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Empirical measures: regularity is a
counter-curse to dimensionality

Benoît R. Kloeckner *

February 11, 2018

We propose a “decomposition method” to prove non-asymptotic bound
for the convergence of empirical measures in various dual norms. The main
point is to show that if one measures convergence in duality with sufficiently
regular observables, the convergence is much faster than for, say, merely
Lipschitz observables. Actually, assuming 𝑠 derivatives with 𝑠 > 𝑑/2 (𝑑 the
dimension) ensures an optimal rate of convergence of 1/

√
𝑛 (𝑛 the number

of samples). The method is flexible enough to apply to Markov chains which
satisfy a geometric contraction hypothesis, assuming neither stationarity nor
reversibility, with the same convergence speed up to a power of logarithm
factor.

Our results are stated as controls of the expected distance between the
empirical measure and its limit, but we explain briefly how the classical
method of bounded difference can be used to deduce concentration estimates.

1 Introduction
1.1 Empirical measures and quadrature
Consider a discrete-time stochastic process (𝑋𝑘)𝑘≥0 taking its values in some phase space
Ω, assumed to be a Polish space endowed with its Borel 𝜎-algebra. We are concerned
with the random atomic measure

𝜇̂𝑛 = 1
𝑛

𝑛∑︁
𝑘=1

𝛿𝑋𝑘
,

called the empirical measure of the process, and its convergence. We shall either assume
that the (𝑋𝑘)𝑘≥0 are independent identically distributed of some law 𝜇, or assume some
weak long-range dependence and convergence of the law of 𝑋𝑘 to 𝜇 as 𝑘 → ∞.

*Université Paris-Est, Laboratoire d’Analyse et de Matématiques Appliquées (UMR 8050), UPEM,
UPEC, CNRS, F-94010, Créteil, France
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To quantify the convergence, we are interested in distances on the set 𝒫(Ω) of proba-
bility measures defined by duality. Given a class F of functions 𝑓 : Ω → R (sometime
called “test functions” or “observables”), one defines for 𝜈0, 𝜈1 ∈ 𝒫(Ω):

‖𝜈0 − 𝜈1‖F = sup
𝑓∈F

⃒⃒⃒
𝜈0(𝑓) − 𝜈1(𝑓)

⃒⃒⃒
(note that we write indifferently 𝜈0(𝑓) or

∫︀
𝑓 d𝜈0).

One particularly important case is obtained by taking F = Lip1(Ω), the set of 1-
Lipschitz functions. The corresponding metric is the 1-Wasserstein metric W1 = ‖·‖Lip1 ,
which by virtue of Kantorovich duality can be written equivalently as

W1(𝜈0, 𝜈1) := inf
𝑋∼𝜈0,𝑌 ∼𝜈1

E
[︁
‖𝑋 − 𝑌 ‖

]︁
where ‖·‖ here is the Euclidean norm and the infimum is over all pairs of random variable
with the given measures as individual laws. It is long-known [AKT84] that, when the
(𝑋𝑘)𝑘≥0 are independent and uniformly distributed on [0, 1]𝑑 , we have

E
[︁

W1(𝜇̂𝑛, 𝜆)
]︁

≍

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
𝑛

if 𝑑 = 1,

√︃
log 𝑛
𝑛

if 𝑑 = 2,

1
𝑛

1
𝑑

if 𝑑 ≥ 3.

(1)

where ≍ expresses upper and lower bounds up to multiplicative constants and 𝜆 denotes
the Lebesgue measure. This problem and generalizations have been studied in several
works, e.g. [Tal92, Tal94, BLG14, DSS13, FG15, AST16, WB17].

The bounds (1) are interesting theoretically, but are rather negative for the practical
application to quadrature. Computations of integrals are in many cases impractical
using deterministic methods, and one often has to resort to Monte Carlo methods, i.e.
approximate the unknown 𝜇(𝑓) by 𝜇̂𝑛(𝑓). When one has to compute the integrals of a
large number of functions (𝑓𝑚)1≤𝑚≤𝑀 with respect to a fixed measure 𝜇, one would rather
draw the random quadrature points 𝑋1, . . . , 𝑋𝑘 once and for all, and use them for all
functions 𝑓𝑚; while usual Monte Carlo bound will ensure each individual estimate 𝜇̂𝑛(𝑓𝑚)
has small probability to be far from 𝜇(𝑓𝑚), if 𝑀 is large compared to 𝑛 these bounds
will not ensure that all estimates are good with high probability. On the contrary,
convergence in W1 (or in duality with some other class F ) ensures good estimates
simultaneously for all 𝑓𝑚, as long as they belong to the given class, independently of
𝑀 . This makes such convergence potentially useful; but the rate given above, 𝑛− 1

𝑑 ,
is hopelessly slow in high dimension which is precisely the setting where Monte Carlo
methods are most needed. We shall prove that if the functions of interest are regular,
then this “curse of dimensionality” can be overcome. We shall be interested in the
duality with 𝒞s

1 the set of functions with 𝒞s norm at most 1 (precise definitions are given
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below; when 𝑠 = 1 this is the set of 1-Lipschitz functions); but other spaces could be
considered, e.g. Sobolev or Besov spaces.

Another issue is that in many cases, drawing independent samples (𝑋𝑘)𝑘≥0 of law 𝜇 is
not feasible, and one is lead to instead rely on a Markov chain having 𝜇 as its stationary
measure; this is the Markov Chain Monte Carlo method (MCMC). While the empirical
measure of Markov chains have been considered by Fournier and Guillin [FG15], these
authors need quite strong assumptions: a spectral gap in the 𝐿2 space (or similarly large
spaces), and a “warm start” hypothesis (𝑋0 should have a law absolutely continuous
with respect to 𝜇). In good cases, one can achieve this by a burn-in period (start with
arbitrary 𝑋0, and consider (𝑋𝑘0+𝑘)𝑘≥0 for some large 𝑘0); but in some cases, each 𝑋𝑘

has a singular law with respect to 𝜇 (for example the natural random walk generated
by an Iterated Function System). We shall consider Markov chains satisfying a certain
geometric contraction property, but again the method can certainly be adapted to other
assumptions.

1.2 Markov chains
Our main result handles Markov chains of arbitrary starting distribution and with a
spectral gap in Lip (e.g. positively curved chains in the sense of Ollivier [Oll09]).

Theorem A. Assume that (𝑋𝑘)𝑘≥0 is a Markov chain defined on a bounded domain Ω
of R𝑑, whose iterated transition kernel (𝑚𝑡

𝑥)𝑥∈Ω,𝑡∈N defined by

𝑚𝑡
𝑥(𝐴) = P(𝑋𝑘+𝑡 ∈ 𝐴 | 𝑋𝑘 = 𝑥)

is exponentially contracting in the Wasserstein metric W1, i.e. there are constants 𝐷 ≥ 1
and 𝜃 ∈ (0, 1) such that

W1(𝑚𝑡
𝑥,𝑚

𝑡
𝑦) ≤ 𝐷𝜃𝑡‖𝑥− 𝑦‖.

Denote by 𝜇 the (unique) stationary measure of the transition kernel.
Then for some constant 𝐶 = 𝐶(Ω, 𝑑,𝐷, 𝑠) and all large enough 𝑛, letting 𝑛̄ = (1−𝜃)𝑛,

we have

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
≤ 𝐶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(log 𝑛̄)
𝑑

2𝑠+1
√
𝑛̄

when 𝑠 > 𝑑/2

log 𝑛̄√
𝑛̄

when 𝑠 = 𝑑/2

(log 𝑛̄)𝑑−2𝑠+ 𝑠
𝑑

𝑛̄
𝑠
𝑑

when 𝑠 < 𝑑/2

(2)

Let us stress two strengths of this result:

∙ for 𝑠 = 1, recalling ‖·‖𝒞1
1

= ‖·‖Lip1 = W1, the bounds are only a power of logarithm
factor away from the optimal bounds for IID random variables,

∙ for 𝑠 large enough, we almost obtain the optimal convergence rate ≍ 1/
√
𝑛
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∙ we assume neither reversibility, stationarity, nor warm start hypotheses (the dis-
tribution of 𝑋0 can be arbitrary),

∙ the rate of convergence does not depend on the specific feature of the Markov
chain, only on 𝐷 and 𝜃.

Note that for fixed 𝜃, 𝑛̄ has the same order than 𝑛, but if 𝜃 is close to 1, 1/(1 − 𝜃) is
the typical time scale for the decay of correlations. One thus cannot expect less than
(1 − 𝜃)𝑛 Markov samples to achieve the bound obtained for 𝑛 independent samples.

Examples of Markov chains which are exponentially contracting in W1 (equivalently,
that have a spectral gap in the space of Lipschitz observables) are numerous; it is a
slightly more general condition than “positive curvature” in the sense of Ollivier [Oll09],
see e.g. [JO10] and [Klo17b] for concrete examples, or in the context of dynamical
systems [KLS15] and [Klo17a].

Under the assumption of Theorem A, it is well-known that uniform estimates

sup
𝑓∈F

P
(︁
|𝜇̂𝑛(𝑓) − 𝜇(𝑓)| > 𝜀

)︁
→ 0 and sup

𝑓∈F
E

[︁
|𝜇̂𝑛(𝑓) − 𝜇(𝑓)|

]︁
→ 0 (3)

hold, here with F = Lip1 (or any smaller class), with a Gaussian rate.
The problem of convergence in duality to the class F is thus to invert the supremum

and the probability (or expectancy), to bound from above

P
(︁

sup
𝑓∈F

|𝜇̂𝑛(𝑓) − 𝜇(𝑓)| > 𝜀
)︁

or E
[︁

sup
𝑓∈F

|𝜇̂𝑛(𝑓) − 𝜇(𝑓)|
]︁
.

We shall disregard the potential issue of non-measurability: as we shall only deal with
classes F having a countable subset which is dense in the uniform norm, we can always
replace the supremum with a supremum over a countable set of functions.

The idea of the proof of Theorem A is to take an arbitrary 𝑓 ∈ 𝒞s
1(Ω) and decompose

it using Fourier series. The regularity hypothesis gives us a control on both the uniform
approximation by a truncated Fourier series, and on the Fourier coefficients. Combining
these controls, we bound from above |𝜇̂𝑛(𝑓) − 𝜇(𝑓)| by a quantity that does not depend
on 𝑓 at all, but depends on the Fourier basis elements (𝑒𝑘)𝑘∈Z𝑑 up to some index size.
Taking a supremum and an expectation, this leaves us with the simple task to optimize
where to truncate the Fourier series.

This decomposition method can in principle be used under various assumptions on the
process (𝑋𝑘)𝑘≥0, the point being to identify a decomposition suited to the assumption;
in particular, one can easily adapt the method to study geometrically ergodic Markov
chains. I chose to present Theorem A in part because its hypothesis is relevant to several
Markov chains I am interested in, and in part because it presents specific difficulties: a
blunt computation leads to non-optimal powers of 𝑛. To obtain good rates, we translate
the contraction hypothesis to frame part of the argument in the space Hol𝛼, where the
Fourier basis has smaller norm; and instead of bounding the Fourier coefficients of a
Lipschitz function directly, we use Parceval’s formula and the injection 𝒞s → 𝐻𝑠 which
turns out to give a better estimate. Another functional decomposition, and another path
in computations might improve the power in the logarithmic factor.
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We restrict to the compact case, but the method can in principle be adapted, or
truncation argument be used, to deal with non-compactly supported measure.

In order to introduce the decomposition method and show its flexibility, we shall state
two simpler results below.

1.3 Explicit bounds in the i.i.d case, for the Wasserstein metric
The decomposition method enables one to get a very explicit version of (1) with a few
computations but very little sophistication.

Theorem B. If 𝜇 is any probability measure on [0, 1]𝑑 and (𝑋𝑘)𝑘≥0 are i.i.d. random
variable with law 𝜇, then for all 𝑛 ∈ N we have

E
[︁

W1(𝜇̂𝑛, 𝜇)
]︁

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2(

√
2 − 1)

· 1√
𝑛

when 𝑑 = 1

log2(𝑛) + 8√
8𝑛

when 𝑑 = 2

𝐶𝑑

𝑛
1
𝑑

when 𝑑 ≥ 3

(4)

where 𝐶3 ≤ 6.3, 𝐶𝑑 ≤ 3
√
𝑑 for all 𝑑 ≥ 4, and 𝐶𝑑/

√
𝑑 → 2 as 𝑑 → ∞.

The order of magnitude of these bounds is sharp in many regimes:

∙ in dimension 1, the order of magnitude 1/
√
𝑛 is optimal; however the constant

1/(2(
√

2 − 1)) is not asymptotically optimal when 𝜇 is Lebesgue measure,

∙ when 𝑑 = 2 and 𝜇 is Lebesgue measure, as previously mentioned the correct order
is

√︁
log 𝑛/𝑛, but to the best of my knowledge it is an open question to determine

whether this better order holds for arbitrary measures (a positive answer is strongly
expected). See Section 2.4 for an example showing that in a more general setting
the order log 𝑛/

√
𝑛 cannot be improved,

∙ when 𝑑 ≥ 3, both orders of magnitude 𝑛−1/𝑑 as 𝑛 → ∞ and
√
𝑑 as 𝑑 → ∞ are

sharp up to multiplicative constants (see Remark 2.2). The asymptotic constant
2 is certainly quite larger than the asymptotic constant

lim
𝑑→∞

lim
𝑛→∞

𝑛
1
𝑑

√
𝑑
E

[︁
W1(𝜇̂𝑛, 𝜆)

]︁
which has been computed for the related, but slightly different matching problem
by Talagrand [Tal92]; but our bound holds for all 𝑛 and all 𝑑 (and also all 𝜇). An
even more general bound has been given by Boissard and Le Gouic [BLG14], but
their constant is larger by a factor approximately 10.
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Let us stress that the main purpose of this result will be to expose our method in an
elementary setting: indeed many previous similar bounds are available in this case. For
example more general non-asymptotic results have been obtained by Fournier and Guillin
[FG15], building on previous work by Dereich, Scheutzow and Schottstedt [DSS13]. They
are more general in that they consider 𝑞-Wasserstein metric for any 𝑞 > 0 (while we will
only be able to consider 𝑞 ≤ 1), and apply to non-compactly supported measures 𝜇
under moment assumptions. However their constants, though non-asymptotic, have not
been made explicit, and their behavior when the dimension grows has not been studied.

1.4 Regular observables and independent samples
In the i.i.d. case, we can improve Theorem A by removing most of the logarithmic
factors.

Theorem C. If 𝜇 is any probability measure on [0, 1]𝑑 and (𝑋𝑘)𝑘≥0 are i.i.d. random
variable with law 𝜇, then for all 𝑠 ≥ 1, for some constant 𝐶 = 𝐶(𝑑, 𝑠) > 0 (not depending
upon 𝜇), and all integer 𝑛 ≥ 2 we have

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
≤ 𝐶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
𝑛

when 𝑠 > 𝑑
2

log 𝑛√
𝑛

when 𝑠 = 𝑑
2

1
𝑛𝑠/𝑑

when 𝑠 < 𝑑
2

(5)

It is possible to prove this result with previous, more classical methods. Indeed,
combining the “entropy bound” for the class 𝒞s

1 [VdVW96, Thm 2.7.1] and the “chaining
method” (see e.g. [vH96, Ex 5.11, p. 138]) leads to Theorem C; I am indebted to
Jonathan Weed for pointing this out to me. The proof by the decomposition method we
provide here is very simple, but non-elementary as it relies on a wavelet decomposition.
It is well-known that all functions in 𝒞s

1 can be written as a linear combination of a few
elements of a wavelet basis, with small coefficients, up to a small error. Then controlling
|𝜇̂𝑛(𝑓) − 𝜇(𝑓)| for all 𝑓 ∈ 𝒞s

1 simultaneously reduces to controlling this quantity for the
few needed elements of the wavelet basis.

1.5 concentration inequalities
Up to know, we have restricted to estimates on the expectancy, while in many practical
situations one would need concentration estimates. This is in fact not a restriction, as
we shall explain briefly in Section 5: the classical bounded difference method enable one
to get concentration near the expectancy. In particular, we get the following.

Corollary D. Under the assumptions of Theorem A, for some 𝜖 depending on 𝜃,𝐷, diam Ω,
for all large enough 𝑛 and all 𝑀 ≥ 𝐶 = 𝐶(Ω, 𝑑,𝐷, 𝜃) we have:
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∙ when 𝑠 > 𝑑/2

P

⎡⎣‖𝜇̂𝑛 − 𝜇‖𝒞s
1

≥ 𝑀
(log 𝑛)

𝑑
2𝑠+1

√
𝑛

⎤⎦ ≤ 𝑒−𝜖(𝑀−𝐶)2(log 𝑛)
𝑑

2𝑠+1 (6)

∙ when 𝑠 = 𝑑/2

P

⎡⎣‖𝜇̂𝑛 − 𝜇‖𝒞s
1

≥ 𝑀
log 𝑛√
𝑛

⎤⎦ ≤ 𝑒−𝜖(𝑀−𝐶)2(log 𝑛)2 (7)

∙ when 𝑠 < 𝑑/2

P

⎡⎣‖𝜇̂𝑛 − 𝜇‖𝒞s
1

≥ 𝑀
(log 𝑛)𝑑−2𝑠+ 𝑠

𝑑

𝑛
𝑠
𝑑

⎤⎦ ≤ 𝑒−𝜖(𝑀−𝐶)2𝑛1−2𝑠/𝑑

. (8)

(The last inequality is not optimal as we relaxed the poly-logarithmic factor for sim-
plicity.)

For example, when 𝑠 ≥ 𝑑/2 we deduce that
√

𝑛
log 𝑛

‖𝜇̂𝑛 − 𝜇‖𝒞s
1

is bounded almost surely.

Structure of the paper Sections 2, 3 and 4 are independent and contain the proofs of
the main Theorems (B, C and A respectively: we start with the most elementary proof,
follow with the simplest one, and end with the most sophisticated).

Section 5, dealing with concentration estimates, is mostly independent from the pre-
vious ones, which are only used to deduce Corollary D.

We shall write 𝑎 . 𝑏 for 𝑎 ≤ 𝐶𝑏, the dependency of the constant 𝐶 being left implicit
unless it feels necessary; the constants denoted by 𝐶 will be allowed to change from line
to line.

2 Wasserstein convergence and dyadic decomposition
The goal of this Section is to prove (a refinement of) Theorem B. We consider a sequence
(𝑋𝑘)1≤𝑘 of independent, identically distributed random points whose common law shall
be denoted by 𝜇; we assume that 𝜇 is supported on the cube [0, 1]𝑑 and consider the
convergence of the empirical measure 𝜇̂𝑛 := ∑︀𝑛

𝑘=1
1
𝑛
𝛿𝑋𝑘

in the 𝑞-Wasserstein distance
where 𝑞 ∈ (0, 1], i.e.

W𝑞(𝜇0, 𝜇1) := inf
𝑓∈Hol𝑞1

⃒⃒⃒
𝜇0(𝑓) − 𝜇1(𝑓)

⃒⃒⃒
where Hol𝑞1 is the set of functions 𝑓 : [0, 1]𝑑 → R such that for all 𝑥, 𝑦 ∈ [0, 1]𝑑:

|𝑓(𝑥) − 𝑓(𝑦)| ≤ ‖𝑥− 𝑦‖𝑞

While we are mostly interested in the Euclidean norm ‖·‖, our method is sharper
in the case of the supremum norm1 ‖·‖∞, with respect to which the analogue of the

1The same notation is used for the uniform norm of functions, but the type of the argument will
prevent any confusion.
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aforementioned objects are denoted by W𝑞,∞ and Hol𝑞,∞
1 . We will work with ‖·‖∞, and

then deduce directly the corresponding result for the Euclidean norm by using that
‖·‖ ≤

√
𝑑‖·‖∞ (and thus W𝑞 ≤ 𝑑

𝑞
2 W𝑞,∞).

Our most precise result is the following.

Theorem 2.1. For all 𝑞 ∈ (0, 1] and all 𝑛, it holds:

E
[︁

W𝑞,∞(𝜇̂𝑛, 𝜇)
]︁

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 𝑑
2 −2𝑞

1 − 2 𝑑
2 −𝑞

· 1√
𝑛

when 𝑑 < 2𝑞,

(︂
2 + log2(𝑛)

2𝑞+1𝑞

)︂ 1√
𝑛

when 𝑑 = 2𝑞

2
(︂ 𝑑

2 − 𝑞

2𝑞(1 − 2𝑞− 𝑑
2 )

)︂ 2𝑞
𝑑

(︂
1 + 𝑞

2𝑞(𝑑
2 − 𝑞)

)︂ 1
𝑛

𝑞
𝑑

when 𝑑 > 2𝑞.

We deduce several more compact formulas below, including Theorem B. Observe that
for fixed 𝑞 and large 𝑑, the complicated front constant converges to 2.

Remark 2.2. It is not difficult to see that for 𝜇 the Lebesgue measure and an optimal,
deterministic approximation 𝜇̃𝑛 with 𝑛 = 𝑘𝑑 Dirac masses, one has

W1,∞(𝜇̃𝑛, 𝜇) ≥ 𝑑

(𝑑+ 𝑞)2𝑞

1
𝑛

𝑞
𝑑

so that in high dimension, for the ℓ∞ norm and in the worst case 𝑞 = 1 our estimate is
off by a factor of approximately 4 compared to a best approximation.

With the Euclidean norm, an easy lower bound in the case of the Lebesgue measure
is obtained by observing that a mass at most

𝜋
𝑑
2

Γ(𝑑
2 + 1)

𝑅𝑑𝑛

is at distance 𝑅 or less of one of the 𝑛 points (be they random or not). This leads, for
any measure 𝜇̃𝑛 supported on 𝑛 points, to

W1(𝜇̃𝑛, 𝜇) ≥ 𝑛
∫︁ 𝑅0

0
𝑑

𝜋
𝑑
2

Γ(𝑑
2 + 1)

𝑅𝑑 d𝑅 = 𝑛
𝑑𝜋

𝑑
2

(𝑑+ 1)Γ(𝑑
2 + 1)

𝑅𝑑+1
0

where 𝑅0 is defined by 𝑛 𝜋
𝑑
2

Γ( 𝑑
2 +1)𝑅

𝑑
0 = 1. Finally,

𝑊1(𝜇̃𝑛, 𝜇) ≥
𝑑Γ(𝑑

2 + 1) 1
𝑑

(𝑑+ 1)
√
𝜋⏟  ⏞  

∼
𝑑→∞

√
𝑑

2𝑒𝜋

· 1
𝑛

1
𝑑

and again our order of magnitude 𝐶𝑑 ≍
√
𝑑 is the correct one.
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The results of [Tal92] show that, at least for the bipartite matching problem, this
seemingly crude lower bounds are in fact attained asymptotically, taking renormalized
limits as 𝑛 → ∞ and then 𝑑 → ∞. This indicates that our constant are not optimal,
and it would be interesting to have a non-asymptotic bound with optimal asymptotic
behavior.

2.1 Decomposition of Hölder functions
The method to prove Theorem 2.1 consists in a multiscale decomposition of the func-
tions 𝑓 ∈ Hol𝑞,∞

1 . In its spirit, it seems quite close to arguments of [BLG14], [DSS13]
and [FG15]; our interest is mostly in setting this multiscale analysis in a functional
decomposition framework.

We fix a positive integer 𝐽 to be optimized later, representing the depth of the de-
composition. For each 𝑗 ∈ {0, . . . , 𝐽}, set Λ𝑗 = {𝑗} × {0, . . . , 2𝑗 − 1}𝑑 ; then define
Λ = ⋃︀𝐽

𝑗=0 Λ𝑗, acting as the set of indices for the decomposition.
For each 𝑗 ∈ {0, . . . , 𝐽}, let {𝐶𝜆 : 𝜆 ∈ Λ𝑗} be the regular decomposition of [0, 1]𝑑 into

cubes of side-length 2−𝑗; the boundary points are attributed in an arbitrary (measurable)
manner, with the constraint that {𝐶𝜆 : 𝜆 ∈ Λ𝑗} is a partition of [0, 1]𝑑 that refines the
previous partition {𝐶𝜆 : 𝜆 ∈ Λ𝑗−1}. Denote by 𝑥𝜆 the center of the cube 𝐶𝜆, and by
𝜓𝜆 := 1𝐶𝜆

the characteristic function of 𝐶𝜆 (so that for each 𝑗, ∑︀
𝜆∈Λ𝑗

𝜓𝜆 = 1[0,1]𝑑).

Lemma 2.3. For all function 𝑓 ∈ Hol𝑞,∞
1 and all 𝐽 , there exists coefficients 𝛼(𝜆) ∈ R

such that
𝑓 =

𝐽∑︁
𝑗=1

∑︁
𝜆∈Λ𝑗

𝛼(𝜆)𝜓𝜆 + 𝑐+ 𝑔 (9)

where 𝑐 is a constant and 𝑔 is a function [0, 1]𝑑 → R, such that

|𝛼(𝜆)| ≤ 2−(𝑗+1)𝑞 ∀𝜆 ∈ Λ𝑗

‖𝑔‖∞ ≤ 2−(𝐽+1)𝑞.

Proof. Replacing 𝑓 with 𝑓 − 𝑐 where 𝑐 = 𝑓(𝑥0,0), we assume that 𝑓 vanishes at the
center 𝑥0,0 of 𝐶0,0 = [0, 1]𝑑. Observe that 𝑓 ∈ Hol𝑞,∞

1 then implies that ‖𝑓‖∞ ≤ 2−𝑞 and
|𝑓(𝑥𝜆)| ≤ 2−2𝑞 for all 𝜆 ∈ Λ1.

For 𝜆 ∈ Λ1, we define 𝛼(𝜆) = 𝑓(𝑥𝜆) and set 𝑓1 = ∑︀
𝜆∈Λ1 𝛼(𝜆)𝜓𝜆; we have |𝛼(𝜆)| ≤ 2−2𝑞,

the function 𝑓 − 𝑓1 is Hol𝑞,∞
1 on 𝐶𝜆 and vanishes at 𝑥𝜆. Since 𝐶𝜆 is a ‖·‖∞ ball of center

𝑥𝜆 and radius 1/4, it follows that ‖𝑓 − 𝑓1‖∞ ≤ 2−2𝑞 on each 𝐶𝜆, and thus on the whole
of [0, 1]𝑑. Moreover for all 𝜆 ∈ Λ2 it holds |(𝑓 − 𝑓1)(𝑥𝜆)| ≤ 2−3𝑞.

Similarly, we define 𝑓𝑗 : [0, 1]𝑑 → R recursively by setting 𝛼(𝜆) = (𝑓 − 𝑓𝑗−1)(𝑥𝜆) for
all 𝜆 ∈ Λ𝑗 and 𝑓𝑗 = 𝑓𝑗−1 + ∑︀

𝜆∈Λ𝑗
𝛼(𝜆)𝜓𝜆. Then |𝛼(𝜆)| ≤ 2−(𝑗+1)𝑞 for all 𝜆 ∈ Λ𝑗 and

‖𝑓 − 𝑓𝐽‖∞ ≤ 2−(𝐽+1)𝑞.
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2.2 Wasserstein distance estimation
With the notation of Lemma 2.3, for any 𝑓 ∈ Hol𝑞1 we have:

⃒⃒⃒
𝜇̂𝑛(𝑓) − 𝜇(𝑓)

⃒⃒⃒
≤ 2‖𝑔‖∞ +

𝐽∑︁
𝑗=1

∑︁
𝜆∈Λ𝑗

|𝛼(𝜆)||𝜇̂𝑛(𝜓𝜆) − 𝜇(𝜓𝜆)|

≤ 21−(𝐽+1)𝑞 +
𝐽∑︁

𝑗=1
2−(𝑗+1)𝑞 ∑︁

𝜆∈Λ𝑗

|𝜇̂𝑛(𝜓𝜆) − 𝜇(𝜓𝜆)|

where the last right-hand term does not depend on 𝑓 in any way. We can thus take a
supremum and an expectation to obtain

E
[︁

W𝑞,∞(𝜇̂𝑛, 𝜇)
]︁

≤ 21−(𝐽+1)𝑞 +
𝐽∑︁

𝑗=1
2−(𝑗+1)𝑞 ∑︁

𝜆∈Λ𝑗

E
[︁
|𝜇̂𝑛(𝜓𝜆) − 𝜇(𝜓𝜆)|

]︁
Remark 2.4. This is the core of the decomposition method. Observe that we used no
hypothesis on the (𝑋𝑘) yet; any stochastic process for which one can control E[|𝜇̂𝑛(𝜓𝜆)−
𝜇(𝜓𝜆)|] can be applied the method.

Setting 𝑝𝜆 = 𝜇(𝜓𝜆), the random variable 𝑛𝜇̂𝑛(𝜓𝜆) is binomial of parameters 𝑛 and 𝑝𝜆.
A standard estimation of the mean absolute deviation yields

E
[︁
|𝑛𝜇̂𝑛(𝜓𝜆) − 𝑛𝜇(𝜓𝜆)|

]︁
≤

√︁
𝑛𝑝𝜆(1 − 𝑝𝜆)∑︁

𝜆∈Λ𝑗

E
[︁
|𝜇̂𝑛(𝜓𝜆) − 𝜇(𝜓𝜆)|

]︁
≤ 1√

𝑛

∑︁
𝜆∈Λ𝑗

√
𝑝𝜆

By concavity of the square-root function, we have

2−𝑑𝑗
∑︁

𝜆∈Λ𝑗

√
𝑝𝜆 ≤

√︃
2−𝑑𝑗

∑︁
𝜆∈Λ𝑗

𝑝𝜆 = 2− 𝑑𝑗
2 (10)

and we deduce
∑︁

𝜆∈Λ𝑗

E
[︁
|𝜇̂𝑛(𝜓𝜆) − 𝜇(𝜓𝜆)|

]︁
≤ 2 𝑑𝑗

2
√
𝑛

E
[︁

W𝑞,∞(𝜇̂𝑛, 𝜇)
]︁

≤ 21−(𝐽+1)𝑞 +
𝐽∑︁

𝑗=1

2𝑗( 𝑑
2 −𝑞)−𝑞

√
𝑛

, (11)

leaving us with the simple task to optimize the choice of 𝐽 .

2.3 Optimization of the depth parameter
We shall distinguish three cases: 𝑑 < 2𝑞, 𝑑 = 2𝑞 and 𝑑 > 2𝑞. The first case is only
possible for 𝑑 = 1, but we let it phrased that way because for some measures 𝜇 the
dimension 𝑑 of the ambient space can be replaced by the “dimension” of the measure
itself, see Section 2.4 for an example.
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2.3.1 Small dimension

If 𝑑 < 2𝑞, then the sum in (11) is bounded independently of 𝐽 and we can let 𝐽 → ∞
to obtain:

E
[︁

W𝑞,∞(𝜇̂𝑛, 𝜇)
]︁

≤ 2−𝑞

√
𝑛

∞∑︁
𝑗=1

2𝑗( 𝑑
2 −𝑞)

≤ 2 𝑑
2 −2𝑞

1 − 2 𝑑
2 −𝑞

· 1√
𝑛

(12)

In particular, for 𝑑 = 1, 𝑞 = 1:

E
[︁

W1(𝜇̂𝑛, 𝜇)
]︁

≤ 1
2(

√
2 − 1)

· 1√
𝑛

(13)

Remark 2.5. For 𝑑
2 − 𝑞 close to 0, the constant in (12) goes to infinity; in this regime,

for moderate 𝑛 letting 𝐽 → ∞ is sub-optimal and one should optimize 𝐽 in (11) as we
shall do in the next cases.

2.3.2 Critical dimension

If 𝑑 = 2𝑞 (or in fact 𝑑 ≤ 2𝑞) we can rewrite (11) as

E
[︁

W𝑞,∞(𝜇̂𝑛, 𝜇)
]︁

≤ 21−(𝐽+1)𝑞 + 2−𝑞𝐽√
𝑛
.

To optimize 𝐽 , we formally differentiate the right-hand side with respect to 𝐽 , equate
to zero and solve for 𝐽 . Reminding that 𝐽 is an integer, and keeping only the leading
term (when 𝑛 → ∞) to simplify, this leads us to choose

𝐽 =
⌊︂ log2 𝑛

2𝑞

⌋︂

in particular implying 21−(𝐽+1)𝑞 ≤ 2/
√
𝑛. We deduce the claimed bound

E
[︁

W𝑞,∞(𝜇̂𝑛, 𝜇)
]︁

≤
(︂

2 + log2(𝑛)
2𝑞+1𝑞

)︂ 1√
𝑛
.

log 𝑛√
𝑛

(14)

immediately implying the bound of Theorem B for 𝑑 = 2 and 𝑞 = 1 (where a
√

2 comes
from the comparison between the supremum and Euclidean norms):

E
[︁

W1(𝜇̂𝑛, 𝜇)
]︁

≤ log2(𝑛) + 8√
8𝑛

(15)
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2.3.3 Large dimension

If 𝑑 > 2𝑞, equation (11) becomes

E
[︁

W𝑞,∞(𝜇̂𝑛, 𝜇)
]︁

≤ 21−(𝐽+1)𝑞 + 2𝐽( 𝑑
2 −𝑞) − 1

1 − 2𝑞− 𝑑
2

· 1
2𝑞

√
𝑛

≤ 21−(𝐽+1)𝑞 + 2𝐽( 𝑑
2 −𝑞)

2𝑞(1 − 2𝑞− 𝑑
2 )

· 1√
𝑛

Following the same optimization process as in the critical dimension case, we choose 𝐽
such that

1
2𝑛

1
𝑑

(︂2𝑞(1 − 2𝑞− 𝑑
2 )

𝑑
2 − 𝑞

)︂ 2
𝑑

≤ 2𝐽 ≤ 𝑛
1
𝑑

(︂2𝑞(1 − 2𝑞− 𝑑
2 )

𝑑
2 − 𝑞

)︂ 2
𝑑

leading to

E
[︁

W𝑞,∞(𝜇̂𝑛, 𝜇)
]︁

≤ 2
(︂ 𝑑

2 − 𝑞

2𝑞(1 − 2𝑞− 𝑑
2 )

)︂ 2𝑞
𝑑

(︂
1 + 𝑞

2𝑞(𝑑
2 − 𝑞)

)︂ 1
𝑛

𝑞
𝑑

For 𝑞 = 1 and 𝑑 ≥ 3, it comes E
[︁

W1,∞(𝜇̂𝑛, 𝜇)
]︁

≤ 𝐶 ′
𝑑𝑛

− 1
𝑑 where

𝐶 ′
𝑑 = 2

(︂ 𝑑
2 − 1

2 − 22− 𝑑
2

)︂ 2
𝑑
(︂

1 + 1
𝑑− 2

)︂ 1
𝑛

1
𝑑

We have notably 𝐶 ′
4 = 3. Relaxing our bound for 𝑑 ≥ 4 to

𝐶 ′
𝑑 ≤ 2

(︂
𝑑

4

)︂ 2
𝑑
(︂

1 + 1
𝑑− 2

)︂
it is more easily seen that it is decreasing (and still takes the value 3 at 𝑑 = 4). We
also see that we can take 𝐶 ′

𝑑 → 2 as 𝑑 → ∞. The last part of Theorem B follows with
𝐶𝑑 =

√
𝑑𝐶 ′

𝑑, and a numerical computation shows 𝐶3 ≤ 6.3.

2.4 The four-corners Cantor measure
We conclude this section with an example showing that the critical case order log 𝑛/

√
𝑛

is sharp if one generalizes its scope.
The four-corner Cantor set 𝐾 is the compact subset of the plane defined as the

attractor of the Iterated Function System (𝑇1, 𝑇2, 𝑇3, 𝑇4) where 𝑇𝑖 are homotheties of
ratio 1/4 centered at (0, 0), (0, 1), (1, 1) and (1, 0) (see figure 1). It has a natural
measure 𝜇𝐾 , which can be defined as the fixed point of the map

𝒯 : 𝒫([0, 1]2) → 𝒫([0, 1]2)

𝜈 ↦→ 1
4(𝑇1)*𝜈 + 1

4(𝑇2)*𝜈 + 1
4(𝑇3)*𝜈 + 1

4(𝑇4)*𝜈

(𝒯 is contracting in the complete metric W1, so that it has a unique fixed point). The
measure 𝜇𝐾 can also be described as follows. In the 4-adic decomposition of the square,
at depth 𝑗 > 0 there are 16𝑗 squares, among which 4𝑗 intersect 𝐾 in their interior; 𝜇𝐾

gives each of these squares a mass 1/4𝑗.
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Figure 1: Second stage of the construction of the four-corners Cantor set (contained in
the filled black area).

𝐾 has Hausdorff dimension 1 (and positive, finite 1-dimensional Hausdorff measure),
and one should expect 𝜇𝐾 to have dimension 𝑑 = 1 in any reasonable sense of the term.
It is thus interesting to have a look at W𝑞(𝜇̂𝑛, 𝜇𝐾) in the critical case 𝑞 = 1/2.

Proposition 2.6. If (𝑋𝑘)𝑘≥0 are i.i.d. of law 𝜇𝐾, then

E
[︁

W 1
2
(𝜇̂𝑛, 𝜇𝐾)

]︁
≍ log 𝑛√

𝑛
.

Proof. The proof of the upper bound follows the proof of Theorem 2.1, using a 4-adic
decomposition and discarding all 𝜆 such that 𝐶𝜆 does not intersects 𝐾 in its interior.
This replaces 𝑑 by 1 as there are 4𝑗 relevant squares of size 4−𝑗 (indeed the only place
where 𝑑 is used is in (10), only through the number of dyadic squares to be considered),
so that with 𝑞 = 1/2 we end up in the critical case.

To prove the lower bound, we first record the proportions 𝑝1, 𝑝2, 𝑝3, 𝑝4 of the random
points 𝑋𝑘 lying in each of the four relevant depth-one squares (of side-length 1/4). For
large 𝑛, each 𝑝𝑖 is close to 1/4 with typical fluctuations of the order of 1/

√
𝑛. The

discrepancy of mass in each of these squares compared to the mass 1/4 given to each
of them by 𝜇𝐾 induces a cost of at least 1/

√
2𝑛, since the distance between depth-one

squares is at least 1/2 and 𝑞 = 1/2. The same reasoning applies at depth two inside
each depth-one square, but with 𝑛𝑝𝑖 ≃ 𝑛/4 points, thus fluctuations are of the order
of 1/

√︁
𝑛/4 = 2/

√
𝑛, inducing a total cost of the order of 1/

√
2𝑛 (distances are now

1/4×1/2, and a square root is taken since 𝑞 = 1/2). The fact that the number of points
is 𝑛𝑝𝑖 rather than precisely 𝑛/4 is not an issue, an uneven distribution improving the
bound.

At each depth 𝑗 up to log4 𝑛, there is a typical induced cost of the order of 1/
√
𝑛

from the uneven distribution of points among the 4 subsquares of each depth 𝑗 square,
yielding the desired bound of the order of log 𝑛/

√
𝑛.
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3 Wavelet decomposition and convergence against
regular test functions

3.1 Wavelet decomposition
Let us give a short account of the results about wavelets we will use (see e.g. Meyer’s
book [Mey92] for proofs and references).

It will be convenient to use wavelets of compact support with arbitrary regularity 𝒞r,
whose construction is due to Daubechies [Dau88]. The construction yields compactly
supported functions 𝜑, 𝜓𝜖 : R𝑑 → R where 𝜖 takes any of 2𝑑 − 1 values (𝜖 ∈ 𝐸 :=
{0, 1}𝑑 ∖ {(0, 0, . . . , 0)}), with particular properties of which only those we will use will
be described.

One defines from these “father and mother” wavelets a larger family of wavelets by

𝜑𝜏 (𝑥) = 𝜑(𝑥− 𝜏), (𝜏 ∈ Z𝑑)

𝜓𝜆(𝑥) = 2
𝑑𝑗
2 𝜓𝜖(2𝑗𝑥− 𝜏), (𝜆 = (𝑗, 𝜏, 𝜖) ∈ Λ = Z × Z𝑑 × 𝐸); (16)

one important property of the construction is that the union of (𝜑𝜏 )𝜏∈Z𝑑 and (𝜓𝜆)𝜆∈Λ
form an orthonormal basis of 𝐿2(R𝑑). For 𝑓 ∈ 𝐿2(R𝑑) we can thus write

𝑓 =
∑︁

𝜏∈Z𝑑

⟨𝑓, 𝜑𝜏 ⟩𝜑𝜏 +
∞∑︁

𝑗=0

∑︁
𝜆∈Λ𝑗

⟨𝑓, 𝜓𝜆⟩𝜓𝜆

where Λ𝑗 = {𝑗} × Z𝑑 × 𝐸 and ⟨·, ·⟩ denotes the 𝐿2 scalar product (with respect to
Lebesgue measure).

One stunning property is that many functional spaces can be characterized in term
of the wavelet coefficients 𝛼(𝜆) = ⟨𝑓, 𝜓𝜆⟩ and 𝛽(𝜏) = ⟨𝑓, 𝜑𝜏 ⟩. We shall only use upper
bounds on the 𝛼(𝜆) and 𝛽(𝜏) in a specific case.

The Hölder space 𝒞s is defined as the space of 𝑘 times continuously differentiable with
𝛾-Hölder partial derivatives of order 𝑘, with 𝑘 a non-negative integer, 𝛾 ∈ (0, 1] and
𝑘+𝛾 = 𝑠 (e.g. 𝒞1 is the space of Lipschitz functions, 𝒞3/2 the space of once continuously
differentiable functions with 1/2-Hölder first-order partial derivatives, 𝒞5 is the space
of four-times continuously differentiable functions with Lipschitz fourth-order partial
derivatives, etc.). Note that “1-Hölder”, meaning “Lipschitz”, could be slightly enlarged
to “Zygmund” (and should, if one is interested in two-sided bounds), but we need not
enter this subtlety here.

The space 𝒞s is endowed with the norm

‖𝑓‖𝒞s = max
𝑗∈{0,...,𝑘}

max
𝜔∈{1,...,𝑑}𝑗

⃦⃦⃦⃦
𝜕𝑗𝑓

𝜕𝑥𝜔1 · · · 𝜕𝑥𝜔𝑗

⃦⃦⃦⃦
⋆

where the decomposition 𝑠 = 𝑘 + 𝛾 is defined as above and ‖·‖⋆ is the uniform norm if
𝑗 < 𝑘 and is the 𝛾-Hölder constant if 𝑗 = 𝑘. We denote by 𝒞s

1 the set of functions with
𝒞s norm at most 1.
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If the regularity of the wavelets is larger than the regularity of the considered Hölder
space (𝑟 > 𝑠) then

|𝛽(𝜏)| ≤ 𝐶𝑑,𝑠‖𝑓‖∞ ∀𝜏 ∈ Z𝑑

|𝛼(𝜆)| ≤ 𝐶𝑑,𝑠‖𝑓‖𝒞s2− 𝑑𝑗
2 2−𝑗𝑠 ∀𝜆 ∈ Λ𝑗,

where the constant 𝐶𝑑,𝑠 depends implicitely on the choice of father and mother wavelets 𝜑
and 𝜓𝜖; but we can fix for each 𝑠 such a choice with suitable regularity, e.g. 𝑟 = 𝑠+1 and
the constants then truly depends only on 𝑑 and 𝑠. The 𝒞s norm in the 𝛼(𝜆) coefficient
could be relaxed to the “regularity part” of the norm but we do not use this.

Note that the explicit computation of these constants would in particular need a very
fine analysis of the chosen wavelet construction, and I do not know whether such a task
has been conducted.

3.2 Decomposition of regular functions
Let us now use wavelet decomposition to prove good convergence properties for the
empirical measure against smooth enough test functions; the strategy is similar to the
one used in Section 2. We assume here that (𝑋𝑘)𝑘≥0 is a sequence of i.i.d. random
variables whose law 𝜇 is supported on a bounded set Ω ⊂ R𝑑 (e.g. Ω = [0, 1]𝑑); note that
𝒞s

1 = 𝒞s
1(R𝑑) makes no reference to Ω. We consider a fixed family of wavelet of regularity

𝑟 > 𝑠 as in Section 3.1; all constants 𝐶 below implicitly depend on 𝑑, 𝑠 and Ω (only
through its diameter).

Since the wavelets have compact support, there exist some constant 𝐶 such that for
each 𝑗:

∙ for each point 𝑥 ∈ [0, 1]𝑑, there are at most 𝐶 different 𝜆 corresponding to a 𝜓𝜆

that does not vanish at 𝑥; the set of those 𝜆 is denoted by Λ𝑗(𝑥) ⊂ Λ𝑗,

∙ the union Λ𝑗(Ω) := ⋃︀
𝑥∈Ω 𝜆𝑗(𝑥) has at most 𝐶2𝑑𝑗 elements.

We denote by 𝑍 the set of parameters 𝜏 ∈ Z𝑑 corresponding to a 𝜑𝜏 whose support
intersects Ω (observe that 𝑍 is finite).

We fix a function 𝑓 ∈ 𝒞s
1 and decompose it in our wavelet basis:

𝑓 =
∑︁

𝜏∈Z𝑑

𝛽(𝜏)𝜑𝜏 +
∞∑︁

𝑗=0

∑︁
𝜆∈Λ𝑗

𝛼(𝜆)𝜓𝜆

with

|𝛽(𝜏)| . 1 ∀𝜏 ∈ Z𝑑

|𝛼(𝜆)| . 2− 𝑑𝑗
2 2−𝑗𝑠 ∀𝜆 ∈ Λ𝑗.

Cutting the second term of the decomposition to some depth 𝐽 we get:

𝑓 =
∑︁
𝜏∈𝑍

𝛽(𝜏)𝜑𝜏 +
𝐽∑︁

𝑗=0

∑︁
𝜆∈Λ𝑗

𝛼(𝜆)𝜓𝜆 + 𝑔
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where
𝑔 =

∑︁
𝜏 /∈𝑍

𝛽(𝜏)𝜑𝜏 +
∑︁
𝑗>𝐽

∑︁
𝜆∈Λ𝑗

𝛼(𝜆)𝜓𝜆.

Using the bound on the 𝛼 coefficients and the formula (16) for 𝜓𝜆, we get:

‖𝑔1Ω‖∞ . 2−𝑠𝐽

and it follows:

|𝜇̂𝑛(𝑓) − 𝜇(𝑓)| . 2−𝐽𝑠 +
∑︁
𝜏∈𝑍

|𝜇̂𝑛(𝜑𝜏 ) − 𝜇(𝜑𝜏 )| +
𝐽∑︁

𝑗=0

∑︁
𝜆∈Λ𝑗(Ω)

2−( 𝑑
2 +𝑠)𝑗|𝜇̂𝑛(𝜓𝜆) − 𝜇(𝜓𝜆)|

where the right-hand side does not depend on 𝑓 . Taking a supremum and an expectation,
it then comes:

E
[︁
‖𝜇̂𝑛 −𝜇‖𝒞s

1

]︁
. 2−𝑠𝐽 +

∑︁
𝜏∈𝑍

E
[︁
|𝜇̂𝑛(𝜑𝜏 )−𝜇(𝜑𝜏 )|

]︁
+

𝐽∑︁
𝑗=0

∑︁
𝜆∈Λ𝑗(Ω)

2−( 𝑑
2 +𝑠)𝑗 E

[︁
|𝜇̂𝑛(𝜓𝜆)−𝜇(𝜓𝜆)|

]︁
(17)

and to conclude, we simply need to estimate the last two terms above.

3.3 Convergence for basis elements
Lemma 3.1. We have ∑︁

𝜏∈𝑍

E
[︁
|𝜇̂𝑛(𝜑𝜏 ) − 𝜇(𝜑𝜏 )|

]︁
.

1√
𝑛

and
∑︁

𝜆∈Λ𝑗(Ω)
E

[︁
|𝜇̂𝑛(𝜓𝜆) − 𝜇(𝜓𝜆)|

]︁
.

2𝑑𝑗

√
𝑛

Proof. For each 𝜏 ∈ 𝑍, the random variable 𝜇̂𝑛(𝜑𝜏 ) is the average of 𝑛 independent iden-
tically distributed, bounded random variables of expectation 𝜇(𝜑𝜏 ), so that E

[︁
|𝜇̂𝑛(𝜑𝜏 )−

𝜇(𝜑𝜏 )|
]︁

≤ 𝐶/
√
𝑛. Since 𝑍 is finite, the first claim is proved.

To prove the second claim, we cannot argue in the exact same way because 𝜓𝜆 depends
on 𝑗. To ease notation we introduce 𝜓𝜆 := 2− 𝑑𝑗

2 𝜓𝜆 and 𝑌𝜆 := 𝜇̂𝑛(𝜓𝜆) − 𝜇(𝜓𝜆), and recall
that 𝜓𝜆 is bounded independently of 𝑗. Also, a bounded number of different 𝜓𝜆 (𝜆 ∈ Λ𝑗)
are non-zero at any point 𝑥 ∈ Ω; we denote by 𝑝𝜆 the mass given by 𝜇 to the support of
𝜓𝜆 and observe that 𝑌𝜆 is the average of 𝑛 i.i.d. centered random variables of variance
less than 𝐶𝑝𝜆 + 𝜇(𝜓𝜆)2. We have

Var(𝑌𝜆) ≤ 1
𝑛

(︁
𝐶𝑝𝜆 + 𝜇(𝜓𝜆)2

)︁ ∑︁
𝜆∈Λ𝑗(Ω)

𝑝𝜆 . 1
∑︁

𝜆∈Λ𝑗(Ω)
𝜇(𝜓𝜆) . 1

so that ∑︁
𝜆∈Λ𝑗(Ω)

Var(𝑌𝑘) ≤ 1
𝑛

(︂
𝐶

∑︁
𝜆∈Λ𝑗(Ω)

𝑝𝜆 +
(︁ ∑︁

𝜆∈Λ𝑗(Ω)
𝜇(𝜓𝜆)

)︁2
)︂

.
1
𝑛
.
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Now it comes ∑︁
𝜆∈Λ𝑗(Ω)

E
[︁
|𝜇̂𝑛(𝜓𝜆) − 𝜇(𝜓𝜆)|

]︁
= 2

𝑑𝑗
2

∑︁
𝜆∈Λ𝑗(Ω)

E
[︁
|𝑌𝜆|

]︁

≤ 2
𝑑𝑗
2

∑︁
𝜆∈Λ𝑗(Ω)

√︂
E

[︁
𝑌 2

𝜆

]︁
≤ 2

𝑑𝑗
2

√︁
|Λ𝑗(Ω)|

√︃ ∑︁
𝜆∈Λ𝑗(Ω)

Var(𝑌𝜆)

.
2𝑑𝑗

√
𝑛

Remark 3.2. Lemma 3.1 is the only place where we use that the (𝑋𝑘)𝑘∈N are i.i.d. The
method can therefore be applied to any stochastic process satisfying the conclusion of
Lemma 3.1.

3.4 Conclusion of the proof
Plugin Lemma 3.1 into (17) yields

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
. 2−𝐽𝑠 + 1√

𝑛

𝐽∑︁
𝑗=0

(︁
2 𝑑

2 −𝑠
)︁𝑗

and we get the same trichotomy as before. If 𝑠 > 𝑑/2, then we can let 𝐽 → ∞ to obtain

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
≤ 𝐶√

𝑛
,

if 𝑠 = 𝑑/2 we can take 𝐽 such that 2−𝐽𝑠 ≃ 1/
√
𝑛 and get

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
≤ 𝐶

log 𝑛√
𝑛
,

and if 𝑠 < 𝑑/2 we can choose 𝐽 such that 2𝐽 ≃ 𝑛
1
𝑑 to get

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
≤ 𝐶

𝑛𝑠/𝑑
,

ending the proof of Theorem C.

4 Markov chains
In this section we assume (𝑋𝑘)𝑘≥0 is a Markov chain on a bounded domain; since we
will use Fourier series, it will make things simpler to embed this domain into a torus,
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so we assume Ω ⊂ T𝑑 = R𝑑/Z𝑑 (we do not lose generality in doing so, as scaling down
Ω makes it possible to make the embedding isometric). We still denote by ‖𝑥 − 𝑦‖ the
distance between two points induced by the Euclidean norm.

Our main assumption is that the iterated transition kernel of (𝑋𝑘)𝑘≥0, defined by

𝑚𝑥(𝐴) = P(𝑋𝑘+1 ∈ 𝐴 | 𝑋𝑘 = 𝑥) 𝑚𝑡
𝑥(𝐴) = P(𝑋𝑘+𝑡 ∈ 𝐴 | 𝑋𝑘 = 𝑥)

is exponentially contracting in W1, i.e. there are constants 𝐷 ≥ 1 and 𝜃 ∈ (0, 1) such
that

W1(𝑚𝑡
𝑥,𝑚

𝑡
𝑦) ≤ 𝐷𝜃𝑡‖𝑥− 𝑦‖. (18)

Let us denote by L the averaging operator, i.e.

L𝑓(𝑥) =
∫︁
𝑓(𝑦) d𝑚𝑥(𝑦)

and by L* its dual acting on probability measure, i.e. L*𝜈 is the law of 𝑋𝑘+1 conditioned
on 𝑋𝑘 having law 𝜈. The linearity of W1 enables one to rewrite (18) as

W1(L*𝑡𝜈0,L*𝑡𝜈1) ≤ 𝐷𝜃𝑡 W1(𝜈0, 𝜈1) (19)

so that there is a unique stationary measure 𝜇, and the law of 𝑋𝑘 converges exponentially
fast (in W1) to 𝜇, whatever the law of 𝑋0 is.

We shall prove Theorem A, which we restate for convenience.

Theorem 4.1. For some constant 𝐶 = 𝐶(Ω, 𝑑,𝐷, 𝑠) and all large enough 𝑛, letting
𝑛̄ = (1 − 𝜃)𝑛, we have

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
≤ 𝐶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(log 𝑛̄)
𝑑

2𝑠+1
√
𝑛̄

when 𝑠 > 𝑑/2

log 𝑛̄√
𝑛̄

when 𝑠 = 𝑑/2

(log 𝑛̄)𝑑−2𝑠+ 𝑠
𝑑

𝑛̄
𝑠
𝑑

when 𝑠 < 𝑑/2

(20)

Following the decomposition method, we shall find a suitable decomposition basis for
any 𝑓 ∈ 𝒞s

1, seeking for a compromise between precision of a truncated decomposition
and number of basis elements. Here using wavelets seems inefficient, as we do not have
a precise enough analogue of Lemma 3.1, which uses independence to take advantage of
the localization property of wavelets; without this, the number and size of the 𝜓𝜆 are
overwhelming. We shall use Fourier series instead, as they will be more easily controlled
under our assumptions. For simplicity we consider complex-valued functions here, and
denote the Fourier basis by 𝑒𝑘(𝑥) := 𝑒2𝑖𝜋𝑘·𝑥 where 𝑘 ∈ Z𝑑 and the dot · denotes the
canonical inner product.

The key is thus to control |𝜇̂𝑛(𝑒𝑘) − 𝜇(𝑒𝑘)|; our hypothesis may seem perfectly suited
to this since 𝑒𝑘 is Lipschitz, but its Lipschitz constant grows too rapidly with 𝑘 for a
direct approach to be efficient. We shall combine the following two observations (the
first of which is pretty trivial, the second of which is folklore).
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Lemma 4.2. For all 𝛼 ∈ (0, 1), we have the following control of 𝑒𝑘’s 𝛼-Hölder constant:

Hol𝛼(𝑒𝑘) . |𝑘|𝛼∞

where |𝑘|∞ = max
{︁
𝑘𝑖 : 𝑖 ∈ {1, . . . , 𝑑}

}︁
.

Proof. We have Lip(𝑒𝑘) ≤ 2𝜋
√
𝑑|𝑘|∞ and ‖𝑒𝑘‖∞ ≤ 1 so that for all 𝑥 ̸= 𝑦 ∈ T𝑑:

|𝑒𝑘(𝑥) − 𝑒𝑘(𝑦)|
‖𝑥− 𝑦‖𝛼

≤ min
(︂ 2

‖𝑥− 𝑦‖𝛼
, 2𝜋

√
𝑑|𝑘|∞‖𝑥− 𝑦‖1−𝛼

)︂
≤ 2𝜋𝛼𝑑

𝛼
2 |𝑘|𝛼∞

Lemma 4.3. For all 𝛼 ∈ (0, 1], denoting by W𝛼 the 𝛼-Wasserstein metric (i.e. the
1-Wasserstein metric associated with the modified distance ‖·‖𝛼), we have

W𝛼(L*𝑡
0 𝜈0,L*𝑡

0 𝜈1) ≤ 𝐷𝛼𝜃𝛼𝑡 W𝛼(𝜈0, 𝜈1) (21)

As a consequence, for all 𝛼-Hölder functions 𝑓 : Ω → C and all ℓ,𝑚 ∈ N it holds⃒⃒⃒
E[𝑓(𝑋ℓ)] − 𝜇(𝑓)

⃒⃒⃒
. Hol𝛼(𝑓) 𝜃𝛼ℓ⃒⃒⃒

E[𝑓(𝑋𝑚)𝑓(𝑋ℓ)] − E[𝑓(𝑋𝑚)]E[𝑓(𝑋ℓ)]
⃒⃒⃒
. Hol𝛼(𝑓)2 𝜃𝛼|𝑚−ℓ|

where the implied constants depends only on Ω and the constant 𝐶 in (18).

Proof. By linearity we only have to check (21) when 𝜈0 = 𝛿𝑥 and 𝜈1 = 𝛿𝑦 for some
𝑥, 𝑦 ∈ Ω, and by concavity

W𝛼(L*𝑡𝛿𝑥,L*𝑡𝛿𝑦) ≤
(︁

W1(L*𝑡𝛿𝑥,L*𝑡𝛿𝑦)
)︁𝛼

≤ 𝐷𝛼𝜃𝛼𝑡‖𝑥− 𝑦‖𝛼 = 𝐷𝛼𝜃𝛼𝑡 W𝛼(𝛿𝑥, 𝛿𝑦).

To prove convergence toward the average and decay of correlation, we first use the
contraction and that 𝜇 is the stationary measure to get⃒⃒⃒

L𝑡𝑓(𝑥) − 𝜇(𝑓)
⃒⃒⃒
=

⃒⃒⃒⃒ ∫︁
L𝑡𝑓 d𝛿𝑥 −

∫︁
𝑓 d𝜇

⃒⃒⃒⃒
=

⃒⃒⃒⃒ ∫︁
𝑓 d

(︁
L*𝑡𝛿𝑥

)︁
−

∫︁
𝑓 d

(︁
L*𝑡𝜇

)︁⃒⃒⃒⃒
≤ Hol𝛼(𝑓) W𝛼(L*𝑡𝛿𝑥,L*𝑡𝜇)
≤ Hol𝛼(𝑓)𝐷𝛼𝜃𝛼𝑡 W𝛼(𝛿𝑥, 𝜇)⃒⃒⃒

L𝑡𝑓(𝑥) − 𝜇(𝑓)
⃒⃒⃒
. Hol𝛼(𝑓) 𝜃𝛼𝑡.

Assuming without lost of generality 𝜇(𝑓) = 0 we have ‖𝑓‖∞ . Hol𝛼(𝑓) (𝜇(𝑓) = 0
implies that 𝑓 takes both non-positive and non-negative values, and Ω is bounded).
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Assume further 𝑚 ≥ ℓ and write 𝑚 = ℓ+ 𝑡. Combining all previous observations we get:

‖L𝑡𝑓‖∞ . Hol𝛼(𝑓) 𝜃𝛼𝑡,⃒⃒⃒
E[𝑓(𝑋𝑚)]

⃒⃒⃒
=

⃒⃒⃒
E

[︁
L𝑚𝑓(𝑋0)

]︁⃒⃒⃒
. Hol𝛼(𝑓) 𝜃𝛼𝑚,⃒⃒⃒

E[𝑓(𝑋ℓ)]
⃒⃒⃒
. Hol𝛼(𝑓) 𝜃𝛼ℓ,⃒⃒⃒

E[𝑓(𝑋𝑚)𝑓(𝑋ℓ)]
⃒⃒⃒
=

⃒⃒⃒
E

[︁
L𝑡𝑓(𝑋ℓ) 𝑓(𝑋ℓ)

]︁⃒⃒⃒
. ‖L𝑡𝑓‖∞ E[|𝑓(𝑋ℓ)|]
. Hol𝛼(𝑓)2𝜃𝛼𝑡

and the conclusion follows.

We deduce the following from these two Lemmas.

Corollary 4.4. For all 𝑘, 𝛼 and all 𝑛 ≥ 1/(1 − 𝜃𝛼) it holds

E
[︁
|𝜇̂𝑛(𝑒𝑘) − 𝜇(𝑒𝑘)|2

]︁
.

|𝑘|2𝛼
∞

(1 − 𝜃𝛼)𝑛

Proof. We have:

E
[︁
|𝜇̂𝑛(𝑒𝑘) − 𝜇(𝑒𝑘)|2

]︁
= E

[︂(︂ 1
𝑛

𝑛∑︁
ℓ=1

𝑒𝑘(𝑋ℓ) − 𝜇(𝑒𝑘)
)︂2]︂

= 1
𝑛2

∑︁
1≤ℓ,𝑚≤𝑛

E[𝑒𝑘(𝑋ℓ)𝑒𝑘(𝑋𝑚)] − 2
𝑛

𝑛∑︁
ℓ=1

E[𝑒𝑘(𝑋ℓ)]𝜇(𝑒𝑘) + 𝜇(𝑒𝑘)2

≤ 1
𝑛2

(︂ ∑︁
1≤ℓ,𝑚≤𝑛

E[𝑒𝑘(𝑋ℓ)]E[𝑒𝑘(𝑋𝑚)] + 𝐶 Hol𝛼(𝑒𝑘)2 𝜃𝛼|ℓ−𝑚|
)︂

− 2
𝑛

𝑛∑︁
ℓ=1

E[𝑒𝑘(𝑋ℓ)]𝜇(𝑒𝑘) + 𝜇(𝑒𝑘)2

≤ 𝐶 Hol𝛼(𝑒𝑘)2

𝑛2

∑︁
1≤ℓ,𝑚≤𝑛

𝜃𝛼|ℓ−𝑚| + 1
𝑛2

(︂ 𝑛∑︁
ℓ=1

(︁
E[𝑒𝑘(𝑋ℓ)] − 𝜇(𝑒𝑘)

)︁)︂2

.
Hol𝛼(𝑒𝑘)2

𝑛2 ·
𝑛∑︁

ℓ=1
2

∞∑︁
𝑡=0

𝜃𝛼𝑡 + Hol𝛼(𝑒𝑘)2

𝑛2

(︂ 𝑛∑︁
ℓ=1

𝜃𝛼ℓ
)︂2

.
Hol𝛼(𝑒𝑘)2

𝑛2 · 𝑛

1 − 𝜃𝛼
+ Hol𝛼(𝑒𝑘)2

𝑛2(1 − 𝜃𝛼)2

.
|𝑘|2𝛼

∞
(1 − 𝜃𝛼)𝑛

whenever 𝑛 ≥ 1/(1 − 𝜃𝛼).
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Fix some threshold 𝐽 ≥ 3 and some exponent 𝛼 ∈ (0, 1], to be determined explicitly
later on.

Let 𝑓 : T𝑑 → R be in 𝒞s
1. From the multidimensional version of Jackson’s theo-

rem [Sch69], we know that there is a trigonometric polynomial 𝑇𝐽(𝑓) which is a linear
combination of the 𝑒𝑘 for |𝑘|∞ ≤ 𝐽 , such that

‖𝑓 − 𝑇𝐽(𝑓)‖∞ .
1
𝐽𝑠

We have no clear control on the coefficient of this optimal trigonometric polynomial,
which need not be the Fourier coefficients of 𝑓 . But it is also known that the Fourier
series of 𝑓 is within a factor ≃ ‖𝑓‖∞(log 𝐽)𝑑 of the best approximation (see [Mas80] for
an optimal constant), so that denoting by 𝐹𝐽(𝑓) := ∑︀

|𝑘|∞≤𝐽 𝑓𝑘𝑒𝑘 the 𝐽-truncation of the
Fourier series of 𝑓 , we get

‖𝑓 − 𝐹𝐽(𝑓)‖∞ .
(log 𝐽)𝑑

𝐽𝑠
.

We can assume 𝑓0 = 0 by translating 𝑓 , and what precedes yields:

|𝜇̂𝑛(𝑓) − 𝜇(𝑓)| ≤ |𝜇̂𝑛(𝑓) − 𝜇̂𝑛(𝐹𝐽(𝑓))| + |𝜇̂𝑛(𝐹𝐽(𝑓)) − 𝜇(𝐹𝐽(𝑓))| + |𝜇(𝐹𝐽(𝑓)) − 𝜇(𝑓)|
≤ 2‖𝑓 − 𝐹𝐽(𝑓)‖∞ +

∑︁
0<|𝑘|∞≤𝐽

|𝑓𝑘||𝜇̂𝑛(𝑒𝑘) − 𝜇(𝑒𝑘)| (22)

.
(log 𝐽)𝑑

𝐽𝑠
+

(︂ ∑︁
0<|𝑘|∞≤𝐽

|𝑓𝑘|2|𝑘|2𝑠
∞

)︂ 1
2

⎛⎝ ∑︁
0<|𝑘|∞≤𝐽

|𝜇̂𝑛(𝑒𝑘) − 𝜇(𝑒𝑘)|2
|𝑘|2𝑠

∞

⎞⎠ 1
2

.
(log 𝐽)𝑑

𝐽𝑠
+ ‖𝑓‖𝐻𝑠

⎛⎝ ∑︁
0<|𝑘|∞≤𝐽

|𝜇̂𝑛(𝑒𝑘) − 𝜇(𝑒𝑘)|2
|𝑘|2𝑠

∞

⎞⎠ 1
2

|𝜇̂𝑛(𝑓) − 𝜇(𝑓)| . (log 𝐽)𝑑

𝐽𝑠
+

⎛⎝ ∑︁
0<|𝑘|∞≤𝐽

|𝜇̂𝑛(𝑒𝑘) − 𝜇(𝑒𝑘)|2
|𝑘|2𝑠

∞

⎞⎠ 1
2

(23)

Where the right-hand side does not depend on 𝑓 in any way (note that ‖·‖𝐻𝑠 is the
Sobolev norm, controlled by the 𝒞s norm).

Remark 4.5. At line (22), one could be tempted to bound directl |𝑓𝑘| instead of using
the Cauchy-Schwarz inequality, in order to make better use of our assumption on 𝑓 .
This would be effective if |𝜇̂𝑛(𝑒𝑘) − 𝜇(𝑒𝑘)| were of the order of 1/𝑛, but it is actually of
the order of 1/

√
𝑛, ultimately leading to a weaker bound than the one we aim for.
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Taking a supremum and an expectation in (23) and using concavity, it comes:

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
.

(log 𝐽)𝑑

𝐽𝑠
+

⎛⎝ ∑︁
0<|𝑘|∞≤𝐽

E
[︁
|𝜇̂𝑛(𝑒𝑘) − 𝜇(𝑒𝑘)|2

]︁
|𝑘|2𝑠

∞

⎞⎠ 1
2

.
(log 𝐽)𝑑

𝐽𝑠
+

⎛⎝ ∑︁
0<|𝑘|∞≤𝐽

|𝑘|2𝛼

(1 − 𝜃𝛼)𝑛|𝑘|2𝑠
∞

⎞⎠ 1
2

.
(log 𝐽)𝑑

𝐽𝑠
+

⎛⎝ 𝐽∑︁
ℓ=1

ℓ𝑑−1+2𝛼−2𝑠

(1 − 𝜃𝛼)𝑛

⎞⎠ 1
2

Choose now 𝛼 = 1/ log 𝐽 so that ℓ2𝛼 . 1 for all ℓ ∈ {1, . . . , 𝐽}, use 1 − 𝜃𝛼 ≥ 𝛼(1 − 𝜃)
and set 𝑛̄ := (1 − 𝜃)𝑛 to obtain

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
.

(log 𝐽)𝑑

𝐽𝑠
+

√︃
log 𝐽
𝑛̄

(︂ 𝐽∑︁
ℓ=1

ℓ𝑑−1−2𝑠
)︂ 1

2
(24)

For 𝑠 < 𝑑/2, we get:

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
.

(log 𝐽)𝑑

𝐽𝑠
+ (log 𝐽) 1

2𝐽
𝑑
2 −𝑠

√
𝑛̄

(25)

Trying to balance the contribution of the two terms, we first see that taking 𝐽 ≃ 𝑛̄
1
𝑑 would

optimize the power of 𝑛̄ in the final expression; refining to 𝐽 = (log 𝑛̄)𝛽𝑛̄
1
𝑑 , developing

and ignoring lower order terms shows that the choice 𝛽 = 2− 1
𝑑

optimizes the final power
of log 𝑛̄, and we thus set

𝐽 =
⌊︁
(log 𝑛̄)2− 1

𝑑 𝑛̄
1
𝑑

⌋︁
Any large enough 𝑛 (the bound depending on both 𝜃 and 𝑑) satisfies the requirement

𝑛 ≥ 1/(1 − 𝜃𝛼) since the right-hand side is of the order of log 𝑛. It then comes:

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
.

(log 𝑛̄)𝑑−2𝑠+ 𝑠
𝑑

𝑛̄
𝑠
𝑑

(𝑛 large enough).

For 2𝑠 = 𝑑 we get

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
.

(log 𝐽)𝑑

𝐽𝑠
+ log 𝐽√

𝑛̄

and taking 𝐽 = ⌊𝑛̄ 1
2𝑠 (log 𝑛̄)(𝑑−1)/𝑠⌋ yields

E
[︁

W1(𝜇̂𝑛, 𝜇)
]︁
.

log 𝑛̄√
𝑛̄
.

Finally, for 𝑠 > 𝑑/2 we get

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
.

(log 𝐽)𝑑

𝐽𝑠
+ (log 𝐽) 1

2
√
𝑛̄
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and taking 𝐽 = ⌊𝑛̄ 1
2𝑠 (log 𝑛̄)

𝑑
𝑠+1/2 ⌋ yields

E
[︁
‖𝜇̂𝑛 − 𝜇‖𝒞s

1

]︁
.

(log 𝑛̄)
𝑑

2𝑠+1
√
𝑛̄

,

ending the proof of Theorem A.

5 Concentration near the expectancy
Let us detail how classical bounded martingale difference methods can be used to prove
that the empirical measure concentrates very strongly around its expectancy. When
(𝑋𝑘)𝑘≥0 are independent identically distributed, this is long-known (see [Tal92], and
also [WB17] for more general Wasserstein metrics W𝑝, 𝑝 ≥ 1). In the case of Markov
chains, such arguments have been developed notably in [CR09] and, in a dynamical
context, [CG12]. Our approach is very similar and thus cannot pretend to novelty,
but we write it down to show how to handle functional spaces more general than just
Lipschitz and Hölder.

The fundamental result to be used is the Azuma-Hoeffding inequality, which we recall.

Theorem (Azuma-Hoeffding inequality). Let 𝑌 be a random variable, let

{∅,Ω} = B0 ⊂ B1 ⊂ · · · ⊂ B𝑛 = B(Ω)

be a filtration and for each 𝑘 ∈ J1, 𝑛K set Δ𝑘 = E[𝑌 |B𝑘] − E[𝑌 |B𝑘−1]. Assume that for
all 𝑘 and some numbers 𝑎𝑘 ∈ R, 𝑐𝑘 > 0 we have Δ𝑘 ∈ [𝑎𝑘, 𝑎𝑘 + 𝑐𝑘] almost surely. Then
for all 𝑡 > 0,

P
[︁
𝑌 ≥ E[𝑌 ] + 𝑡

]︁
≤ exp

(︂
− 2𝑡2∑︀

𝑘 𝑐
2
𝑘

)︂
.

5.1 The independent case
In the case of i.i.d. random variables, the Azuma-Hoeffding inequality famously yields
the following concentration inequality.

Theorem (McDiarmid’s inequality). Let 𝐹 : Ω𝑛 → R be a function such that for some
𝑐1, . . . , 𝑐𝑛 and all 𝑘 ∈ J1, 𝑛K and all (𝑥1, . . . , 𝑥𝑛, 𝑥

′
𝑘) ∈ Ω𝑛+1 it holds⃒⃒⃒

𝐹 (𝑥1, . . . , 𝑥𝑘, . . . , 𝑥𝑛) − 𝐹 (𝑥1, . . . , 𝑥
′
𝑘, . . . , 𝑥𝑛)

⃒⃒⃒
≤ 𝑐𝑘.

Let (𝑋𝑘)1≤𝑘≤𝑛 be a sequence of independent random variables. Then for all 𝑡 > 0 it holds

P
[︁
𝐹 (𝑋1, . . . , 𝑋𝑛) ≥ E[𝐹 (𝑋1, . . . , 𝑋𝑛)] + 𝑡

]︁
≤ exp

(︂
− 2𝑡2∑︀

𝑘 𝑐
2
𝑘

)︂
.
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Applying this to

𝐹 (𝑋1, . . . , 𝑋𝑛) = ‖𝜇̂𝑛 − 𝜇‖F = sup
𝑓∈F

⃒⃒⃒⃒ 1
𝑛

𝑛∑︁
𝑘=1

𝑓(𝑋𝑘) − 𝜇(𝑓)
⃒⃒⃒⃒

we can take
𝑐𝑘 = 1

𝑛
sup

𝑓∈F ,𝑥,𝑥′∈Ω
|𝑓(𝑥) − 𝑓(𝑥′)| =: 1

𝑛
osc(F )

and it comes

P
[︁
𝐹 (𝑋1, . . . , 𝑋𝑛) ≥ E[𝐹 (𝑋1, . . . , 𝑋𝑛)] + 𝑡

]︁
≤ exp

(︂
− 2𝑛𝑡2

osc(F )2

)︂
.

For example if F ⊂ Lip1(Ω) (e.g. F = 𝒞s
1) we have osc(F ) ≤ diam Ω; if moreover

Ω = [0, 1]𝑑 it thus comes

P
[︂
‖𝜇̂𝑛 − 𝜇‖F ≥ E

[︁
‖𝜇̂𝑛 − 𝜇‖F

]︁
+ 𝑡

]︂
≤ exp

(︂
− 2
𝑑

· 𝑛𝑡2
)︂
. (26)

This, combined with Theorem C, yields good concentration estimates.

Corollary 5.1. If (𝑋𝑘)𝑘≥0 are i.i.d.random variables with law 𝜇, then for all 𝑠 ≥ 1,
for some constant 𝐶 = 𝐶(𝑑, 𝑠) > 0 (not depending upon 𝜇), all integer 𝑛 ≥ 2 and all
𝑀 ≥ 𝐶 we have:

∙ if 𝑠 > 𝑑/2
P

[︂
‖𝜇̂𝑛 − 𝜇‖𝒞s

1
≥ 𝑀√

𝑛

]︂
≤ 𝑒− 2

𝑑
(𝑀−𝐶)2 ; (27)

∙ if 𝑠 = 𝑑/2
P

[︂
‖𝜇̂𝑛 − 𝜇‖𝒞s

1
≥ 𝑀 log 𝑛√

𝑛

]︂
≤ 𝑒− 2

𝑑
(𝑀−𝐶)2(log 𝑛)2 ; (28)

∙ if 𝑠 < 𝑑/2
P

[︂
‖𝜇̂𝑛 − 𝜇‖𝒞s

1
≥ 𝑀

𝑛
𝑠
𝑑

]︂
≤ 𝑒− 2

𝑑
(𝑀−𝐶)2𝑛1−2𝑠/𝑑 ; (29)

Similarly, with Theorem B we can obtain entirely explicit, non-asymptotic concentra-
tion bounds.

5.2 Markov Chains
To tackle Markov chains we will need some hypothesis to replace independence; we
choose a framework that covers the case of W1, but also more general dual metrics ‖·‖F .

Assume that Ω is endowed with a metric 𝑑 with finite diameter (𝑑 is assumed to be
lower-semi-continuous, but not necessarily to induce the given topology on Ω). We still
denote by Lip1(Ω) be the space of functions Ω → R which are 1-Lipschitz with respect
to 𝑑.
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Let (𝑋𝑘)≥0 be a Markov chain on Ω which is exponentially contracting (see the begin-
ning of Section 4) with constant 𝐷 and rate 𝜃, in the metric 𝑑 instead of the euclidean
norm; this can be rewritten in a coupling formulation as follows: for all 𝑥, 𝑥′ ∈ Ω, all
𝑖, 𝑡 ∈ N there are random variables (𝑋 ′

𝑘)𝑘≥𝑖 with the same law as (𝑋 ′
𝑘)𝑘≥𝑖 and such that

for all 𝑡:
E[𝑑(𝑋𝑖+𝑡, 𝑋

′
𝑖+𝑡) | 𝑋𝑖 = 𝑥,𝑋 ′

𝑖 = 𝑥′] ≤ 𝐷𝜃𝑡𝑑(𝑥, 𝑥′).
Note that the flexibility in the choice of 𝑑 enables to include uniformly ergodic Markov
chains in this framework, simply by taking 𝑑 = 1 ̸=, i.e. 𝑑(𝑥, 𝑦) = 0 if 𝑥 = 𝑦 and
𝑑(𝑥, 𝑦) = 1 otherwise.

Given a multivariate function Φ : Ω𝑛 → R𝑛, we define as usual the coordinate-wise
Lipschitz constants of Φ by

Λ𝑖(Φ) = sup
𝑥1,...,𝑥𝑛∈Ω,𝑥′

𝑖 ̸=𝑥𝑖

|Φ(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑛) − Φ(𝑥1, . . . , 𝑥
′
𝑖, . . . , 𝑥𝑛)|

𝑑(𝑥𝑖, 𝑥′
𝑖)

and we say that Φ is separately Lipschitz if Λ𝑖(Φ) < ∞ for all 𝑖 (when 𝑑 = 1 ̸ =, the
coordinate-wise Lipschitz constant become the coordinate-wise oscillations).
Theorem 5.2. Let (𝑋𝑘)𝑘≥1 be a Markov chain whose kernel is exponentially contracting
with constant 𝐷 ≥ 1 and rate 𝜃 ∈ (0, 1), with respect to a lower-semi-continuous distance
𝑑 on Ω giving it finite diameter diam(Ω).

Let 𝑛 ∈ N and Φ : Ω𝑛 → R be separately Lipschitz with constants Λ𝑖(Φ) ≤ Λ. Then

P
[︂
Φ(𝑋1, . . . , 𝑋𝑛) ≥ E[Φ(𝑋1, . . . , 𝑋𝑛)] + 𝑡

]︂
≤ exp

(︂
− (1 − 𝜃)2𝑡2

2𝑛𝐷2 diam(Ω)2Λ2

)︂
Proof. We set 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑋𝑖:𝑗 = (𝑋𝑖, . . . , 𝑋𝑗) (meaning the empty family
whenever 𝑗 < 𝑖).

We shall apply the Azuma-Hoeffding inequality with the filtration B𝑘 = 𝜎(𝑋𝑘
1 ), leav-

ing us with the task of bounding the oscillations 𝑐𝑘 of the random variable
Δ𝑘 = E[Φ(𝑋)|𝑋1:𝑘] − E[Φ(𝑋)|𝑋1:𝑘−1].

Given an arbitrary 𝑥1:𝑘 = (𝑥1, . . . , 𝑥𝑘) ∈ Ω𝑘 and 𝑥′
𝑘 ∈ Ω we set

𝑉𝑘(𝑥1:𝑘, 𝑥
′
𝑘) = E[Φ(𝑋)|𝑋1:𝑘 = 𝑥1:𝑘] − E[Φ(𝑋)|𝑋1:𝑘−1 = 𝑥1:𝑘−1, 𝑋𝑘 = 𝑥′

𝑘]
so that 𝑐𝑘 = sup𝑉𝑘 − inf 𝑉𝑘 ≤ 2‖𝑉𝑘‖∞. Let (𝑋 ′

𝑖)𝑖≥𝑘 be a copy of (𝑋𝑖)𝑖≥𝑘 as in the
definition of exponential contraction; then
𝑉𝑘(𝑥1:𝑘, 𝑥

′
𝑘) = E

[︁
Φ(𝑥1:𝑘−1, 𝑋𝑘:𝑛)

⃒⃒⃒
𝑋𝑘 = 𝑥𝑘

]︁
− E

[︁
Φ(𝑥1:𝑘−1, 𝑋

′
𝑘:𝑛)

⃒⃒⃒
𝑋 ′

𝑘 = 𝑥′
𝑘

]︁
=

𝑛∑︁
𝑖=𝑘

E
[︂
Φ(𝑥1:𝑘−1, 𝑋𝑘:𝑖, 𝑋

′
𝑖+1:𝑛) − Φ(𝑥1:𝑘−1, 𝑋𝑘:𝑖−1, 𝑋

′
𝑖:𝑛)

⃒⃒⃒⃒
𝑋𝑘 = 𝑥𝑘, 𝑋

′
𝑘 = 𝑥′

𝑘

]︂

|𝑉𝑘(𝑥𝑘
1, 𝑥

′
𝑘)| ≤

𝑛∑︁
𝑖=𝑘

E
[︁
Λ𝑑(𝑋𝑖, 𝑋

′
𝑖)

⃒⃒⃒
𝑋𝑘 = 𝑥𝑘, 𝑋

′
𝑘 = 𝑥′

𝑘

]︁
≤ 𝐷Λ𝑑(𝑥𝑘, 𝑥

′
𝑘)

∞∑︁
𝑖=𝑘

𝜃𝑖−𝑘

𝑐𝑘 ≤ 2𝐶Λ diam(Ω)/(1 − 𝜃).
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Applying the Azuma-Hoeffding inequality finishes the proof.

Remark 5.3. The above inequality is probably not optimal; one can expect to improve
the rate, either by moving the constant 2 from the denominator to the numerator, or by
replacing (1 − 𝜃)2 by (1 − 𝜃) (probably with another constant).

As soon as F ⊂ Lip1(Ω) (e.g. F = 𝒞s
1), Theorem 5.2 applies to

Φ(𝑋) = ‖𝜇̂𝑛 − 𝜇‖F = sup
𝑓∈F

1
𝑛

𝑛∑︁
𝑘=1

𝑓(𝑋𝑘) − 𝜇(𝑓)

with Λ = 1
𝑛
, yielding

P
[︂
‖𝜇̂𝑛 − 𝜇‖F ≥ E

[︁
‖𝜇̂𝑛 − 𝜇‖F

]︁
+ 𝑡

]︂
≤ exp

(︂
− (1 − 𝜃)2

2𝐷2 diam(Ω)2 · 𝑛𝑡2
)︂

(30)

i.e., as in the independent case, subgaussian concentration. Corollary D follows.
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