes of side-length 2−j ;

the boundary points are attributed in an arbitrary (measurable) manner, with the constraint that {Cλ : λ ∈ Λj}
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is a partition of [0, 1]d that refines the previous partition {Cλ : λ ∈ Λj−1}. Denote by xλ the center of the cube
Cλ, and by ψλ := 1Cλ the characteristic function of Cλ (so that for each j,

∑
λ∈Λj

ψλ = 1[0,1]d).

Lemma 2.3. For all function f ∈ Holq,∞1 and all J , there exist coefficients α(λ) ∈ R such that

f =

J∑
j=1

∑
λ∈Λj

α(λ)ψλ + c+ g (2.1)

where c is a constant and g is a function [0, 1]d → R, such that

|α(λ)| ≤ 2−(j+1)q ∀λ ∈ Λj

‖g‖∞ ≤ 2−(J+1)q.

Proof. Replacing f with f − c where c = f(x0,0), we assume that f vanishes at the center x0,0 of C0,0 = [0, 1]d.
Observe that f ∈ Holq,∞1 implies that ‖f‖∞ ≤ 2−q and |f(xλ)| ≤ 2−2q for all λ ∈ Λ1.

For λ ∈ Λ1, we define α(λ) = f(xλ) and set f1 =
∑
λ∈Λ1

α(λ)ψλ; we have |α(λ)| ≤ 2−2q, the function f − f1 is
Holq,∞1 on Cλ and vanishes at xλ. Since Cλ is a ‖·‖∞ ball of center xλ and radius 1/4, it follows that ‖f −f1‖∞ ≤
2−2q on each Cλ, and thus on the whole of [0, 1]d. Moreover for all λ ∈ Λ2 it holds |(f − f1)(xλ)| ≤ 2−3q.

Similarly, we define fj : [0, 1]d → R recursively by setting α(λ) = (f − fj−1)(xλ) for all λ ∈ Λj and fj =
fj−1 +

∑
λ∈Λj

α(λ)ψλ. Then |α(λ)| ≤ 2−(j+1)q for all λ ∈ Λj and ‖f − fJ‖∞ ≤ 2−(J+1)q.

2.2. Wasserstein distance estimation

With the notation of Lemma 2.3, for any f ∈ Holq1 we have:

∣∣µ̂n(f)− µ(f)
∣∣ ≤ 2‖g‖∞ +

J∑
j=1

∑
λ∈Λj

|α(λ)||µ̂n(ψλ)− µ(ψλ)|

≤ 21−(J+1)q +

J∑
j=1

2−(j+1)q
∑
λ∈Λj

|µ̂n(ψλ)− µ(ψλ)|

where the last right-hand term does not depend on f in any way. We can thus take a supremum and an
expectation to obtain

E
[

Wq,∞(µ̂n, µ)
]
≤ 21−(J+1)q +

J∑
j=1

2−(j+1)q
∑
λ∈Λj

E
[
|µ̂n(ψλ)− µ(ψλ)|

]
.

Remark 2.4. This is the core of the decomposition method. Observe that we used no hypothesis on the (Xk)
yet; any stochastic process for which one can control E[|µ̂n(ψλ)− µ(ψλ)|] can be applied the method.

Setting pλ = µ(ψλ), the random variable nµ̂n(ψλ) is binomial of parameters n and pλ. A standard estimation
of the mean absolute deviation yields

E
[
|nµ̂n(ψλ)− nµ(ψλ)|

]
≤
√
npλ(1− pλ)∑

λ∈Λj

E
[
|µ̂n(ψλ)− µ(ψλ)|

]
≤ 1√

n

∑
λ∈Λj

√
pλ.
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By concavity of the square-root function, we have

2−dj
∑
λ∈Λj

√
pλ ≤

√
2−dj

∑
λ∈Λj

pλ = 2−
dj
2 (2.2)

and we deduce

∑
λ∈Λj

E
[
|µ̂n(ψλ)− µ(ψλ)|

]
≤ 2

dj
2

√
n

E
[

Wq,∞(µ̂n, µ)
]
≤ 21−(J+1)q +

J∑
j=1

2j(
d
2−q)−q
√
n

(2.3)

leaving us with the simple task to optimize the choice of J .

2.3. Optimization of the depth parameter

We shall distinguish three cases: d < 2q, d = 2q and d > 2q. The first case is only possible for d = 1, but we
let it phrased that way because for some measures µ the dimension d of the ambient space can be replaced by
the “dimension” of the measure itself, see Section 2.4 for an example.

2.3.1. Small dimension

If d < 2q, then the sum in (2.3) is bounded independently of J and we can let J →∞ to obtain:

E
[

Wq,∞(µ̂n, µ)
]
≤ 2−q√

n

∞∑
j=1

2j(
d
2−q)

≤ 2
d
2−2q

1− 2
d
2−q
· 1√

n
. (2.4)

In particular, for d = 1, q = 1:

E
[

W1(µ̂n, µ)
]
≤ 1

2(
√

2− 1)
· 1√

n
. (2.5)

Remark 2.5. For d
2 − q close to 0, the constant in (2.4) goes to infinity; in this regime, for moderate n letting

J →∞ is sub-optimal and one should optimize J in (2.3) as we shall do in the next cases.

2.3.2. Critical dimension

If d = 2q (or in fact d ≤ 2q) we can rewrite (2.3) as

E
[

Wq,∞(µ̂n, µ)
]
≤ 21−(J+1)q +

2−qJ√
n
.

To optimize J , we formally differentiate the right-hand side with respect to J , equate to zero and solve for J .
Reminding that J is an integer, and keeping only the leading term (when n→∞) to simplify, this leads us to
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choose

J =
⌊ log2 n

2q

⌋
in particular implying 21−(J+1)q ≤ 2/

√
n. We deduce the claimed bound

E
[

Wq,∞(µ̂n, µ)
]
≤
(

2 +
log2(n)

2q+1q

) 1√
n
.

log n√
n

(2.6)

immediately implying the bound of Theorem 1.2 for d = 2 and q = 1 (where a
√

2 comes from the comparison
between the supremum and Euclidean norms):

E
[

W1(µ̂n, µ)
]
≤ log2(n) + 8√

8n
. (2.7)

2.3.3. Large dimension

If d > 2q, equation (2.3) becomes

E
[

Wq,∞(µ̂n, µ)
]
≤ 21−(J+1)q +

2J( d2−q) − 1

1− 2q−
d
2

· 1

2q
√
n
≤ 21−(J+1)q +

2J( d2−q)

2q(1− 2q−
d
2 )
· 1√

n
.

Following the same optimization process as in the critical dimension case, we choose J such that

1

2
n

1
d

(2q(1− 2q−
d
2 )

d
2 − q

) 2
d ≤ 2J ≤ n 1

d

(2q(1− 2q−
d
2 )

d
2 − q

) 2
d

leading to

E
[

Wq,∞(µ̂n, µ)
]
≤ 2
( d

2 − q
2q(1− 2q−

d
2 )

) 2q
d
(

1 +
q

2q(d2 − q)

) 1

n
q
d

.

For q = 1 and d ≥ 3, it comes E
[

W1,∞(µ̂n, µ)
]
≤ C ′dn−

1
d where

C ′d = 2
( d

2 − 1

2− 22− d2

) 2
d
(

1 +
1

d− 2

) 1

n
1
d

.

We have notably C ′4 = 3. Relaxing our bound for d ≥ 4 to

C ′d ≤ 2
(d

4

) 2
d
(

1 +
1

d− 2

)
it is more easily seen that it is decreasing (and still takes the value 3 at d = 4). We also see that we can take
C ′d → 2 as d→∞. The last part of Theorem 1.2 follows with Cd =

√
dC ′d, and a numerical computation shows

C3 ≤ 6.3.

2.4. Self similar fractal measures

We conclude this section with Theorem 1.3, showing that the critical case order log n/
√
n is sharp if one

generalizes its scope.
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Figure 1. Second stage of the construction of the four-corners Cantor set (contained in the
filled black area).

2.4.1. Iterated function systems and fractals

We shall consider certain fractal measures on Rd. Consider an Iterated Function System (IFS) Φ =
(φ1, . . . , φm) (where m ≥ 2), i.e. a collection of contractive mappings which we assume here to be similarities
with equal ratios:

φj(x) = aUjx+ bj ∀x ∈ Rd

where a ∈ (0, 1), each Uj is an orthogonal matrix, and the bj are elements of Rd. It is a classical application
of the Banach fixed point Theorem that there is a unique compact set K ⊂ Rd such that K = ∪jφj(K) [13];
it is called the attractor of the IFS, and is also called a self-similar fractal. There is also a unique probability
measure µ such that

µ =

m∑
j=1

1

m
(φj)∗µ

(the map ν 7→
∑
j

1
m (φj)∗ν is contracting in the complete metric W1, so that it has a unique fixed point; actually

this argument provides a unique fixed point among measures of finite first moment, but it can be shown that
no other fixed probability measure exists). This measure shall be called the uniform measure on K. We assume
further that Φ satisfies the following strong separation property: there is a compact set K ′ ⊂ Rd such that for
all j, φj(K

′) ⊂ K ′ and for all j 6= `, φj(K
′) ∩ φ`(K ′) = ∅ (this is in fact equivalent to φj(K) ∩ φ`(K) = ∅ for

all j 6= `, but has the advantage of being easy to check without constructing K). Examples of sets K obtained
as attractor of such an IFS are numerous; for example the classical middle-third Cantor set, or the four-corner
cantor set of the plane (Fig. 1).

In this setting, the fractal dimension of K and of µ is defined by D = logm
− log a , and it is known that their

Hausdorff dimension is also equal to D.
To prove Theorem 1.3, we shall relate K and µ to a symbolic model, easier to work with.

2.4.2. Symbolic Bernoulli measures

Consider Σ := {1, 2, . . . ,m}N endowed with the metric ρa defined as follows. For each x = (xi)i≥0 and
y = (yi)i≥0 in Σ, we set i(x, y) = min{i ≥ 0 | xi 6= yi} ∈ N ∪ {∞} and ρa(x, y) = ai(x,y) ∈ [0, 1]. The metric ρa
is ultrametric: ρa(x, z) ≤ max{ρa(x, y), ρa(y, z)}, and (Σ, ρa) has Hausdorff dimension D = logm

− log a .
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Given a finite word λ = λ0 . . . λj with letters λi ∈ {1, . . . ,m}, we define the cylinder

Cλ := {x = (xi)i≥0 | xi = λi ∀i ≤ j}.

Cylinders are exactly the balls of radius aj and they are clopen sets. The set of finite words is denoted by Λ,
and Λj is the subset of words with j + 1 letters. When λ ∈ Λj , we say that Cλ is a depth-j cylinder.

We shall consider the uniform Bernoulli product measure, which is an analogue of the uniform measure on a
self-similar fractal:

( m∑
j=1

1

m
δj

)⊗N
∈ P(Σ).

Theorem 2.6. Let µ be the Bernoulli product measure on the symbolic space (Σ, ρa) on m letters and let
(Xk)k≥0 be i.i.d. random variables of law µ, and recall D = logm

− log a . Then

E
[

W1(µ̂n, µ)
]
�



1√
n

if D < 2,

log n√
n

if D = 2,

1

n
1
D

if D > 2.

Proof. The proof of the upper bound follows the proof of Theorem 2.1, replacing the dyadic decomposition
by the partition in cylinders. Briefly, one considers a 1-Lipschitz function f : Σ → R and approximates it by
linear combinations of the ψλ := 1Cλ where λ runs through Λ. We set f−1 = f(111 . . . ); once fj−1 is defined
for some j ≥ 0, for each λ ∈ Λj−1 we set α(λ) = (f − fj−1)(λ · 11 . . . ) and fj = fj−1 +

∑
λ∈Λj−1

α(λ)ψλ. Then

we have α(λ) . aj for all λ ∈ Λj (when j ≥ 1) and ‖f − fj−1‖∞ . aj . The same computations as in the proof
of Theorem 2.1 yields for all J ∈ N:

E
[

W1(µ̂n, µ)
]
. aJ +

J∑
j=1

ajm
j
2

√
n
.

In the case D = 2, we have am
1
2 = 1 and we can take J = log 1

a
n+O(1) to obtain E

[
W1(µ̂n, µ)

]
. log(n)/

√
n.

When D < 2, we have am
1
2 < 1 and it suffices to let J →∞ to obtain E

[
W1(µ̂n, µ)

]
. 1/

√
n. When D > 2,

we have am
1
2 > 1 and we get

E
[

W1(µ̂n, µ)
]
. aJ +

(am
1
2 )J√
n

;

we are lead to choose J so that both terms are of the same order, and J = logn
logm + O(1) makes them both

O(n
logn
logm ) = O(n−

1
D ), as expected.
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Let us now turn to the lower bound, where our main interest lies. The core of the argument is to prove that
for all n > m,

E
[

W1(µ̂n, µ)
]
≥ C√

n
+ aE

[
W1(µ̂b nm c, µ)

]
. (2.8)

First, we reduce to the case when n is a multiple of m. Let n′ = mb nmc; we have n′ = n+O(1) and

W1

( 1

n

n∑
k=1

δXk ,
1

n′

n′∑
k=1

δXk

)
≤ C

n

(use the coupling that leaves a mass 1/n at each Xk for k ≤ n′, and spreads equally the mass of the remaining
O(1) points among the n′ first ones.) Up to including this error O(1/n) = O(1/

√
n) in the above constant C,

we can replace n by n′, i.e. assume that n/m is an integer.
Now, we consider in each depth-0 cylinder Cλ (where λ ∈ Λ0 = {1, . . . ,m}) the proportion Pλ of the (Xk)

that belong to Cλ (from now on, all cylinders to be considered shall be of depth 0, and all λ are in Λ0). Let us
set tλ = |Pλ − 1

m | and t =
∑
λ tλ; this random variable will have a central importance. The random variables

nPλ each have a binomial law of parameters (n, 1/m), so that E[tλ] � 1/
√
n and E[t] � 1/

√
n. Consider the set

of pairs of points differing in their first coordinates,

T :=
⋃

λ 6=λ′∈Λ0

Cλ × Cλ′ = {(x, y) ∈ Σ× Σ | x0 6= y0} = {(x, y) ∈ Σ× Σ | ρa(x, y) = 1}.

For any transport plan γ from µ to µ̂n, we have γ(T ) ≥ t; and since cylinders have diameter a but pariwise
distance 1 > a, if γ is optimal then γ(T ) = t (from now on, we fix an optimal γ).

Construct a new family of n random points (Yλ,i)λ∈Λ1,1≤i≤n/m as follows. We impose Yλ,i ∈ Cλ, so that Cλ
contains exactly n/m points, which are drawn as follows:

– if Pλ < 1/m, the first Pλ points Yλ,i are the Xk ∈ Cλ and the remaining ones are drawn uniformly with
law the restriction of µΣ to Cλ, independently of all other random variables,

– if Pλ = 1/m, the Yλ,i are exactly the Xk ∈ Cλ,
– if Pλ > 1/m, the Yλ,i are n/m of the Xk ∈ Cλ, chosen uniformly and independently of everything else.

Let µ̄n = 1
n

∑
λ,i δYλ,i . For each λ, the (Yλ,i)0≤i≤ n

m
are independent and uniformly distributed on Cλ, which is

a copy of Σ scaled by a factor a. Since the diameter of each Cλ is lesser than the distance between any two of
them, and since both µ̄n and µ give the same mass 1/m to all Cλ, an optimal transport plan η from µ to µ̄n
does not move mass between different cylinders, i.e. η(T ) = 0. As consequence, we have

E[W1(µ̄n, µ)] =
∑
λ∈Λ0

a

m
E[W1(µ̂ n

m
, µ)] = aE[W1(µ̂ n

m
, µ)]. (2.9)

We shall now construct a transport plan ζ from µ to µ̄n that will provide a lower bound on W1(µ̄n, µ)
involving W1(µ̂n, µ). The idea is to start from γ and replace all movements of mass between different cylinders
by movements of mass inside the cylinders, while minimizing the total variation between ζ and γ. Now we make
this idea more formal.

Decompose γ in two parts: γ|T (of total mass t) and γ′ = γ − γ|T , which is the restriction of γ on the pair of
points that are in the same cylinder, or equivalently that are at distance at most a. Let µ′, µ̂′n be the marginals
of γ′ and µ′′, µ̂′′n be the marginals of γ|T (one could say that µ′′ is the part of the mass of µ that is moved

by γ between different cylinders). By construction of the Yλ,i, whenever Pλ ≤ 1
m the restrictions of µ̂n, µ̂′n

and µ̄n to Cλ satisfy µ̂n|Cλ = µ̂′n|Cλ ≤ µ̄n|Cλ ; while when Pλ >
1
m the mass of µ̂′n|Cλ could be spread over all
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Xk ∈ Cλ, which outnumber the (Yλ,i)1≤i≤ n
m

. In the former case, let ζ ′λ = γ′|Cλ×Cλ ; it is a transport plan between

µ′|Cλ ≤ µ|Cλ and µ̂n|Cλ ≤ µ̄n|Cλ . We can thus extend ζ ′λ into a transport plan ζλ from µ|Cλ to µ̄n|Cλ (extending

meaning that ζ ′λ ≤ ζλ). In the latter case, let ζλ be a transport plan between µ|Cλ and µ̄n|Cλ (both have mass

1/m) which has at much mass in common with γ′Cλ×Cλ, i.e. there is a positive measure ξ of mass 1
m − tλ such

that ξ ≤ ζy and ξ ≤ γ′|Cλ×Cλ .

We obtain a transport plan ζ =
∑
λ ζλ which, compared to γ, gains a cost of t by not moving this amount of

mass between different cylinders, and loses a cost of at by moving the same amount of mass within cylinders to
adjust the difference between µ̂n and µ̄n. In consequence, we have

W1(µ̄n, µ) ≤W1(µ̂n, µ)− t+ at.

Taking an expectation and using (2.9), a < 1 and E[t] � 1/
√
n, we obtain (2.8).

Now, let us deduce the desired lower bounds from (2.8). Let (nj)0≤j≤J be the sequence defined by n0 = n and
nj+1 = bnjm c, up to the first index J such that nJ ≤ m. Then J = logm n+O(1) and W1(µ̂nJ , µ) � 1, implying

W1(µ̂n, µ) ≥ C√
n

+
aC√
n/m

+ · · ·+ aJ−1C√
n/mJ−1

+ W1(µ̂nJ , µ)

&



1√
n

if a
√
m < 1,

J√
n

if a
√
m = 1,

(a
√
m)J√
n

if a
√
m > 1.

Recalling D = logm/(− log a), these are the desired bounds.

Proof of Theorem 1.3. Here µ is the uniform measure on the self-similar fractal K defined by the IFS Φ. Let
denote by µΣ the uniform Bernoulli product measure on Σ.

Given x ∈ Σ, the sequence of compact sets φx0
φx1

. . . φxi(K) is decreasing with diameter converging to 0 as
i → ∞; its intersection thus consists in a single element denoted by π(x). It is well-known and easy to check
directly that the map π : Σ → Rd defined in this way induces a bi-Lipschitz homeomorphism from Σ onto K
(both assumptions, that maps are similarities of equal ratios and the strong separation condition, are crucial
here). Moreover, µ is the push-forward by π of µΣ. The random variables Zk = π(Xk) are thus i.i.d. with
law µΣ, and Theorem 1.3 reduces to Theorem 2.6; to take into account the parameter q, simply observe that
ρqa = ρaq .

3. Wavelet decomposition and convergence against regular
test functions

3.1. Wavelet decomposition

Let us give a short account of the results about wavelets we will use (see e.g. Meyer’s book [21] for proofs
and references).

It will be convenient to use wavelets of compact support with arbitrary regularity Cr, whose construction is
due to Daubechies [6]. The construction yields compactly supported functions φ, ψε : Rd → R where ε takes any
of 2d − 1 values (ε ∈ E := {0, 1}d \ {(0, 0, . . . , 0)}), with particular properties of which only those we will use
will be described.
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One defines from these “father and mother” wavelets a larger family of wavelets by

φτ (x) = φ(x− τ), (τ ∈ Zd)

ψλ(x) = 2
dj
2 ψε(2jx− τ), (λ = (j, τ, ε) ∈ Λ = Z× Zd × E); (3.1)

one important property of the construction is that the union of (φτ )τ∈Zd and (ψλ)λ∈Λ form an orthonormal
basis of L2(Rd). For f ∈ L2(Rd) we can thus write

f =
∑
τ∈Zd
〈f, φτ 〉φτ +

∞∑
j=0

∑
λ∈Λj

〈f, ψλ〉ψλ

where Λj = {j} × Zd × E and 〈·, ·〉 denotes the L2 scalar product (with respect to Lebesgue measure).
One stunning property is that many functional spaces can be characterized in term of the wavelet coefficients

α(λ) = 〈f, ψλ〉 and β(τ) = 〈f, φτ 〉. We shall only use upper bounds on the α(λ) and β(τ) in a specific case.
The Hölder space Cs is defined as the space of k times continuously differentiable with γ-Hölder partial deriva-

tives of order k, with k a non-negative integer, γ ∈ (0, 1] and k+γ = s (e.g. C1 is the space of Lipschitz functions,
C3/2 the space of once continuously differentiable functions with 1/2-Hölder first-order partial derivatives, C5

is the space of four-times continuously differentiable functions with Lipschitz fourth-order partial derivatives,
etc.). Note that “1-Hölder”, meaning “Lipschitz”, could be slightly enlarged to “Zygmund” (and should, if one
is interested in two-sided bounds), but we need not enter this subtlety here.

The space Cs is endowed with the norm

‖f‖Cs = max
j∈{0,...,k}

max
ω∈{1,...,d}j

∥∥∥ ∂jf

∂xω1
· · · ∂xωj

∥∥∥
?

where the decomposition s = k+ γ is defined as above and ‖·‖? is the uniform norm if j < k and the maximum
of the uniform norm and the γ-Hölder constant if j = k. We denote by Cs

1 the set of functions with Cs norm at
most 1.

If the regularity of the wavelets is larger than the regularity of the considered Hölder space (r > s) then

|β(τ)| ≤ Cd,s‖f‖∞ ∀τ ∈ Zd

|α(λ)| ≤ Cd,s‖f‖Cs2−
dj
2 2−js ∀λ ∈ Λj ,

where the constant Cd,s depends implicitely on the choice of father and mother wavelets φ and ψε; but we can
fix for each s such a choice with suitable regularity, e.g. r = s + 1 and the constants then truly depends only
on d and s. The Cs norm in the α(λ) coefficient could be relaxed to the “regularity part” of the norm but we
do not use this.

Note that the explicit computation of these constants would in particular need a very fine analysis of the
chosen wavelet construction, and I do not know whether such a task has been conducted.

3.2. Decomposition of regular functions

Let us now use wavelet decomposition to prove good convergence properties for the empirical measure against
smooth enough test functions; the strategy is similar to the one used in Section 2. We assume here that (Xk)k≥0

is a sequence of i.i.d. random variables whose law µ is supported on a bounded set Ω ⊂ Rd (e.g. Ω = [0, 1]d);
note that Cs

1 = Cs
1(Rd) makes no reference to Ω. We consider a fixed family of wavelet of regularity r > s as in

Section 3.1; all constants C below implicitly depend on d, s and Ω (only through its diameter).
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Since the wavelets have compact support, there exist some constant C such that for each j:

– for each point x ∈ Ω, there are at most C different λ corresponding to a ψλ that does not vanish at x; the
set of those λ is denoted by Λj(x) ⊂ Λj ,

– the union Λj(Ω) :=
⋃
x∈Ω λj(x) has at most C2dj elements.

We denote by Z the set of parameters τ ∈ Zd corresponding to a φτ whose support intersects Ω (observe that
Z is finite).

We fix a function f ∈ Cs
1 and decompose it in our wavelet basis:

f =
∑
τ∈Zd

β(τ)φτ +

∞∑
j=0

∑
λ∈Λj

α(λ)ψλ

with

|β(τ)| . 1 ∀τ ∈ Zd

|α(λ)| . 2−
dj
2 2−js ∀λ ∈ Λj .

Cutting the second term of the decomposition to some depth J we get:

f =
∑
τ∈Z

β(τ)φτ +

J∑
j=0

∑
λ∈Λj

α(λ)ψλ + g

where

g =
∑
τ /∈Z

β(τ)φτ +
∑
j>J

∑
λ∈Λj

α(λ)ψλ.

Using the bound on the α coefficients and the formula (3.1) for ψλ, we get:

‖g1Ω‖∞ . 2−sJ

and it follows:

|µ̂n(f)− µ(f)| . 2−Js +
∑
τ∈Z
|µ̂n(φτ )− µ(φτ )|+

J∑
j=0

∑
λ∈Λj(Ω)

2−( d2 +s)j |µ̂n(ψλ)− µ(ψλ)|

where the right-hand side does not depend on f . Taking a supremum and an expectation, it then comes:

E
[
‖µ̂n − µ‖Cs1

]
. 2−sJ +

∑
τ∈Z

E
[
|µ̂n(φτ )− µ(φτ )|

]
+

J∑
j=0

∑
λ∈Λj(Ω)

2−( d2 +s)j E
[
|µ̂n(ψλ)− µ(ψλ)|

]
(3.2)

and to conclude, we simply need to estimate the last two terms above.

3.3. Convergence for basis elements

Lemma 3.1. We have ∑
τ∈Z

E
[
|µ̂n(φτ )− µ(φτ )|

]
.

1√
n
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and
∑

λ∈Λj(Ω)

E
[
|µ̂n(ψλ)− µ(ψλ)|

]
.

2dj√
n
.

Proof. For each τ ∈ Z, the random variable µ̂n(φτ ) is the average of n independent identically distributed,
bounded random variables of expectation µ(φτ ), so that E

[
|µ̂n(φτ ) − µ(φτ )|

]
≤ C/

√
n. Since Z is finite, the

first claim is proved.
To prove the second claim, we cannot argue in the exact same way because ψλ depends on j. To ease

notation we introduce ψ̄λ := 2−
dj
2 ψλ and Yλ := µ̂n(ψ̄λ)−µ(ψ̄λ), and recall that ψ̄λ is bounded independently of

j. Observe that Yλ is the average of the n centered, i.i.d. random variables ψ̄λ(Xk)− µ(ψ̄λ) for k in {1, . . . , n}
and that

Var
(
ψ̄λ(Xk)− µ(ψ̄λ)

)
= E

[
ψ̄λ(Xk)2

]
− µ(ψ̄λ)2 ≤ P

[
Xk ∈ suppψλ

]
‖ψ̄λ‖2∞ ≤ Cpλ

where pλ is the mass given by µ to the support of ψλ. We thus have Var(Yλ) ≤ Cpλ/n. Also, a bounded number
of different ψ̄λ (λ ∈ Λj) are non-zero at any point x ∈ Ω, so that

∑
λ∈Λj(Ω) pλ . 1. It follows

∑
λ∈Λj(Ω)

Var(Yk) .
1

n
.

Now it comes ∑
λ∈Λj(Ω)

E
[
|µ̂n(ψλ)− µ(ψλ)|

]
= 2

dj
2

∑
λ∈Λj(Ω)

E
[
|Yλ|

]
≤ 2

dj
2

∑
λ∈Λj(Ω)

√
E
[
Y 2
λ

]
≤ 2

dj
2

√
|Λj(Ω)|

√ ∑
λ∈Λj(Ω)

Var(Yλ)

.
2dj√
n
.

Remark 3.2. Lemma 3.1 is the only place where we use that the (Xk)k∈N are i.i.d. The method can therefore
be applied to any stochastic process satisfying the conclusion of Lemma 3.1.

3.4. Conclusion of the proof

Plugging Lemma 3.1 into (3.2) yields

E
[
‖µ̂n − µ‖Cs1

]
. 2−Js +

1√
n

J∑
j=0

(
2
d
2−s
)j

and we get the same trichotomy as before. If s > d/2, then we can let J →∞ to obtain

E
[
‖µ̂n − µ‖Cs1

]
≤ C√

n
.
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If s = d/2 we can take J such that 2−Js ' 1/
√
n and get

E
[
‖µ̂n − µ‖Cs1

]
≤ C log n√

n
.

If s < d/2 we can choose J such that 2J ' n 1
d to get

E
[
‖µ̂n − µ‖Cs1

]
≤ C

ns/d
,

ending the proof of Theorem 1.4.

4. Markov chains

In this section we assume (Xk)k≥0 is a Markov chain on a bounded domain; since we will use Fourier series,
it will make things simpler to embed this domain into a torus, so we assume Ω ⊂ Td = Rd/Zd (we do not lose
generality in doing so, as scaling down Ω makes it possible to make the embedding isometric). We still denote
by ‖x− y‖ the distance between two points induced by the Euclidean norm.

Our main assumption is that the iterated transition kernel of (Xk)k≥0, defined by

mx(A) = P(Xk+1 ∈ A | Xk = x) mt
x(A) = P(Xk+t ∈ A | Xk = x)

is exponentially contracting in W1, i.e. there are constants D ≥ 1 and θ ∈ (0, 1) such that

W1(mt
x,m

t
y) ≤ Dθt‖x− y‖. (4.1)

Let us denote by L the Markov operator and L∗ be its dual acting on probability measures, i.e.

Lf(x) =

∫
f(y) dmx(y) L∗ν(f) =

∫
Lf dν =

∫
mx(f) dµ(x)

(in other words, whenever Xk has law ν, Xk+1 has law L∗ν). The linearity of the Kantorovich transport
problem (1.1) from which W1 is defined enables one to rewrite (4.1) as

W1(L∗tν0,L
∗tν1) ≤ Dθt W1(ν0, ν1) (4.2)

so that there is a unique stationary measure µ, and the law of Xk converges exponentially fast (in W1) to µ,
whatever the law of X0 is.

We shall prove Theorem 1.1, which we restate for convenience; recall that s is positive integer.

Theorem 4.1. There exists a constant C = C(Ω, d,D, s) > 0 such that for all n ≥ N , letting n̄ = (1− θ)n, we
have

E
[
‖µ̂n − µ‖Cs1

]
≤ C



(log n̄)
d

2s+1

√
n̄

when s > d/2,

log n̄√
n̄

when s = d/2,

(log n̄)d−2s+ s
d

n̄
s
d

when s < d/2.

(4.3)
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Following the decomposition method, we shall find a suitable decomposition basis for any f ∈ Cs
1, seeking

for a compromise between precision of a truncated decomposition and number of basis elements. Here using
wavelets seems inefficient, as we do not have a precise enough analogue of Lemma 3.1, which uses independence
to take advantage of the localization property of wavelets; without this, the number and size of the ψλ are
overwhelming. We shall use Fourier series instead, as they will be more easily controlled under our assumptions.
For simplicity we consider complex-valued functions here, and denote the Fourier basis by ek(x) := e2iπk·x where
k ∈ Zd and the dot · denotes the canonical inner product.

The key is thus to control |µ̂n(ek) − µ(ek)|; our hypothesis may seem perfectly suited to this since ek is
Lipschitz, but its Lipschitz constant grows too rapidly with k for a direct approach to be efficient. We shall
combine the following two observations (the first of which is pretty trivial, the second of which is folklore).

Lemma 4.2. For all α ∈ (0, 1), we have the following control of ek’s α-Hölder constant:

Holα(ek) . |k|α∞

where |k|∞ = max
{
ki : i ∈ {1, . . . , d}

}
.

Proof. We have Lip(ek) ≤ 2π
√
d|k|∞ and ‖ek‖∞ ≤ 1 so that for all x 6= y ∈ Td:

|ek(x)− ek(y)|
‖x− y‖α

≤ min
( 2

‖x− y‖α
, 2π
√
d|k|∞‖x− y‖1−α

)
≤ 2παd

α
2 |k|α∞.

Lemma 4.3. For all α ∈ (0, 1], denoting by Wα the α-Wasserstein metric (i.e. either the 1-Wasserstein metric
associated with the modified distance ‖·‖α or equivalently the metric obtained by duality with functions of α-
Hölder constant 1), we have

Wα(L∗t0 ν0,L
∗t
0 ν1) ≤ Dαθαt Wα(ν0, ν1). (4.4)

As a consequence, for all α-Hölder functions f : Ω→ C and all `,m ∈ N it holds∣∣E[f(X`)]− µ(f)
∣∣ . Holα(f) θα`∣∣E[f(Xm)f(X`)]− E[f(Xm)]E[f(X`)]
∣∣ . Holα(f)2 θα|m−`|

where the implied constants depends only on Ω and the constant D in (4.1).

Proof. By linearity we only have to check (4.4) when ν0 = δx and ν1 = δy for some x, y ∈ Ω, and by concavity

Wα(L∗tδx,L
∗tδy) ≤

(
W1(L∗tδx,L

∗tδy)
)α ≤ Dαθαt‖x− y‖α = Dαθαt Wα(δx, δy).

To prove convergence toward the average and decay of correlation, we first use the contraction and that µ is
the stationary measure to get ∣∣Ltf(x)− µ(f)

∣∣ =
∣∣∣ ∫ Ltf dδx −

∫
f dµ

∣∣∣
=
∣∣∣ ∫ f d

(
L∗tδx

)
−
∫
f d
(
L∗tµ

)∣∣∣
≤ Holα(f) Wα(L∗tδx,L

∗tµ)

≤ Holα(f)Dαθαt Wα(δx, µ)∣∣Ltf(x)− µ(f)
∣∣ . Holα(f) θαt.
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Assuming without lost of generality µ(f) = 0 we have ‖f‖∞ . Holα(f) (µ(f) = 0 implies that f takes both
non-positive and non-negative values, and Ω is bounded). Assume further m ≥ ` and write m = `+ t. Combining
all previous observations we get:

‖Ltf‖∞ . Holα(f) θαt∣∣E[f(Xm)]
∣∣ =

∣∣E [Lmf(X0)
]∣∣

. Holα(f) θαm∣∣E[f(X`)]
∣∣ . Holα(f) θα`∣∣E[f(Xm)f(X`)]
∣∣ =

∣∣E [Ltf(X`) f(X`)
]∣∣

. ‖Ltf‖∞ E[|f(X`)|]

. Holα(f)2θαt

and the conclusion follows.

We deduce the following from these two Lemmas.

Corollary 4.4. For all k, α, n it holds

E
[
|µ̂n(ek)− µ(ek)|2

]
.

|k|2α∞
(1− θα)n

.

Proof. We set ēk := ek − µ(ek), which has the same Hölder constant than ek and vanishing average. We have:

E
[
|µ̂n(ek)− µ(ek)|2

]
=

1

n2

∑
1≤`,m≤n

E[ēk(X`)ēk(Xm)]

.
1

n2

n∑
`=1

∑
m≥`

E[ēk(X`)ēk(Xm)]

.
1

n2

n∑
`=1

∑
m≥`

Holα(ēk)2θα(m−`)

.
1

n2

n∑
`=1

|k|2∞
1− θα

=
|k|2α∞

(1− θα)n
.

Fix some threshold J ≥ 3 and some exponent α ∈ (0, 1], to be determined explicitly later on.
Let f : Td → R be in Cs

1. From the multidimensional version of Jackson’s theorem [25], we know that there
is a trigonometric polynomial TJ(f) which is a linear combination of the ek for |k|∞ ≤ J , such that

‖f − TJ(f)‖∞ .
1

Js
.

We have no clear control on the coefficient of this optimal trigonometric polynomial, which need not be the
Fourier coefficients of f . But it is also known that the Fourier series of f is within a factor ' ‖f‖∞(log J)d

of the best approximation (see [20] for an optimal constant), so that denoting by FJ(f) :=
∑
|k|∞≤J f̂kek the
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J-truncation of the Fourier series of f , we get

‖f − FJ(f)‖∞ .
(log J)d

Js
.

We can assume f̂0 = 0 by translating f , and what precedes yields:

|µ̂n(f)− µ(f)| ≤ |µ̂n(f)− µ̂n(FJ(f))|+ |µ̂n(FJ(f))− µ(FJ(f))|+ |µ(FJ(f))− µ(f)|

≤ 2‖f − FJ(f)‖∞ +
∑

0<|k|∞≤J

|f̂k||µ̂n(ek)− µ(ek)| (4.5)

.
(log J)d

Js
+
( ∑

0<|k|∞≤J

|f̂k|2|k|2s∞
) 1

2

( ∑
0<|k|∞≤J

|µ̂n(ek)− µ(ek)|2

|k|2s∞

) 1
2

.
(log J)d

Js
+ ‖f‖Hs

( ∑
0<|k|∞≤J

|µ̂n(ek)− µ(ek)|2

|k|2s∞

) 1
2

|µ̂n(f)− µ(f)| . (log J)d

Js
+

( ∑
0<|k|∞≤J

|µ̂n(ek)− µ(ek)|2

|k|2s∞

) 1
2

(4.6)

where the right-hand side does not depend on f in any way; above

‖f‖Hs :=
( ∑
k∈Zd
|f̂k|2(1 + |k|2∞)s

) 1
2

is the Sobolev norm, controlled by the Cs norm when s ∈ N (Sobolev functions of order s are also those who have
weak derivatives in L2 up to order s, and by the Rademacher theorem Lipschitz functions have weak derivatives
in L∞).

Remark 4.5. At line (4.5), one could be tempted to use the bound |f̂k| . |k|−s∞ instead of using the Cauchy-
Schwarz inequality; this ultimately leads to a weaker bound.

Taking a supremum and an expectation in (4.6) and using concavity, it comes:

E
[
‖µ̂n − µ‖Cs1

]
.

(log J)d

Js
+

( ∑
0<|k|∞≤J

E
[
|µ̂n(ek)− µ(ek)|2

]
|k|2s∞

) 1
2

.
(log J)d

Js
+

( ∑
0<|k|∞≤J

|k|2α

(1− θα)n|k|2s∞

) 1
2

.
(log J)d

Js
+

(
J∑
`=1

`d−1+2α−2s

(1− θα)n

) 1
2
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Choose now α = 1/ log J so that `2α . 1 for all ` ∈ {1, . . . , J}, use 1− θα ≥ α(1− θ) and set n̄ := (1− θ)n to
obtain

E
[
‖µ̂n − µ‖Cs1

]
.

(log J)d

Js
+

√
log J

n̄

( J∑
`=1

`d−1−2s
) 1

2

. (4.7)

For s < d/2, we get:

E
[
‖µ̂n − µ‖Cs1

]
.

(log J)d

Js
+

(log J)
1
2 J

d
2−s

√
n̄

. (4.8)

Trying to balance the contribution of the two terms, we first see that taking J ' n̄ 1
d would optimize the power

of n̄ in the final expression; refining to J = (log n̄)βn̄
1
d , developing and ignoring lower order terms shows that

the choice β = 2− 1
d optimizes the final power of log n̄, and we thus set J =

⌊
(log n̄)2− 1

d n̄
1
d

⌋
. It then comes:

E
[
‖µ̂n − µ‖Cs1

]
.

(log n̄)d−2s+ s
d

n̄
s
d

.

For 2s = d we get

E
[
‖µ̂n − µ‖Cs1

]
.

(log J)d

Js
+

log J√
n̄

and taking J = bn̄ 1
2s (log n̄)(d−1)/sc yields

E
[

W1(µ̂n, µ)
]
.

log n̄√
n̄
.

Finally, for s > d/2 we get

E
[
‖µ̂n − µ‖Cs1

]
.

(log J)d

Js
+

(log J)
1
2

√
n̄

and taking J = bn̄ 1
2s (log n̄)

d
s+1/2 c yields

E
[
‖µ̂n − µ‖Cs1

]
.

(log n̄)
d

2s+1

√
n̄

ending the proof of Theorem 1.1.

5. Concentration near the expectation

Let us detail how classical bounded martingale difference methods can be used to prove that the empirical
measure concentrates very strongly around its expectation. When (Xk)k≥0 are independent identically dis-
tributed, this is long-known (see [26], and also [30] for more general Wasserstein metrics Wp, p ≥ 1). In the case
of Markov chains, such arguments have been developed notably in [4], [7] and, in a dynamical context, [5]. Our
approach is very similar and thus cannot pretend to much novelty, but we write it down both to show how to
handle functional spaces more general than just Lipschitz and Hölder, and because it seems not easy to find it
in this form in the literature.
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Note that other previous results may pop into mind, but are not actually applicable here. A first line of works
consider strong mixing assumptions, where the law of Xk converges toward µ in total variation (see e.g. [19] and
references therein). Such methods do not apply here since the law of Xk itself (and not only µ̂n) can be purely
atomic for all k even when µ is absolutely continuous. Another line of work is concerned with concentration
bounds under the same kind of “geometric ergodicity”/“curvature bounds” hypotheses we make here [14], [15],
[24] – however these works are concerned with the concentration of empirical averages around the expectation,
not with the deviation of the empirical measure from the stationary measure (see the discussion below equation
(1.4)).

The fundamental result to be used is the Azuma-Hoeffding inequality, which we recall.

Theorem 5.1 (Azuma-Hoeffding inequality). Let Y be a random variable, let

{∅,Ω} = B0 ⊂ B1 ⊂ · · · ⊂ Bn = B(Ω)

be a filtration and for each k ∈ J1, nK set ∆k = E[Y |Bk]−E[Y |Bk−1]. Assume that for all k and some numbers
ak ∈ R, ck > 0 we have ∆k ∈ [ak, ak + ck] almost surely. Then for all t > 0,

P
[
Y ≥ E[Y ] + t

]
≤ exp

(
− 2t2∑

k c
2
k

)
.

5.1. The independent case

In the case of i.i.d. random variables, the Azuma-Hoeffding inequality famously yields the following
concentration inequality.

Theorem 5.2 (McDiarmid’s inequality). Let F : Ωn → R be a function such that for some c1, . . . , cn and all
k ∈ J1, nK and all (x1, . . . , xn, x

′
k) ∈ Ωn+1 it holds∣∣F (x1, . . . , xk, . . . , xn)− F (x1, . . . , x

′
k, . . . , xn)

∣∣ ≤ ck.
Let (Xk)1≤k≤n be a sequence of independent random variables. Then for all t > 0 it holds

P
[
F (X1, . . . , Xn) ≥ E[F (X1, . . . , Xn)] + t

]
≤ exp

(
− 2t2∑

k c
2
k

)
.

Applying this to

F (X1, . . . , Xn) = ‖µ̂n − µ‖F = sup
f∈F

∣∣∣ 1
n

n∑
k=1

f(Xk)− µ(f)
∣∣∣

we can take

ck =
1

n
sup

f∈F ,x,x′∈Ω
|f(x)− f(x′)| =:

1

n
osc(F )

and it comes

P
[
F (X1, . . . , Xn) ≥ E[F (X1, . . . , Xn)] + t

]
≤ exp

(
− 2nt2

osc(F )2

)
.
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For example if F ⊂ Lip1(Ω) (e.g. F = Cs
1) we have osc(F ) ≤ diam Ω; if moreover Ω = [0, 1]d it thus comes

P
[
‖µ̂n − µ‖F ≥ E

[
‖µ̂n − µ‖F

]
+ t
]
≤ exp

(
− 2

d
· nt2

)
. (5.1)

This, combined with Theorem 1.4, yields good concentration estimates.

Corollary 5.3. If (Xk)k≥0 are i.i.d.random variables with law µ, then for all s ≥ 1, for some constant C =
C(d, s) > 0 (not depending upon µ), all integer n ≥ 2 and all M ≥ C we have:

– if s > d/2

P
[
‖µ̂n − µ‖Cs1 ≥

M√
n

]
≤ e− 2

d (M−C)2 , (5.2)

– if s = d/2

P
[
‖µ̂n − µ‖Cs1 ≥

M log n√
n

]
≤ e− 2

d (M−C)2(logn)2 , (5.3)

– if s < d/2

P
[
‖µ̂n − µ‖Cs1 ≥

M

n
s
d

]
≤ e− 2

d (M−C)2n1−2s/d

. (5.4)

Similarly, with Theorem 1.2 we can obtain entirely explicit, non-asymptotic concentration bounds.

5.2. Markov chains

To tackle Markov chains we will need some hypothesis to replace independence; we choose a framework that
covers the case of W1, but also more general dual metrics ‖·‖F .

Assume that Ω is endowed with a metric d with finite diameter (d is assumed to be lower-semi-continuous,
but not necessarily to induce the given topology on Ω). We still denote by Lip1(Ω) be the space of functions
Ω→ R which are 1-Lipschitz with respect to d.

Let (Xk)≥0 be a Markov chain on Ω which is exponentially contracting (see the beginning of Sect. 4) with
constant D and rate θ, in the metric d instead of the euclidean norm; this can be rewritten in a coupling
formulation as follows: for all x, x′ ∈ Ω, all i, t ∈ N there are random variables (X ′k)k≥i with the same law as
(Xk)k≥i and such that for all t:

E[d(Xi+t, X
′
i+t) | Xi = x,X ′i = x′] ≤ Dθtd(x, x′).

Note that the flexibility in the choice of d enables to include uniformly ergodic Markov chains in this framework,
simply by taking d = 16=, i.e. d(x, y) = 0 if x = y and d(x, y) = 1 otherwise.

Given a multivariate function Φ : Ωn → Rn, we define as usual the coordinate-wise Lipschitz constants of Φ
by

Λi(Φ) = sup
x1,...,xn∈Ω,x′i 6=xi

|Φ(x1, . . . , xi, . . . , xn)− Φ(x1, . . . , x
′
i, . . . , xn)|

d(xi, x′i)

and we say that Φ is separately Lipschitz if Λi(Φ) < ∞ for all i (when d = 1 6=, the coordinate-wise Lipschitz
constant become the coordinate-wise oscillations).
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Theorem 5.4. Let (Xk)k≥1 be a Markov chain whose kernel is exponentially contracting with constant D ≥ 1
and rate θ ∈ (0, 1), with respect to a lower-semi-continuous distance d on Ω giving it finite diameter diam(Ω).

Let n ∈ N and Φ : Ωn → R be separately Lipschitz with constants Λi(Φ) ≤ Λ. Then

P
[
Φ(X1, . . . , Xn) ≥ E[Φ(X1, . . . , Xn)] + t

]
≤ exp

(
− (1− θ)2t2

2nD2 diam(Ω)2Λ2

)
.

Proof. We set X = (X1, . . . , Xn) and Xi:j = (Xi, . . . , Xj) (meaning the empty family whenever j < i).
We shall apply the Azuma-Hoeffding inequality with the filtration Bk = σ(Xk

1 ), leaving us with the task of
bounding the oscillations ck of the random variable

∆k = E[Φ(X)|X1:k]− E[Φ(X)|X1:k−1].

Given an arbitrary x1:k = (x1, . . . , xk) ∈ Ωk and x′k ∈ Ω we set

Vk(x1:k, x
′
k) = E[Φ(X)|X1:k = x1:k]− E[Φ(X)|X1:k−1 = x1:k−1, Xk = x′k]

so that ck = supVk − inf Vk ≤ 2‖Vk‖∞. Let (X ′i)i≥k be a copy of (Xi)i≥k as in the definition of exponential
contraction; then

Vk(x1:k, x
′
k) = E

[
Φ(x1:k−1, Xk:n)

∣∣Xk = xk
]
− E

[
Φ(x1:k−1, X

′
k:n)

∣∣X ′k = x′k
]

=

n∑
i=k

E
[
Φ(x1:k−1, Xk:i, X

′
i+1:n)− Φ(x1:k−1, Xk:i−1, X

′
i:n)
∣∣∣Xk = xk, X

′
k = x′k

]
|Vk(xk1 , x

′
k)| ≤

n∑
i=k

E
[
Λd(Xi, X

′
i)
∣∣Xk = xk, X

′
k = x′k

]
≤ DΛd(xk, x

′
k)

∞∑
i=k

θi−k

ck ≤ 2CΛ diam(Ω)/(1− θ).

Applying the Azuma-Hoeffding inequality finishes the proof.

Remark 5.5. The above inequality is probably not optimal; one can expect to improve the rate, either by
moving the constant 2 from the denominator to the numerator, or by replacing (1 − θ)2 by (1 − θ) (probably
with another constant).

As soon as F ⊂ Lip1(Ω) (e.g. F = Cs
1), Theorem 5.4 applies to

Φ(X) = ‖µ̂n − µ‖F = sup
f∈F

1

n

n∑
k=1

f(Xk)− µ(f)

with Λ = 1
n , yielding

P
[
‖µ̂n − µ‖F ≥ E

[
‖µ̂n − µ‖F

]
+ t
]
≤ exp

(
− (1− θ)2

2D2 diam(Ω)2
· nt2

)
(5.5)

i.e., as in the independent case, subgaussian concentration. Corollary 1.5 follows.
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