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We explore the nonlinear dynamics of a cavity optomechanical system. Our realization consisting
of a drumhead nano-electro-mechanical resonator (NEMS) coupled to a microwave cavity, allows for
a nearly ideal platform to study the nonlinearities arising purely due to radiation-pressure physics.
Experiments are performed under a strong microwave Stokes pumping which triggers mechanical
self-sustained oscillations. We analyze the results in the framework of an extended nonlinear optome-
chanical theory, and demonstrate that quadratic and cubic coupling terms in the opto-mechanical
Hamiltonian have to be considered. Quantitative agreement with the measurements is obtained
considering only genuine geometrical nonlinearities: no thermo-optical instabilities are observed, in
contrast with laser-driven systems. Based on these results, we describe a method to quantify nonlin-
ear properties of microwave optomechanical devices. Such a technique, available now in the quantum
electro-mechanics toolbox, but completely generic, is mandatory for the development of new schemes
where higher-order coupling terms are proposed as a new resource, like Quantum Non-Demolition
measurements, or in the search for new fundamental quantum signatures, like Quantum Gravity.
We also find that the motion imprints a wide comb of extremely narrow peaks in the microwave
output field, which could also be exploited in specific microwave-based measurements, potentially
limited only by the quantum noise of the optical and the mechanical fields for a ground-state cooled
NEMS device.
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I. INTRODUCTION

Combining mechanical resonators with dimensions of
order a micron or less with superconducting circuit ele-
ments has led to an exciting field of research exploring
the quantum properties of nanoelectromechanical sys-
tems (NEMS) [1]. Mechanical components can be effi-
ciently coupled to superconducting qubits or integrated
within optomechanical resonant cavities, providing a new
resource for quantum device engineering [2–5]. With a
mechanical mode cooled to its quantum ground state,
these NEMS circuits are also a new unique tool for funda-
mental experiments at the frontier of quantum mechanics
[6, 7].

In the context of quantum electronics, non-classical
mechanical states can be used as a new support for
quantum information storage and processing [4, 6, 8–
11]. By engineering the coupling between photons
and phonons (i.e. bath engineering), non-reciprocal mi-
crowave quantum-limited on-chip components are being
developed [12–15]; in order to couple quantum proces-
sors through optical photons, photon converters are be-
ing built around a quantum-mechanical degree of freedom
[16, 17].

The capabilities offered by quantum NEMS devices are
thus extremely rich, but are essentially all building on
the linear parametric coupling between light and motion

[18]. For instance, using a pump properly detuned from
the resonance cavity (i.e. Anti-Stokes sideband pump-
ing), one can actively cool down a mechanical mode to its
quantum ground state, or reversely (i.e. Stokes pumping)
amplify the mechanical motion [11, 19–23]. From two-
tone schemes, one can devise back-action evading (BAE)
measurements [24, 25] that enable to beat the standard
quantum limit by measuring one quadrature while feeding
the back-action noise of the detector to the other one.

Beyond the standard optical frequency pulling propor-
tional to mechanical position x, higher-order couplings
appear to be also significant or even desirable for spe-
cific realizations: from an x2 coupling, one can measure
the energy of the mechanics and build quantum non-
demolition (QND) measurements [26, 27], i.e. measur-
ing an eigenstate of the Hamiltonian while not perturb-
ing its evolution. Successful experimental implementa-
tions of such nonlinear couplings have been realized using
optics, with membrane-in-the-middle configurations [28]
and superfluid optomechanics [29]. On a more fundamen-
tal level, experiments which seek to use optomechanical
systems to probe Gravity’s quantum signatures, a com-
pletely new frontier of physics [30, 31], require necessar-
ily to have characterized the higher order (beyond linear)
mechanical couplings in the optomechanical Hamiltonian
[32].

At very strong Stokes sideband pumping power, the
mechanical mode enters self-sustained oscillations [18].
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A rich multi-stable attractor diagram has been de-
scribed theoretically [33], with specific phase-noise and
amplitude-noise properties [34–36]. The mechanical am-
plitude of motion becoming very large, this coherent
state dynamics is extremely sensitive to all nonlinearities
present in the system; this had been discussed already
in Ref. [37]. Experiments in this regime have been per-
formed in the optical domain [38–40]; but the strong laser
pump powers always produce dominant thermo-optical
nonlinearities that require specific modeling [41].

In the present Article we report on experiments per-
formed at low temperatures on a microwave optome-
chanical setup driven in the self-oscillating regime. The
dynamics imprints a comb in the microwave spectrum,
from which we can measure more than 10 extremely nar-
row (width of order a few Hz) peaks. Comb generation
has been a revolution in optics [42]; it is thus natural
to ask whether this effect could lead to a new technol-
ogy. Indeed, these combs could potentially be used for
microwave-based readouts in quantum information pro-
cessing (superconducting Qu-bits) and low temperature
detectors (LTDs), where combs are usually synthesized
for multiplexing purposes [43]. While efficient digital
synthesizers are available today, routing all required sig-
nals down to millikelvin temperatures poses undeniable
problems solved only by multiplying coaxial lines and
generators. Besides, while superconducting Qu-bits are
not very sensitive to the quality of the GHz signals, dig-
itally generated tones have a very poor phase noise at
frequencies significantly offset from the carrier. Analog
sources are the only currently foreseen possibility to gen-
erate low-phase noise GHz tones that are indispensable
for many basic research applications - like e.g. optome-
chanics. For instance, an alternative technology proposed
in the literature builds on the nonlinearity of supercon-
ducting quantum interference devices (SQUIDs) [44, 45],
which enables to generate signals inside the cryostat. In
comparison, our optomechanical combs are competitive:
the peak width is of the same order (resolution of 1 part in
108), the distribution of harmonics is much more homo-
geneous (equal spacing), and most importantly the am-
plitudes are very large (while the critical current of the
SQUID junctions fixes a technological limitation). One
could thus imagine developing a new disruptive technol-
ogy for on-chip synthesizing of harmonics, which could
be a solution to the scaling problem faced today by cryo-
genic experiments. Furthermore, synchronization of sev-
eral mechanical modes in the self-oscillation regime could
further improve the phase noise performance of each in-
dividual mode [46]. Ultimately, with a NEMS cooled to
its ground state the stability of the output field would be
limited only by quantum noise, and investigating these
properties will be of fundamental interest [36].

In the present work we demonstrate that the dynamics
of the self-oscillating state is imprinted by genuine geo-
metrical nonlinearities that can be fit, and we develop the
full nonlinear theory giving the tools to extract nonlinear
terms arising from the pure radiation-pressure coupling
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FIG. 1: (a) Main: Power spectral density (PSD, in units of
photons of energy ~ωc) of the Stokes peak (i.e. at the fre-
quency of the cavity) measured in the self-sustained oscilla-
tion regime at 214 mK (blue-detuned pump power Pin of 6 nW
with ∆ = +ωm). In order to resolve the peak, the detection
bandwidth was 0.2 Hz, for a span of ±3.5 kHz. Left inset:
Time domain measurement of the coherent signal (raw data
units). Right inset: SEM picture of a drumhead type res-
onator. (b): PSD measurement of the comb produced by the
strong applied power in same conditions (pump signal 6 nW,
green arrow at its frequency (ωc + ωm)/2π). The cavity (or-
ange area) is displayed with an arbitrary amplitude and its
linewidth κtot/2π at scale. The black points are theoretical
computation of the output amplitude of each measured peak
(see text).

up to the third order ∝ x3. The agreement between ex-
periment and theory is exceptional, and it gives us confi-
dence in our level of understanding of the setup. Building
on these results, self-sustained oscillations in microwave
optomechanical systems become a new tool enabling the
experimental determination of the full nonlinear Hamil-
tonian at stake. This could be employed for instance in
future quantum electronics circuits with specific schemes
aiming at QND measurements [26, 27].
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FIG. 2: (a): Measured output photon flux (Stokes peak at
ωc + δ) as a function of input power Pin and detuning δ at
214 mK (pump tone at ωc + ωm + δ). (b): Corresponding
calculated colormap from the basic theory described in Refs.
[33, 34] (no nonlinearities, g1 = g2 = 0 in Section III). The
region on the right of the dashed line (high powers, posi-
tive detuning) is bistable and exists only when entering from
the self-oscillating state (up-sweeping frequencies). The pink
cross marks the minimum power necessary for self-oscillations,
while the red cross corresponds to the position of the begin-
ning of the hysteresis. The yellow cross marks the end of this
bistable region (at same power). ∆P and ∆δ are discussed in
the text.

II. EXPERIMENT

We employ a standard microwave optomechanical sys-
tem [3, 47] consisting of a microfabricated lumped mi-
crowave cavity resonator coupled to an aluminum drum-
head NEMS [6] (see Fig. 1 a, right inset). The chip is
installed into a commercial dilution cryostat with base
temperature 10 mK, equipped with a high electron mo-
bility transistor (HEMT) detection circuitry. The cryo-
genics, thermometry and measurement techniques have
been described in Ref. [23].

The chip is designed for reflection measurements.
The aluminum microwave cavity resonates at ωc/2π ≈
6.8 GHz. The cavity displays a one-directional external

coupling rate of κext/2π ≈ 2 MHz, and a total damping
rate of κtot/2π ≈ 4 MHz. We performed the experiment
using the fundamental mode of the drum NEMS device
which resonates around ωm/2π ≈ 6.7 MHz and exhibits a
typical damping rate of about γm/2π ≈ 150 Hz at 50 mK.
Details on the geometry and measured parameters can be
found in Appendix A.

The optomechanical coupling mechanism arises from
momentum transfer between light (i.e. photons) and me-
chanics (i.e. phonons). In the standard case of a Fabry-
Perot cavity, the displacement of the movable end mirror
(the mechanical degree of freedom) modulates the res-
onant frequency of the cavity (the optical mode). Be-
cause of the retarded nature of the radiation pressure
force when the laser light is detuned from the cavity
frequency, this interaction gives rise to dynamical back-
action allowing either active cooling or amplification of
the mechanical motion. In this respect, our experiment
is analogous to optics but shifted in the microwave do-
main [3]; the fundamental mode of the drumhead device
corresponding to the movable mirror degree of freedom
modulating the capacitance C(x) of the electrical circuit
[18]. The Brownian motion of this mode then imprints
sidebands in the microwave spectrum that we measure.
The motion amplitude being very small, no extra non-
linearity has to be considered and the optical damping
(when cooling) and anti-damping (when amplifying) ob-
served are linear in applied power Pin [18]. This is used
to calibrate the linear optomechanical interaction of our
setup [23]. We obtain a single photon-phonon coupling
strength |g0|/2π ≈ 10 Hz.

Blue-detuned pumping at ωc + ∆ (with ∆ > 0) gives
rise to downward scattering of photons, leading to the
creation of phonons in the mechanical mode, hence en-
hancing the Stokes sideband. This is accompanied by a
narrowing of the mechanical peak due to the antidamp-
ing backaction. At very strong powers, the total mechan-
ical damping can thus be totally canceled: this is called
the parametric instability. Above this threshold, the sys-
tem enters into self-sustained oscillations, the amplitude
of the mechanical motion being defined self-consistently
[18]. In this regime the mechanical amplitude of motion
is so large (reaching several nanometers) that the me-
chanical sidebands are not limited to a couple of peaks:
a full comb appears and can be measured (see Fig. 1
b). The peaks detected are not Lorentzian anymore,
and their shape is defined by phase noise in the system
[34]. They are extremely narrow (only a few Hz wide
at GHz frequencies), essentially equally-spaced (by ωm)
and of extremely high amplitude: they can even be de-
tected without any HEMT pre-amplification. As well,
all nonlinearities in the device will impact this complex
optomechanical dynamics.

At milliKelvin temperatures, heating arising from mi-
crowave absorption in dielectrics does not produce any
thermal expansion: there are thus no thermo-optical non-
linearities in our system, in strong contrast with devices
actuated by laser beams where they dominate [38–41].
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However, the strong pump signal required to reach the
threshold of the parametric instability does give rise to
heating effects. This is carefully characterized and taken
into account experimentally, see Appendix B. As such,
the nonlinearities that prevail in microwave-based sys-
tems are of geometrical origin.

The experiment is performed in the mechanical self-
induced oscillation regime, by measuring the output mi-
crowave signal corresponding to the Stokes peak (at fre-
quency ωc+δ), varying the detuning δ and the power Pin
of the input blue-detuned pump (at frequency ωc+ωm+
δ). The measured photon flux is shown in Fig. 2 (a).
It is obtained with a bandwidth of more than 10 times
the width of the Stokes peak, such that the detected sig-
nal corresponds to the integrated PSD of the peak (as
opposed to Fig. 1 which resolves its shape). As a com-
parison, the calculation based on the basic model of Refs.
[33, 34] is displayed in the bottom panel. The two plots
are very similar, and display strikingly a bistable region
at high powers and large positive detunings. However,
calculation and theory do not match perfectly, which is
expected: this has to be the signature of nonlinear effects
which were neglected so far.

The region of the stability diagram which seems to be
the most impacted by nonlinearities is precisely the hys-
teretic one (Fig. 2 beyond the dashed line). Therefore,
in addition to the overall topography of the measured
signal in the (Pin, δ) space, we shall measure the impor-
tance of nonlinear features by reporting the position of
the bistability in powers with respect to the beginning of
the self-sustained region ∆P , and its width in detuning
∆δ (see Fig. 2 b).

The question that arises is thus: which nonlinearities
need to be included in a quantitative model? One would
immediately think about the Duffing effect in mechan-
ical devices [48], and correspondingly to the Kerr ef-
fect for the microwave cavity [49]. Both are discussed
in Section IV and within the Appendices, but are not the
dominant nonlinear features essentially because small fre-
quency shifts have only a marginal impact on the optome-
chanical scheme itself. This is in strong contrast with
mechanics of directly-driven systems, where the Duffing
nonlinearity generates a rich bistable dynamics, involv-
ing one or even more mechanical modes (through non-
linear mode-coupling) [50–53]. In addition to geometri-
cal nonlinearities, bottom-up devices have demonstrated
a specific material-dependent feature: nonlinear damping
[54]. While it could modify the dynamics if large enough,
for top-down fabricated structures these effects are es-
sentially negligible, even for high-amplitude motion of
cantilever beams [55]; we discuss the point in Appendix
B. We have thus to consider nonlinearities in the cou-
pling itself, that is higher-order derivatives in the Taylor
expansion of the coupling capacitance C(x), which gen-
erate a modulation of the optomechanical interaction at
harmonics of the mechanical resonance frequency.

III. THEORY

We investigate the influence of nonlinear position cou-
pling on the dynamics of self-sustained oscillations. The
wide separation of time-scales together with weak cou-
pling and damping allows for a self-consistent approach
in which the mechanical amplitude is slowly changing
[33–37]. We start by writing a modified optomechanical
Hamiltonian of the form (in the rotating frame of the
drive optical field):

Ĥ = −~
[
∆ + g0

(
b̂+ b̂†

)
(1)

+
g1

2

(
b̂+ b̂†

)2

+
g2

2

(
b̂+ b̂†

)3
]
â†â

+ ~ωmb̂†b̂+ ~Ω
(
â† + â

)
+ Ĥγ ,

where â and b̂ are the photon and phonon annihilation
operator, respectively. g0 ∝ dC/dx is the usual linear
single photon-phonon coupling strength while we intro-
duce g1 ∝ d2C/dx2 and g2 ∝ d3C/dx3, respectively the
quadratic and cubic coupling strengths. This expan-
sion order is necessary and sufficient to provide quan-
titative fits of the data, see Section IV. C(x) is the
cavity mode total capacitance while x denotes the po-
sition collective degree of freedom of the first mechan-
ical flexural mode (see Appendix A for details). Ĥγ

represents the external baths coupling Hamiltonian and
Ω2 = κextPin/[~(ωc+∆)] is the normalized driving term.
In this case the equations of motion for both operators
take the following form:

〈 ˙̂a〉 = (i∆− κtot/2) 〈â〉+ ig0〈(b̂+ b̂†)â〉 (2)

+ i
g1

2
〈(b̂+ b̂†)2â〉+ i

g2

2
〈(b̂+ b̂†)3â〉 − iΩ,

〈 ˙̂b〉 = − (iωm + γm/2) 〈b̂〉+ ig0〈â†â〉 (3)

+ ig1〈(b̂+ b̂†)â†â〉+ i
3g2

2
〈(b̂+ b̂†)2â†â〉.

When the amplitudes of both fields are large enough,
we can neglect quantum fluctuations and use the stan-
dard semiclassical approach. We write for both the optics

〈â〉 → α and the mechanics 〈b̂〉 → β, leading to:

α̇ = (i∆− κtot/2)α+ ig0(β + β∗)α (4)

+ i
g1

2
(β + β∗)2α+ i

g2

2
(β + β∗)3α− iΩ,

β̇ = − (iωm + γm/2)β + ig0|α|2 (5)

+ ig1(β + β∗)|α|2 + i
3g2

2
(β + β∗)2|α|2.

This system of coupled equations can be solved by means
of the ansatz for β [34]:

β = βc +Be−iφe−iωt, (6)

βc being related to a static deflection xc of the drum, and
Be−iφ corresponding to the (complex valued) coherent
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motion. In the following, we shall neglect the βc term; it
is indeed responsible only for a tiny frequency shift of the
mechanical resonance, which impacts only marginally the
thought limit cycle state. For the same reason we did not
include the mechanical (Duffing) nonlinearity in Eq. (1),
see Appendix C for a detailed discussion on these issues.

For convenience, we now introduce a shifted detuning
∆′ = ∆ + g1B

2, and two renormalized coupling parame-
ters G = 2g0 + 3B2g2 and Ḡ = 2g0 + 6B2g2. The optical
amplitude equation takes now the form:

α̇ = [i∆′ − κtot/2 + iGB cos(ωt+ φ) (7)

+ig1B
2 cos(2ωt+ 2φ)

+ig2B
3 cos(3ωt+ 3φ)

]
α− iΩ.

The solution can be found via the mathematical trans-
form described in Ref. [33]. We define α̃ = αeiΘ with:

Θ(t) = −GB
ω

sin(ωt+ φ)− g1B
2

2ω
sin(2ωt+ 2φ) (8)

− g2B
3

3ω
sin(3ωt+ 3φ),

leading to the simpler dynamics equation:

˙̃α =
(
i∆′ − κtot

2

)
α̃− iΩeiΘ. (9)

We now use the Jacobi-Anger expansion three times (on
the three terms defining Θ):

f(t) = −iΩeiΘ(t) = −iΩ
∑
n∈Z

fne
in(ωt+φ) (10)

where:

fn =
∑
m∈Z

∑
p∈Z

(−1)m+p (11)

× Jp

(
−g2B

3

3ω

)
Jm

(
−g1B

2

2ω

)
J3p+2m+n

(
−GB
ω

)
.

Here, Jn is the Bessel function of the first kind. Fourier
transforming Eq. (9), we write α̃(t) =

∑
n∈Z α̃ne

inωt

with:

α̃n =
−iΩeinφfn

i (nω −∆′) + κtot/2
, (12)

and hence:

|α|2 = |α̃|2 =
∑

(n,n′)∈Z2

α̃nα̃
∗
n′ei(n−n

′)ωt (13)

=
∑

(n,n′)∈Z2

Ω2 e
i(n−n′)ωtei(n−n

′)φfnfn′

hnh∗n′

=
∑
q∈Z

e−iqωte−iqφ Ω2

[∑
n∈Z

fnfn+q

hnh∗n+q

]
=
∑
q∈Z

e−iqωtηq, (14)
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FIG. 3: (a): Output photon flux of the self-oscillating (Stokes)
peak at frequency ωc + δ, as a function of both the power Pin

and the detuning δ of the input pump signal (pump frequency
ωc + ωm + δ, with -7 MHz< δ <+7 MHz) at 214 mK. The
colormap is experimental data measured up-sweeping both
the pump detuning (from δ = −7 MHz to δ = +7 MHz)
and the pump power, and green points are theoretical fits
computed by solving self-consistently Eq. (20), γm + γBA =
0, see text. (b): Experimental colormap measured down-
sweeping the pump detuning (from δ = +7 MHz to δ = −7
MHz) with pump power swept upwards. Green points are also
theoretical computations; the hysteresis of the large power
and large detuning region is clearly visible.

where hn = i(nω−∆′) +κtot/2, and we used the change
of variable q = n′ − n in the penultimate line.

Inserting Eq. (14) into Eq. (5) and preserving only
terms oscillating at −ω (rotating wave approximation),
we obtain the dynamics equation for the mechanics:

β̇ = −
(
iωm +

γm
2

)
β + i

Ḡ

2
η1e
−iωt (15)

+ ig1η0β + ig1η2β
∗e−2iωt

+ i
3

2
g2η−1β

2eiωt + i
3

2
g2η3(β∗)2e−3iωt.

We can now recast this expression introducing the optical
backaction terms, namely the optical spring term δω and
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the damping term γBA:

β̇ = −
[
iω +

1

2
(γm + γBA)

]
β, (16)

with ω = ωm + δω now explicitly defined, and:

γBA = −2<[X], (17)

δω = −=[X], (18)

where X is written as:

X = iΩ2

[
Ḡ

2B

∑
n∈Z

fnfn+1

hnh∗n+1

(19)

+ g1

∑
n∈Z

f2
n

|hn|2
+ g1

∑
n∈Z

fnfn+2

hnh∗n+2

+
3g2B

2

∑
n∈Z

fnfn+1

hn+1h∗n
+

3g2B

2

∑
n∈Z

fnfn+3

hnh∗n+3

]
.

One can thus find all the stable states by solving self-
consistently the equation which cancels the effective
damping γm + γBA, ensuring that:

Ḃ = 0. (20)

In practice, it is sufficient to solve the limit-cycle equa-
tion neglecting all kinds of mechanical shifts, assuming
ω = ωm in Eq. (11). Details on the self-consistent deter-
mination of optomechanical stable states can be found in
Appendix D.

Following the same procedure as for α̃, the optical field
amplitude in the cavity takes the form α =

∑
n∈Z αne

inωt

with:

αn =
∑
q∈Z

−iΩeinφfqfq−n
hq

. (21)

This expression highlights the fact that the optomechani-
cal coupling imprints a comb structure in the photon field.
We can then compute the output photon flux Ṅout,n of
each comb peak n as:

Ṅout,n = κext|αn|2, (22)

where we made use of the well-known input-output rela-
tion linking intra-cavity fields and output traveling fields
[56]. n = 0 corresponds to the pump tone at frequency
ωc +ωm, n = −1 to the Stokes sideband at ωc and n = 1
to the anti-Stokes sideband at ωc + 2ωm (see black dots
in Fig. 1 b).

IV. ROLE OF GEOMETRIC NONLINEARITIES

The aim is thus now to go beyond Fig. 2, and obtain
quantitative agreement between theory and experiment.
The theory in the previous section allows us to calcu-
late the amplitude of the mechanical motion including
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FIG. 4: (a): Mechanical frequency shift of the self-oscillating
(Stokes) peak as a function of both the power Pin and the
detuning δ of the input pump signal (same conditions as Fig.
3, sweeping δ towards positive values). Note that in the hys-
teretic region, the calculated points lie slightly below the ex-
perimental ones, but obviously match the threshold position
of Fig. 3. (b): Experimental colormap measured down sweep-
ing the pump detuning. Green points are theoretical compu-
tations, see text.

geometrical nonlinearities in the couplings. However, to
obtain estimates of the mechanical frequency we need to
also include important contributions from other effects,
especially the Duffing nonlinearity of the drum.

As soon as the system self-oscillates, the actual cav-
ity frequency is slightly renormalized in ω′c = ωc − g1B

2.
Besides, there is also a material-dependent shift with a
logarithmic power-dependence that is attributed to Two-
Level-Systems present in the dielectrics [57], which is
taken into account (Appendix B). On the other hand, the
cavity Kerr nonlinearity ξc is expected to be extremely
small for our device [49, 58]; we give an upper bound in
Tab. I, see discussions in Appendices B and C for details.
The mechanical resonance is also renormalized by the
optomechanical coupling, with a tiny frequency shift δω
(see Section III). However, the dominant source of me-
chanical frequency shift is due to the Duffing effect (i.e.
the mechanical nonlinearity arising from the stretching of
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the drum [59]), leading to ω′m = ωm + δω + ξmB
2, with

a normalized Duffing parameter ξm in Hz per phonon.
For simplicity, we will omit the prime on ωc and ωm, re-
membering in the following that the measured mechani-
cal frequency shift includes all terms.

The measured output photon flux is plotted in Fig. 3
as a function of detuning δ and power Pin (same data
as Fig. 2 top panel, 214 mK). The amplitude of the
signal is extremely large, but the most striking feature is
the bistable region at high powers and positive detunings.
The measured mechanical frequency shift is shown in Fig.
4; strikingly, we find that it is largest in the bistable
regime.

This mechanical shift cannot be captured by the op-
tomechanical contribution δω alone. One has to take into
account the Duffing effect to quantitatively fit it (see be-
low). However, the mechanical frequency shifts remain
very small (a few kHz at most, see Fig. 4); we thus ver-
ified that they have only a marginal impact on the limit
cycle dynamics (i.e. the amplitudes, B), see Appendix
C.

In the hysteretic region the amplitude B becomes very
large, hence the optomechanical response becomes sen-
sitive to the nonlinear coupling coefficients, g1 and g2.
For symmetry reasons (see Appendix A), the sign of the
g0 parameter is irrelevant and we take it to be positive
for simplicity. However then, the sign of the other coef-
ficients is uniquely defined.

To calculate the amplitudes of the limit cycles (and
hence the photon flux) using the approach in Sec. III,
the only free parameters are the quadratic and cubic non-
linear coupling terms g1 and g2, respectively. These two
coefficients have a different impact on the calculated flux:
around our best fit parameters, g1 narrows/broadens the
self-oscillating region with respect to detuning (altering
the ∆δ parameter), while g2 mostly shifts the bistable
feature to higher/lower powers (∆P parameter). This
is represented in Fig. 5; in Appendix E, full colormaps
calculated for different nonlinear parameters are also dis-
played (Fig. 8). Indeed at the same time the overall
shape of the theoretical maps displayed in Fig. 3 (flux)
and Fig. 4 (mechanical frequency) are very sensitive to
the nonlinear parameters. We can therefore reasonably
well determine the values of these two terms, typically
within a factor of 2 (see Appendix E). The theoretical
fits are displayed as green dots in Figs. 3 and 4; as a com-
parison the colormap of Fig. 2 bottom panel is computed
for g1 = g2 = 0.

We performed this procedure at various cryostat tem-
peratures. However, because of microwave absorption
in the materials, the drum temperature is not homoge-
neous over the complete measured range of (δ, Pin). This
effect is taken into account, see Appendix B. The most
constrained point for the definition of the couple (g1, g2)
is the junction between the main stable region and the
bistable part, defined by the red cross mark in Fig. 2.
We shall thus define an effective temperature Teff char-
acteristic of the fit at this precise point.
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FIG. 5: (a): Calculated ∆P parameter as a function of g1, g2
coefficients. (b): Calculated ∆δ parameter as a function of
g1, g2. Both are essentially described by plane equations, with
each nonlinear coefficient being the leading one for one of
the parameters (g1 for ∆δ and g2 for ∆P , see text). Full
colormaps are also presented in a matrix form in Appendix
E, Fig. 8.

T (mK) Teff (mK) g1/g0 g2/g0 ξm(Hz) ξc(Hz)
cryo. ±20 % within ×2 within ×2 ±10 % est.
417 520 +1.× 10−7 −10.× 10−14 +2.1 × 10−9 −10−4

215 320 idem idem idem idem
50 290 idem idem idem idem

TABLE I: Fitted parameters at different temperatures.
“cryo.” is the cryostat measured temperature, while Teff

is the characteristic fit temperature; nonlinear couplings are
given in units of g0, with g0 > 0. The Kerr parameter of the
cavity is estimated (see text).

From the measured mechanical frequency shift (Fig.
4), we can finally fit the Duffing term ξm. The sum-
mary of our results is given in Tab. I. Within our error
bars, we can infer a unique set of parameters that fits all
temperatures. This is a strong evidence that the nonlin-
ear features g1, g2 and ξm are of geometrical origin. We
give in Appendix A theoretical estimates obtained from



8

basic arguments: a circular plate stretching nonlinearity
for ξm [59] and a corresponding plate-capacitor nonlinear
expansion for g1, g2 [60]. The magnitudes match our find-
ings within typically a factor of 2, apart from g2 whose
prediction is the worst because of the crudeness of the
plate capacitor analytic expansion.

V. CONCLUSION

We report on microwave optomechanical experiments
performed in the self-sustained oscillation regime. The
output spectrum of a microwave cavity resonating around
6.8 GHz coupled to a 6.7 MHz drumhead mechanical de-
vice is measured as a function of input power Pin, pump
frequency detuning δ and temperature. A high ampli-
tude and narrow-peak comb structure is measured in the
output spectrum, and fit to theory.

We demonstrate that the limit cycle dynamics is sen-
sitive to nonlinearities in the optomechanical coupling.
We therefore present a theory that goes beyond the
standard linear optomechanical Hamiltonian, introduc-
ing quadratic and cubic terms g1 and g2. Data is fit
quantitatively, and we show that these g1 and g2 must
be of geometrical origin, as opposed to the thermo-optical
nonlinear features present in laser driven systems.

The work described here can thus be proposed as a
new method to characterize nonlinearities in microwave
nanomechanical platforms. With the development of
new quantum-limited optomechanical schemes building
on higher-order couplings [27, 32], it represents a very
useful new resource. The method is also particularly
straightforward since it simply relies on the strong pump-
ing of the mechanics via the microwave field. Besides, the
generated comb itself could be used in schemes requiring
microwave multiplexing. One could imagine specific de-
signs with multiple cavities and NEMS producing much
wider combs; adding DC gates would also enable fre-
quency tuning [61].

Finally, we note that our microwave coupled mechani-
cal devices are fully compatible with ultra-low tempera-
ture cryostats capable of operating below 1 mK [23]. As-
suming equilibration of devices like the one used here can
be achieved under such conditions, then they will natu-
rally operate within the quantum regime. Further work
will be needed to understand the extent to which the non-
linear coupling terms will squeeze the quantum fluctua-
tions leading to an amplitude of motion that is more pre-
cisely defined than that of a coherent state [36]. Further-
more, measuring the rate at which the system switches
between the co-existing dynamical states that arise in
the nonlinear regime when the system is in the quantum
regime will provide important new insights into funda-
mental processes such as quantum activation [62, 63].

(†) Corresponding Author: eddy.collin@neel.cnrs.fr

R (nm) d (nm) e (nm) E (GPa) ρ (kg/m3) ν
est. est. est. bulk val. bulk val. bulk val.

8 500 150 170 70 2 700 0.35

TABLE II: Typical drumhead NEMS parameters; the in-built
stress is estimated to be < 60 MPa (see text). Corresponding
mode effective massmeff = 2.3×10−14 kg and spring constant
keff = 41. N/m.

Acknowledgments

We acknowledge the use of the Néel Cryogenics facil-
ity with especially Anne Gerardin for realization of me-
chanical elements. E.C. would like to thank I. Favero,
A. Monfardini, F. Levy-Bertrand and M. Dykman for
very useful discussions. We acknowledge support from
the ERC CoG grant ULT-NEMS No. 647917 (E.C.),
StG grant UNIGLASS No. 714692 (A.F.), the STaRS-
MOC project from Région Hauts-de-France and ISITE-
MOST project (X.Z.). A.D.A. was supported through a
Leverhulme Trust Research Project Grant (RPG-2018-
213), and M.S. was supported by the Academy of Fin-
land (contracts 308290, 307757, 312057), by the Euro-
pean Research Council (615755-CAVITYQPD), and by
the Aalto Centre for Quantum Engineering. The work
was performed as part of the Academy of Finland Cen-
tre of Excellence program (project 312057). We ac-
knowledge funding from the European Union’s Horizon
2020 research and innovation program under grant agree-
ment No. 732894 (FETPRO HOT). The research lead-
ing to these results has received funding from the Eu-
ropean Union’s Horizon 2020 Research and Innovation
Programme, under grant agreement No. 824109, the Eu-
ropean Microkelvin Platform (EMP).

APPENDIX A: DRUMHEAD
CHARACTERISTICS

The mechanical device used in this work is a typical
aluminum drumhead [6]. As can be seen on the SEM
picture in Fig. 1, the actual structure is rather complex;
we will simply approximate it as two discs of radius R
(one being fixed and the other movable) separated by a
gap d. The thickness of the drum is e. These geometrical
characteristics are summarized in Tab. II together with
typical material parameters.

These numbers are estimated from the Kirchhoff-Love
theory of plates, producing the right mechanical res-
onance frequency of 6.7 MHz: assuming either high-
stress limit (in-built stress of 60 MHz and neglecting the
Young’s modulus) or low-stress (0 in-built stress). Be-
sides, from Ref. [59] we can produce a theoretical esti-
mate for the Duffing parameter ξm in Hz/m2. We obtain
about 2.×1019 Hz/m2 for a device in the high-stress limit
(a drum), and about 1.×1019 Hz/m2 in the low-stress case
(a membrane). From the fit value quoted in Tab. I in
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units of Hz/phonons, we get a number in between these
two numerical estimates: this validates the quantitative
evaluation within ±50 %.

The linear coupling strength g0 is defined as:

g0 = −Gxzpf , (A1)

G =
dωc
dx

=
dωc
dC

dC

dx
, (A2)

with xzpf =
√
~/(2meff ωm) the zero-point-fluctuation,

defined from the mode effective massmeff . For simplicity
we will neglect the mode-shape here and consider two
planar electrodes; as such, we will take as reference for
the mode mass and spring constant calculation the center
of the drum (i.e. maximum of mode shape equal to 1).
Numbers are given in the caption of Tab. II.

In Eq. (A2), we have dωc/dC = −ωc/(2C0) with C0

the mode effective capacitance. From standard electro-
magnetism we write dC/dx = +ε0πR

2/d2, neglecting
fringing effects which are small in the limit d/R� 1 (ε0
being the vacuum permittivity) [60]. By definition, we
take the direction of the X-axis pointing towards the fixed
electrode. Reversing the direction of the X-axis changes
the sign of g0 but also of g2, producing an overall (−1)n

in Eq. (11). This has no impact on physical quantities
(such as γBA, δω and |αn|2): the problem at stake is in-
variant under a mirror symmetry. We then obtain from
Eq. (A1) a value of about 20 Hz for g0 (choosing g0 > 0)
taking for the cavity mode C0 ≈ 100 fF, which is con-
sistent with the microwave design. This over-estimates
g0 (by about a factor of two) since in reality not all the
drum electrode moves, the borders being clamped.

Expanding the plate capacitor expression in a Taylor
series of x/d, we obtain for the cavity resonance fre-
quency:

ωc(x) = ωc(0)−
[
g0

x

xzpf
(A3)

+
g1

2

(
x

xzpf

)2

+
g2

2

(
x

xzpf

)3

+ · · ·

]
,

at third order, where we identify:

g1 = g0

[
+2

xzpf
d
− 3

g0

ωc(0)

]
, (A4)

g2 = g0

[
+2
(xzpf

d

)2
− 6

xzpf
d

g0

ωc(0)
+ 5

(
g0

ωc(0)

)2
]
.

In our case, only the first terms in the above are relevant:
the magnitude with respect to g0 of these gn coefficients is
thus fixed by (xzpf/d)n. Computing numerical estimates,
we see that with the chosen value of d we under-estimate
g1 by only about 20 %, but under-estimate |g2| by a factor
of 7 approximately. The sign of g2 is also not captured,
which shows that this crude modeling fails for high-order
derivatives.
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FIG. 6: (Color online) Mechanical device temperature versus
applied microwave power (expressed in terms of intra-cavity
photons ncav). Dots are experimental data measured by red-
detuned pumping, integrating the anti-Stokes power spectrum
peak (see text). The curves are empirical expressions used for
the extrapolation in the self-oscillating range (above 108 pho-
tons). At high enough powers, all the curves collapse (the
starting temperature is irrelevant compared to the added en-
ergy). The discrepancies in the numerics in the extrapolated
range are smaller than ±20 %.

APPENDIX B: HEATING AND
MATERIAL-DEPENDENT EFFECTS

Since we work at very large microwave powers, some
material-dependent effects have to be taken into account
in order to be quantitative in the fitting. The first of
these is microwave heating of dielectrics due to absorp-
tion of the radiation. Note however that technical heat-
ing is not a fundamental effect; it can be minimized by
means of phase-noise filtering and remains small for most
devices with reasonable g0 coupling (see e.g. Ref. [6]).
In the present experiment, the setup has been kept basic
and no filtering has been used. In order to character-
ize heating independently of the self-oscillating regime,
we use red-detuned sideband pumping. As we increase
the injected power Pin, we measure the area of the anti-
Stokes peak. Knowing the theoretical dependence of this
parameter on both Pin and NEMS temperature TNEMS

[18], we can recalculate TNEMS for each setting, see Fig.
6. This effect being local, the absorbed power has to
be proportional to the intracavity field, i.e. the pho-
ton population ncav. We can therefore extrapolate what
should be the heating effects in the self-oscillating regime
using the actual intracavity photon number Σ|αn|2. Em-
pirical fits are shown in Fig. 6 (see lines). The curves
merge when the heating effect dominates over the start-
ing temperature; we therefore estimate that our extrapo-
lation in the region of interest is accurate within ±20 %,
see Fig. 6. Of the parameters appearing in the the-
ory of Section III, the only temperature dependent ones
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are ωc, ωm and γm. The mechanical damping (in Hz) is
fit to measurements performed in the Brownian regime
by the expression γm/(2π) = 70.5 + 1300TNEMS , while
the mechanical resonance frequency (in Hz) is fit by
ωm/(2π) = 6.747 × 106 + 430 ln(TNEMS), with in both
expressions TNEMS in K.

While for this sample, the mechanical element is very
sensitive to heating, the microwave cavity seems to be
rather insensitive. We attribute this to the fact that the
cavity is much larger than the drum, and directly coupled
to the substrate instead of being suspended. However, we
do measure a power dependence of the microwave res-
onance frequency which shifts upwards logarithmically
with increasing powers. At the same time, we do not
measure any change in the cavity Q factor within our
resolution. These power-dependencies of superconduct-
ing microwave resonators are commonly attributed to mi-
croscopic Two Level Systems present in the devices [57].
Pragmatically, we take into account this effect by adding
this logarithmic frequency shift to the calculation of ωc
when fitting the 3D maps: δωc/(2π) = 1.8 × 105 ln(Pin)
in Hz.

Similarly to the Duffing effect of the mechanics, there
is an equivalent nonlinearity in the microwave resonance
called Kerr nonlinearity. This leads to an additional fre-
quency shift ∝ ncav. This effect comes from the nonlinear
behavior of the mode effective inductance L0 when the
current density J flowing in the superconductors becomes
too large [49, 58]:

L0(J) = L0(0)

[
1 + αl

J2

J2
∗

]
, (B1)

with J∗ = (2/3)3/2JC and JC the critical current density,
and αl = Lkin/L0 the fraction of the total inductance of
kinetic origin. For our Al film of about 100 nm, αl should
be smaller than 0.1 typically. The cavity resonance fre-
quency thus shifts as:

ωc(ncav) = ωc(0) + ξc ncav, (B2)

with:

ξc = − αl~ωc
L0A2(2/3)3J2

c

, (B3)

and A the cross-section of the microwave cavity strip.
A crude estimate taking the bulk value for the critical
current density leads to ξc ≈ −10−4 Rad/s, which is
completely negligible.

Finally, nonlinear friction has been reported in
bottom-up electro-mechanical structures made of carbon
(nanotubes, graphene) [54]. It is taken into account by
modifying the mechanical equation of motion such that
γmdx/dt → (γm + γ2 x

2)dx/dt [48]. In contrast for bulk
top-down objects, this mechanism seems to be very small,
even in cantilever devices sustaining large motion ampli-
tudes [55]. Experimentally, it is then rather difficult to
distinguish such anelastic effects from basic Joule heat-
ing; assessing a reasonable number for the nonlinear fric-
tion coefficient γ2 is essentially out of reach here. On the
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FIG. 7: Theoretical stability curves giving γBA/γm + 1 as
a function of (2g0/ωm) × B, calculated at 3 different posi-
tions (δ, Pin) and demonstrating the typical observed behav-
iors: unstable (orange line), one stable state (red line), and
unstable (blue circle) plus stable states leading to hysteresis
(magenta line, see text and Figs. 3 and 4). The self-consistent
value of B corresponds to the (light and dark) green circles.

other hand, we do have reasonable estimates for the order
of magnitude of the g1, g2 coefficients. The quantitative
fits do match these values. Applying “Ockham’s razor”,
we therefore keep the minimal set of variables necessary
for the quantitative description, which is also the rea-
son why the expansion was cut at order 3 in nonlinear
coupling.

APPENDIX C: IMPACT OF STATIC
DEFLECTION, DUFFING AND KERR

NONLINEARITIES

The ansatz Eq. (6) introduces a static term βc that
corresponds to a static deflection of the drum xc =
xzpf2<[βc]. It can be deduced by solving Eq. (5) keeping
only time-independent terms. The Duffing contribution
can easily be incorporated in it. This term remains al-
ways extremely small, and contributes only for a (tiny)
cavity frequency shift ω′c = ωc − g1B

2 − δω′c:

δω′c = 2g0<[βc] + 2g1<[βc]
2 + 4g2<[βc]

3 (C1)

+ 6g2<[βc]B
2.

Since the mechanical motion can be very large (up to
about 15 nm), the nonlinear stretching effect of the mem-
brane has to be considered; this is the so-called Duff-
ing nonlinearity, which shifts the mechanical resonance
by ξmB

2. This term can be taken into account recur-
sively in the calculation of the stable states, Eq. (20)
see Appendix D. The result is that this term has only a
marginal impact on the self-oscillating states definition.
However, it dominates the mechanical frequency shift
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FIG. 8: Impact of the variation of g1 and g2 on the theoretical map giving the output photon flux as a function of both the
detuning δ and the input pump power Pin. The colormaps are calculated taking into account all mechanical and optical shifts,
with g0 > 0. The central one is the same as in the 3D plot of Fig. 3. From these graphs, one can extract the ∆P , ∆δ parameters
shown in Fig. 5. The red cross marks the position of the beginning of the hysteresis for the central graph (optimal g1, g2 fit
parameters).

over the optical spring terms. We can therefore fit ξm on
the measurement of the drum frequency, Fig. 4. The ob-
tained value is essentially temperature-independent, and
given in Tab. I.

APPENDIX D: STABLE STATES COMPUTATION

The problem is solved numerically by finding self-
consistently a stable solution B to Eq. (20) for any cou-
ple (δ,Pin). These stability points correspond graphically
to the intersection between the function γBA(B)/γm + 1
and the X-axis (see Fig. 7). The output photon flux is
thus calculated by means of Eq. (22) injecting the found
value of B in Eq. (11). For simplicity, one can neglect
mechanical shifts which have only a marginal effect on
stable states amplitudes. The procedure is then repeated
over the full range of detunings δ and input pump pow-
ers Pin in order to draw the theoretical mapping of the
self-oscillating state (see green points in Fig. 3).

For small detunings, the curves are always
monotonous. At low powers, there is no solution
since γBA(B)/γm + 1 > 0 (orange line in Fig. 7). In-
creasing the power brings eventually the curve below the

X-axis, creating a single intersection γBA(B)/γm+ 1 = 0
(green circle on the red curve). Fluctuations at small
B can thus trigger the self-oscillating state as the curve
smoothly goes below Y = 0.

For large positive detunings, there is a range at (large)
powers where the curve displays two intersections (see
magenta line in Fig. 7). For the low-B valued one (blue
circle), the slope is negative which means that the state
displays anti-damping: it is unstable. On the other hand,
for the high-B solution the derivative is positive, which
means that the state is stable (dark green circle).

However, this state is at very large amplitudes B, and
has not been created by a smooth crossing of the X-axis
from the whole curve, starting at the lowest B ≈ 0: this
means that it can be triggered only if one comes already
from high amplitude states, and not from thermal mo-
tion. This is exactly the hysteretic behavior that is seen
in Fig. 3, sweeping the detuning δ upwards at constant
power, and increasing the power from typically 2 nW to
30 nW. The same is true, sweeping the power downwards
from the high-B state at fixed detuning.

The graphs in Fig. 7 are obtained with g1 = +10−7 g0

and g2 = −10−13 g0 (with g0 > 0). The numerical cal-
culation can be performed with the static deflection and
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the Duffing term taken into account, see Appendix C.
The results are essentially identical. The fitting routine
is explained in the next Appendix.

A similar nonlinear effect exists for the cavity: this is
the Kerr effect already discussed in Appendix B. At first
order, this term shifts the position of the resonance by
a quantity ξc|α|2. The expected value for ξc being very
small, we can simply completely neglect any nonlinear
effect of that sort.

APPENDIX E: 3D FITTING PROCEDURE

Measurements of the photon flux are compared to the
theoretical computation in Fig. 3. The two parameters
g1 and g2 affect the shape of the numerical (δ, Pin) col-
ormap in different ways: we demonstrate this in Fig. 8
varying them in a dichotomic process (multiplying or di-
viding the optimal values by 2). By increasing g1 the
self-oscillating region is getting more narrow in the δ di-
rection, while increasing |g2| up-shifts in power the start-

ing line of the bistable region. This is discussed in the
core of the paper with the parameters ∆P , ∆δ, see Fig.
5. The optimal values match the experimental findings:
∆P ≈ 16 nW (±10 %), ∆δ ≈ 3.5 MHz (±200 kHz).

We can therefore choose the red cross position in Fig.
8 (central graph, optimal g1 and g2) as a good marker
for fitting these g1 and g2 parameters (equivalent of Fig.
2, but g1 = g2 = 0 value). Since the NEMS heats with
applied power, this also defines the actual temperature
at which the fit is essentially performed. This is summa-
rized in Tab. I, with error bars estimated for the coupling
nonlinear parameters to be about a factor of 2. Fits of the
mechanical frequency shifts are discussed in Appendix C;
Fig. 4 is essentially an image of the amplitude of motion
squared x2 (or equivalently B2). Note that the qual-
ity of the agreement between experiment and theory in
this graph also imposes strong constraints on the (g1, g2)
couple. This is also the case of the overall shape of the
photon flux maps, Fig. 3.
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