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How to prove that a language

is regular or star-free? 1

Jean-Éric Pin2

January 20, 2020

Abstract

This survey article presents some standard and less standard methods
used to prove that a language is regular or star-free.

Most books of automata theory [9, 23, 29, 46, 50] offer exercises on regular
languages, including some difficult ones. Further examples can be found on the
web sites math.stackexchange.com and cs.stackexchange.com. Another good
source of tough questions is the recent book 200 Problems in Formal Languages
and Automata Theory [37]. Surprisingly, there is hardly any exercise to prove
that a language is star-free. In this paper, we present various methods to prove
that a language is regular or star-free.

1 Background

1.1 Regular and star-free languages

Let’s start by reminding us what a regular language and a star-free language are.

Definition 1.1. The class of regular languages is the smallest class of languages
containing the finite languages that is closed under finite union, finite product
and star.

The definition of star-free languages follows the same pattern, with the difference
that the star operation is replaced by the complement:

Definition 1.2. The class of star-free languages is the smallest class of languages
containing the finite languages that is closed under finite union, finite product
and complement.

1Work supported by the DeLTA project (ANR-16-CE40-0007).
2IRIF, CNRS and Université Paris-Diderot, Case 7014, 75205 Paris Cedex 13, France.

1

math.stackexchange.com
cs.stackexchange.com


For instance, the language A∗ is star-free, since A∗ = ∅c. More generally, if B is
a subset of A, then B∗ is star-free since

B∗ = A∗ −
∑

a∈A−B

A∗aA∗ =
( ∑

a∈A−B

∅ca∅c
)c

On the alphabet {a, b}, the language (ab)∗ is star-free since

(ab)∗ = (b∅c + ∅ca+ ∅caa∅c + ∅cbb∅c)c.

Since regular languages are closed under complement, every star-free language is
regular, but the converse is not true: one can show that the language (aa)∗ is not
star-free.

1.2 Early results and their consequences

Kleene’s theorem [26] states that regular languages are accepted by finite au-
tomata.

Theorem 1.3. Let L be a language. The following conditions are equivalent:

(1) L is regular,

(2) L is accepted by a finite deterministic automaton,

(3) L is accepted by a finite non-deterministic automaton.

Given a language L and a word u, the left [right ] quotient of L by u are defined
by u−1L = {v | uv ∈ L} and Lu−1 = {v | vu ∈ L}, respectively. The quotients of
a regular [star-free] language are also regular [star-free].

Here is another standard result, due to Nerode.

Theorem 1.4. A language is regular if and only if it has finitely many left (re-
spectively right) quotients.

Example 1.1. Nerode’s theorem suffices to show that if L1 and L2 are regular
[star-free], then the language

L = {uw | there exists v such that uv ∈ L1 and vw ∈ L2}

is also regular [star-free]. Indeed L =
⋃

v∈A∗(L1v
−1)(v−1L2) and since L1 and L2

are regular [star-free], this apparently infinite union can be rewritten as a finite
union. Thus L is regular [star-free].

1.3 Recognition by a monoid and syntactic monoid

It is often useful to have a more algebraic definition of regular languages, based
on the following result.

2



Proposition 1.5. Let L be a language. The following conditions are equivalent:

(1) L is regular,

(2) L is recognised by a finite monoid,

(3) the syntactic monoid of L is finite.

For readers who may have forgotten the definitions used in this proposition, here
are some reminders. A language L of A∗ is recognised by a monoid M if there
is a surjective monoid morphism f : A∗ → M and a subset P of M such that
f−1(P ) = L.

The syntactic congruence of a language L of A∗ is the equivalence relation
∼L on A∗ defined as follows: u ∼L v if and only if, for every x, y ∈ A∗, xuy and
xvy are either both in L or both outside of L. The syntactic monoid of L is the
quotient monoid A∗/∼L.

Moreover, the syntactic monoid of a regular language is the transition monoid
of its minimal automaton, which gives a convenient algorithm to compute it. It
is also the minimal monoid (in size, but also for the division ordering1) that
recognises the language.

Syntactic monoids are particularly useful to show that a language is star-free.
Recall that a finite monoid M is aperiodic if, for every x ∈M , there exists n > 0
such that xn+1 = xn.

Theorem 1.6 (Schützenberger [47]). For a language L, the following conditions
are equivalent:

(1) L is star-free,

(2) L is recognised by a finite aperiodic monoid,

(3) the syntactic monoid of L is a finite aperiodic monoid.

Schützenberger’s theorem is considered, right after Kleene’s theorem, as the most
important result of the algebraic theory of automata.

Example 1.2. The languages (ab + ba)∗ and (a(ab)∗b)∗ are star-free, but the
languages (aa)∗ and (a + bab)∗ are not. This is easy to prove by computing the
syntactic monoid of these languages.

The following classic example is a good example of the usefulness of the
monoid approach. For each language L, let

√
L = {u | uu ∈ L}.

Proposition 1.7. If L is regular [star-free], then so is
√
L.

Proof. Let h : A∗ → M be the syntactic morphism of L, let P = h(L) and let
Q = {x ∈M | x2 ∈ P}. Then

h−1(Q) = {u ∈ A∗ | h(u) ∈ Q} = {u ∈ A∗ | h(u)2 ∈ P}
= {u ∈ A∗ | h(u2) ∈ P} = {u ∈ A∗ | u2 ∈ L} =

√
L.

1Let M and N be monoids. We say that M divides N if there is a submonoid R of N and
a monoid morphism that maps R onto M .

3



Thus M recognises
√
L and the result follows.

Although the star operation is prohibited in the definition of a star-free lan-
guage, some languages of the form L∗ are star-free. A submonoid M of A∗ is
pure if, for all u ∈ A∗ and n > 0, the condition un ∈ M implies u ∈ M . The
following result is due to Restivo [44] for finite languages and to Straubing [53]
for the general case.

Theorem 1.8. If L is star-free and L∗ is pure, then L∗ is star-free.

Here is another example, based on [52, Theorem 5]. For each language L, let

fW (L) = {u ∈ A∗ | there exists x, z ∈ A∗ and y ∈ W with u = xz and xyz ∈ L}

Proposition 1.9. If L is regular [star-free], then so is fW (L).

Proof. Let h : A∗ → M be the syntactic morphism of L and let P = h(L). Note
that the conditions x−1Lz−1 ∩W 6= ∅ and P ∩ h(x)h(W )h(z) 6= ∅ are equivalent,
for any x, z ∈ A∗. Setting R = h(W ) and T = {(u, v) ∈ M ×M | uRv ∩ P 6= ∅}
one gets

fW (L) =
⋃

(u,v)∈T
h−1(u)h−1(v).

and the result now follows easily.

2 Iteration properties

The bible on this topic is the book of de Luca and Varricchio [13]. I only present
here a selection of their numerous results.

2.1 Pumping

The standard pumping lemma is designed to prove that a language is non-regular,
although some students try to use it to prove the opposite. In a commendable
effort to comfort these poor students, several authors have proposed extensions
of the pumping lemma that characterise regular languages. The first is due to
Jaffe [24]:

Theorem 2.1. A language L is regular if and only if there is an integer m such
that every word x of length > m can be written as x = uvw, with v 6= 1, and for
all words z and for all k > 0, xz ∈ L if and only if uvkwz ∈ L.

Stronger versions were proposed by Stanat and Weiss [51] and Ehrenfeucht,
Parikh and Rozenberg [15], but the most powerful version was given by Var-
ricchio [55].
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Theorem 2.2. A language L is regular if and only if there is an integer m > 0
such that, for all words x, u1, . . . , um and y, there exist i, j with 1 6 i < j 6 m
such that for all k > 0,

xu1 · · · ui−1(ui · · · uj)kuj+1 · · · umy ∈ L ⇐⇒ xu1 · · · umy ∈ L

2.2 Periodicity and permutation

Definition 2.3. Let L be a language of A∗.

(1) L is periodic if, for any u ∈ A∗, there exist integers n, k > 0 such that, for
all x, y ∈ A∗, xuny ∈ L ⇐⇒ xun+ky ∈ L.

(2) L is n-permutable if, for any sequence u1, . . . , un of n words of A∗, there
exists a nontrivial permutation σ of {1, . . . , n} such that, for all x, y ∈ A∗,
xu1 · · · uny ∈ L ⇐⇒ xuσ(1) · · · uσ(n)y ∈ L.

(3) L is permutable if it is permutable for some n > 1.

These definitions were introduced by Restivo and Reutenauer [45], who proved
the following result.

Proposition 2.4. A language is regular if and only if it is periodic and per-
mutable.

2.3 Iteration properties

The book of de Luca and Varricchio [13] also contains many results about itera-
tions properties. Here is an example of this type of results.

Proposition 2.5. A language L is regular if and only if there exist integers m and
s such that for any z1, . . . , zm ∈ A∗, there exist integers h, k with 1 6 h 6 k 6 m,
such that for all for all u, v ∈ A∗,

uz1 · · · zmv ∈ L ⇐⇒ uz1 · · · zh−1(zh · · · zk)nzk+1 · · · zmv ∈ L, (2.1)

for all n > s.

3 Rewriting systems and well quasi-orders

Rewriting systems and well quasi-orders are two powerful methods to prove the
regularity of a language. We follow the terminology of Otto’s survey [38].
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3.1 Rewriting systems

A rewriting system is a binary relation R on A∗. A pair (ℓ, r) from R is usually
referred to as the rewrite rule or simply the rule ℓ→ r. A rule is special if r = 1,
context-free if |ℓ| 6 1, inverse context-free if |r| 6 1, length-reducing if |r| < |l|. It
is monadic if it is length-reducing and inverse context-free. A rewriting system is
special (context-free, inverse context-free, length-reducing, monadic) if its rules
have the corresponding properties.

The reduction relation
∗−→R the reflexive and transitive closure of the single-

step reduction relation →R defined as follows: u →R v if u = xℓy and v = xry
for some (ℓ, r) ∈ R and some x, y ∈ A∗. For each language L, we set

[L] ∗−→R

= {v ∈ A∗ | there exists u ∈ L such that u
∗−→R v}

A rewriting system R is said to preserve regularity if, for each regular language
L, the language [L] ∗−→R

is regular. The following result is well-known.

Theorem 3.1. Inverse context-free rewriting systems preserve regularity.

Proof. Let R be an inverse context-free rewriting system and let L be a regular
language. Starting from the minimal deterministic automaton of L, construct an
automaton with the same set of states, but with 1-transitions, by iterating the

following process: for each rule u → 1 and for each path p
u
q, create a new

transition p
1−→ q; for each rule v → a with a ∈ A and for each path p

v
q, create

a new transition p
a−→ q. The automaton obtained at the end of the iteration

process will accept [L] ∗−→R

.

A similar technique can be used to prove the following result [39]. If K is
a regular language, then the smallest language L containing K and such that
xu+y ⊆ L =⇒ xy ∈ L is regular.

3.2 Suffix rewriting systems

A suffix rewriting system is a binary relation S on A∗. Its elements are called suffix
rules. The suffix-reduction relation

∗−→S defined by S is the reflexive transitive
closure of the single-step suffix-reduction relation defined as follows: u →S v if
u = xℓ and v = xr for some (ℓ, r) ∈ S and some x ∈ A∗. Prefix rewriting systems
are defined symmetrically. For each language L, we set

[L] ∗−→S

= {v ∈ A∗ | there exists u ∈ L such that u
∗−→S v}

The following early result is due to Büchi [8].

Theorem 3.2. Suffix (prefix) rewriting systems preserve regularity.
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3.3 Deleting rewriting systems

We follow Hofbauer and Waldmann [22] for the definition of deleting systems. If
u is a word, the content of u is the set c(u) of all letters of u occurring in u. A
precedence relation is an irreflexive and transitive binary relation. A precedence
relation < on an alphabet A can be extended to a precedence relation on A∗, by
setting u < v if c(u) 6= c(v) and, for each a ∈ c(u), there exists b ∈ c(v) such that
a < b. A rewriting system R is <-deleting if for each rule ℓ→ r of R, ℓ < r.

Hofbauer and Waldmann [22] proved the following result.

Theorem 3.3. Every deleting string rewriting system preserves regularity.

3.4 Rules of the form un → um

Rules of the form un → um were studied in several papers, for instance [16, 5, 34].
The following result is due to Bovet and Varricchio [5].

Proposition 3.4. The rewriting systems {(u → uu) | u ∈ {a, b}∗} and {(u →
uu) | u ∈ {a, b}∗, |u| 6 2} both preserve regularity.

This result can be used to solve the following exercise. Let L be a language
such that, for all x, y ∈ A∗, x−1Ly−1 is a semigroup. Prove that L is regular.
Indeed, this condition implies that xuy ∈ L implies xu2y ∈ L.

Several results were obtained by Leupold [33, 34]. Let us say that a rewriting
system is k-period-expanding [k-period-reducing ] if its rules are of the form un →
um, with n < m [m < n] and |u| = k. Any union of finitely many k-period-
expanding and k-period reducing SRSs is called a k-periodic rewriting system.

Proposition 3.5 (Leupold).

(1) Every k-periodic rewriting system preserves regularity.

(2) For each k 6 3, the rewriting system {(u → uu) | |u| 6 k} preserves
regularity.

(3) For each k and for m > n, the rewriting system {un → um | |u| 6 k}
preserves regularity.

3.5 Well quasi-orders

A quasi-order (or preorder) on A∗ is a reflexive and transitive relation. A quasi-
order 6 is stable (or monotone) if, for all words u, v, x, y, the condition u 6 v
implies xuy 6 xvy. A language U is an upper set with respect to a quasi-order
6 is the conditions u ∈ U and u 6 v imply v ∈ U . The upper set generated by a
language L is the language ↑L = {u ∈ A∗ | there exists v ∈ L such that v 6 u}

A quasi-order 6 on A∗ is a well quasi-order (wqo) if every upper set is gen-
erated by some finite language. The connection with regular languages was first
established in [14] (see also [13, Theorem 6.3.1, p. 203] and [12]).
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Theorem 3.6. A language is regular if and only if it is an upper set with respect
to some stable well quasi-order on A∗.

It follows that if the reduction relation defined by a rewriting system is a well
quasi-order, then this rewriting system preserves regularity. Actually, a stronger
property holds. Following Conway [11], let us say that a rewriting system R is a
total regulator if for any language L, the language [L] ∗−→R

is regular.

Theorem 3.7. Any rewriting system whose reduction relation is a well quasi-
order is a total regulator.

The most famous example is the rewriting system {1 → a | a ∈ A}, which
defines the subword ordering. A word u = a1 · · · an is a subword of a word v if
v ∈ A∗a1A

∗ · · ·A∗anA
∗. Higman’s theorem states that if A is finite, the subword

relation is a well quasi-order on A∗. It follows that for any language L (regular
or not), the shuffle product L xxyA∗ is regular.

The following result extends Higman’s theorem on the subword order. Let us
say that a set H of words of A∗ is unavoidable if the language A∗ − A∗HA∗ is
finite.

Theorem 3.8 (Ehrenfeucht, Haussler, Rozenberg [14, Theorem 4.8]). If H is a
unavoidable finite set of words of A∗, then the reduction relation of the rewriting
system {1 → u | u ∈ H} is a well quasi-order on A∗.

A similar result holds for rewriting systems with rules of the form a→ u, where
a is a letter.

Theorem 3.9 (Bucher, Ehrenfeucht and Haussler [6, Theorem 2.3]). Let R be a
finite rewriting system with rules of the form a→ x with a ∈ A and x ∈ A∗. The
following conditions are equivalent:

(1) the relation
∗−→R is a well quasi-order,

(2) The set {ax | x ∈ A∗ and a
∗−→R ax} ∪ {xa | x ∈ A∗ and a

∗−→R xa} is
unavoidable,

(3) The set {axa | x ∈ A∗ and a
∗−→R axa} is unavoidable.

It follows for instance that the following rewriting systems are total regulators:

R1 = {a→ aa, a→ aba, b→ bb, b→ bab}
R2 = {a→ b, b→ a, b→ bb}

Bucher, Ehrenfeucht and Haussler [6] considered context-free rewriting systems
related to semigroup morphims. Recall that an ordered semigroup is a semigroup
equipped with a stable partial order. Let (S,6) be a finite ordered semigroup
and let σ : A+ → S be a semigroup morphism. Consider the rewriting system

Rσ = {a→ u | a ∈ A, u ∈ A+ and σ(a) 6 σ(u)}.
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Let L be a finite set of languages of A+. Consider a (possibly infinite) system of
inequations of the form

Pi(X1, . . . , Xn) ⊆ Ei(X1, . . . , Xn) (i ∈ I) (3.1)

where each Pi(X1, . . . , Xn) is a product built from the variables X1, . . . , Xn and
arbitrary constant languages and each Ei(X1, . . . , Xn) is an expression built from
the variables X1, . . . , Xn and constant languages belonging to the set L ∪ {1},
using concatenation, possibly infinite union and possibly infinite intersection.
Note that the expressions Ei can also use Kleene star, since it can be rewritten
as an infinite union of products.

Theorem 3.10 (Kunc [30]). Let σ : A+ → S be a semigroup morphism that

recognises all languages in L. If
∗−→Rσ

is a well quasi-order on A∗, then the
components of every maximal solution of (3.1) is regular and they are star-free
is S is aperiodic.

Characterising the semigroup morphisms for which
∗−→Rσ

is a well quasi-order,
is an open problem. However, Kunc found a complete answer for finite semigroups
(S,=) ordered by the equality relation.

Theorem 3.11 (Kunc [30]). Let (S,=) be a finite ordered semigroup ordered by
the equality relation and let σ : A+ → S be a surjective semigroup morphism.
Then the relation

∗−→Rσ
is a well quasi-order on A∗ if and only if S is a chain of

simple semigroups.

In particular any finite group is a simple semigroup. It follows that if L is a
language recognised by a finite group, then, for any subset S of N, the language⋃

n∈S L
n is regular.

Example 3.1. The following example is given by Kunc [30, Example 19]. Let L
be the language consisting of those words u ∈ A+ which contain some occurrence
of b and where the difference between the length of u and the number of blocks
of occurrences of b in u is even. Here is the minimal automaton of this language.

1 2 3

4 5 6

a

b

a

b a

b

a

b

a

b a

b

The syntactic semigroup of L is defined by the relations a3 = a, b3 = b, ab2 = a2b,
ba2 = b2a and bab = b2. It is a chain of two simple semigroups whose elements are
represented by the words a, a2 and b, b2, ab, ab2, ba, b2a, aba, ab2a, respectively.
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Let us consider the inequality aXaXa ⊆ LXL with one variable X. It is easy
to verify that this inequality has a largest solution, namely the regular language
(a2)∗ab2a(a2)∗ ∪ A∗bA+bA∗.

3.6 Equations and inequalities

Inequations in languages in which the right hand side is a constant language
were first considered by Conway [11], see also Bala [1]. In Chapter 21 of the
forthcoming Handbook of Automata Theory, Kunc and Okhotin [32] give the
following remarkable result. Consider a finite system of inequations of the form

⋃

j∈Ji

Pi,j(X1, . . . , Xn) ⊆ Ci (1 6 i 6 k) (3.2)

where each Pi,j(X1, . . . , Xn) is a product of arbitrary constant languages and
variables, each Ci is a constant regular language and each index set Ji is possibly
infinite.

Theorem 3.12 (Kunc and Okhotin [32]). Every system of the form (3.2) has
only finitely many maximal solutions and every maximal solution has all com-
ponents regular. If all Ci are star-free, then the maximal solutions are star-free.
Furthermore, the result still holds if any inequalities are replaced by equations.

Proof. Let h : A∗ →M be the simultaneous syntactic monoid of the languages Ci.
If (L1, . . . , Ln) is a solution, then so is (h−1h(L1), . . . , h

−1h(Ln)). It follows that
every solution is contained in a solution in which all components are recognised
by h and the result follows.

Inequations of the form XK ⊆ LX were considered by Kunc [30].

Theorem 3.13 (Kunc [30]). Let K be an arbitrary language and let L be a regular
language. Then the greatest solution of the inequality XK ⊆ LX is regular.

The situation is totally different for equations of the type XK = LX. Indeed
Kunc [31] has shown that there exists a finite language L such that the greatest
solution of the equation XL = LX is co-recursively enumerable complete.

4 Logic

Logic can be used in various ways to characterise regular languages. We consider
successively logic on words, linear temporal logic and logic on trees.

10



4.1 Logic on words

Let u = a1 . . . an be a nonempty word on the alphabet A. The domain of u,
denoted by Dom(u), is the set Dom(u) = {1, . . . , n}. For each letter a ∈ A, let
a be a unary predicate symbol, where ax is interpreted as “the letter in position
x is an a”. We also use the binary predicate symbols < and S, interpreted as
the usual order relation and the successor relation on Dom(u), respectively. The
language defined by a sentence ϕ is the set

L(ϕ) = {u ∈ A+ | u satisfies ϕ}.

We let FO[<] and MSO[<] denote the set of first-order and monadic second-
order formulas of signature {<, (a)a∈A}, respectively. Similarly, we let FO[S]
and MSO[S] denote the same sets of formulas of signature {S, (a)a∈A}.

Let us say that a syntactic fragment of logic F captures a class of languages
C if every sentence of the fragment F defines a language of C and every language
of C can be defined by a sentence of F .

Two famous results are a natural ingredient of this survey. The first one is
due to Buchi [7] and was independently obtained by Elgot [20] and Trakhtenbrot
[54].

Theorem 4.1 (Buchi [7]). MSO[S] captures the class of regular languages.

The second one relates first order logic and star-free languages.

Theorem 4.2 (McNaughton [36]). FO[<] captures the class of star-free lan-
guages.

Second order logic SO is much more expressive than monadic second order,
but two successive results led to a complete characterisation of the syntactic
fragments of SO — in the signature {S, (a)a∈A} — that capture the regular
languages.

A quantifier prefix is any word on the alphabet {∃, ∀}. A quantifier prefix
class is any set of quantifier prefixes. For any quantifier prefix Q, let Σ1

0(Q) (resp.
Π1

0(Q)) be the set of all formulas of the shape ∃R Qϕ (resp. ∀R Qϕ) where R

is a list of relations and ϕ is quantifier free. For every k > 0, let Σ1
k+1(Q) (resp.,

Π1
k+1(Q)) be the set of all formulas of the form ∃R Φ (resp. ∀R Φ) where Φ is

a Π1
k(Q) (resp. Σ1

k(Q)) formula. Finally, for every quantifier prefix class Q, let
Σ1

k(Q) =
⋃

Q∈Q Σ1
k(Q).

The fragment Σ1
1, also known as existential second order and frequently de-

noted by ESO, was first explored by Eiter, Gottlob and Gurevich [17].

Theorem 4.3 (Eiter, Gottlob and Gurevich [17]). A syntactic fragment ESO(Q)
captures the regular languages if and only if Q is a quantifier prefix class contained
in ∃∗∀(∀ ∪ ∃∗) whose intersection with ∃∗∀{∃, ∀}+ is nonempty.
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The proof of this result is very difficult. It relies on combinatorial methods related
to hypergraph transversals for the fragment ∃∗∀∃∗ and on more logical techniques
for the fragment ∃∗∀∀. Eiter, Gottlob and Gurevich further proved the following
dichotomy theorem: a class ESO[Q] either expresses only regular languages or
it expresses some NP-complete languages.

The fragments Σ1
k(Q), with k > 2, were explored by Eiter, Gottlob and

Schwentick [18].

Theorem 4.4 (Eiter, Gottlob and Schwentick [18]). The fragments Σ1
2(∀∀) and

Σ1
2(∀∃) capture the class of regular languages. Furthermore, for each k > 0, the

fragments Σ1
k(∀) and Σ1

k(∃) only define regular languages.

For more information on this topic, the reader is invited to read the beautiful
survey of Eiter, Gottlob and Schwentick [19].

4.2 Linear temporal logic

Linear temporal logic (LTL for short) on an alphabet A is defined as follows. The
vocabulary consists of an atomic proposition pa (for each letter a ∈ A), the usual
connectives ∨, ∧ and ¬ and the temporal operators X (next), F (eventually) and
U (until). The formulas are constructed according to the following rules:

(1) for every a ∈ A, pa is a formula,

(2) if ϕ and ψ are formulas, so are ϕ ∨ ψ, ϕ ∧ ψ, ¬ϕ, Xϕ, Fϕ and ϕUψ.

Semantics are defined by induction on the formation rules. Given a word w ∈ A+,
and n ∈ {1, 2, ..., |w|}, we define the expression “w satisfies ϕ at the instant n”
(denoted (w, n) |= ϕ) as follows:

(1) (w, n) |= pa if the n-th letter of w is an a.

(2) (w, n) |= ϕ ∨ ψ (resp. ϕ ∧ ψ, ¬ϕ) if (w, n) |= ϕ or (w, n) |= ψ (resp. if
(w, n) |= ϕ and (w, n) |= ψ, if (w, n) does not satisfy ϕ).

(3) (w, n) |= Xϕ if (w, n+ 1) satisfies ϕ.

(4) (w, n) |= Fϕ if there exists m such that n 6 m 6 |w| and (w,m) |= ϕ.

(5) (w, n) |= ϕUψ if there exists m such that n 6 m 6 |w|, (w,m) |= ψ and,
for every k such that n 6 k < m , (w, k) |= ϕ.

Note that, if w = w1w2 · · ·w|w|, (w, n) |= ϕ only depends on the word w =
wnwn+1 · · ·w|w|.

Example 4.1. Let w = abbababcba. Then (w, 4) |= pa since the fourth letter of
w is an a, (w, 4) |= Xpb since the fifth letter of w is a b and (w, 4) |= F(pc ∧Xpb)
since cb is a factor of babcba.

If ϕ is a temporal formula, we say that w satisfies ϕ if (w, 1) |= ϕ. The language
defined by a LTL formula ϕ is the set L(ϕ) of all words of A+ that satisfy ϕ.

A famous result of Kamp [25] states that LTL is equivalent to the first-order
logic of order. As a consequence, one gets the following result.

12



Theorem 4.5. A language of A+ is star-free if and only if it is LTL-definable.

We just defined future temporal formulas but one can define in the same
way past temporal formulas by reversing time: it suffices to replace next by
previous, eventually by sometimes and until by since. The expressive power
of this extended temporal logic remains the same: it still captures the class of
star-free languages.

4.3 Rabin’s tree theorem

We now consider the structure (A∗, (Sa)a∈A), where each Sa is a binary relation
symbol, interpreted on A∗ as follows: Sa(u, v) if and only if v = ua. Let ϕ(X) be
a monadic second order formula with a free set-variable X. We write ∃!X ϕ(X) as

a short hand for the formula ∃X
(
ϕ(X)∧

(
∀Y [ϕ(Y ) → (Y = X)]

))
. A language

L is said to be definable in MSO[(Sa)a∈A] if there exists a monadic second order
formula ϕ(X) such that L satisfies ∃!X ϕ(X).

The following result is a consequence of Rabin’s tree theorem [43].

Theorem 4.6. A language of A∗ is regular if and only if it is definable in
MSO[(Sa)a∈A].

5 Transductions

Transductions proved to be a powerful tool to study regular languages. Let us
first recall some useful facts about rational and recognisable sets.

5.1 Rational and recognisable sets

Let M be a monoid. A subset P of M is recognisable if there exists a finite
monoid F , and a monoid morphism ϕ : M → F such that P = ϕ−1(ϕ(P )).
It is well known that the class Rec(M) of recognisable subsets of M is closed
under Boolean operations, left and right quotients and under inverses of monoid
morphisms. The recognisable subsets of a product of monoids were described by
Mezei (unpublished).

Theorem 5.1. Let M1, . . . ,Mn be monoids. A subset of M1 × · · · ×Mn is recog-
nisable if and only if it is a finite union of subsets of the form R1 × · · · × Rn,
where Ri ∈ Rec(Mi).

Furthermore, the following property holds:

Proposition 5.2. Let A1, . . . , An be finite alphabets. Then Rec(A∗
1 × · · · × A∗

n)
is closed under product.
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The class Rat(M) of rational subsets of M is the smallest set R of subsets
of M containing the finite subsets and closed under finite union, product and
star (where X∗ is the submonoid of M generated by X). Rational sets are closed
under monoid morphisms.

Let A be a finite alphabet. Then, by Kleene’s theorem, Rec(A∗) = Rat(A∗).
Although Kleene’s theorem does not extend to arbitrary monoids, a weaker prop-
erty holds for finitely generated monoids.

Theorem 5.3 (McKnight [35]). Let M be a monoid. The following conditions
are equivalent:

(1) M is finitely generated,

(2) every recognisable subset of M is rational,

(3) the set M is a rational subset of M .

Furthermore one has:

Theorem 5.4 (McKnight [35]). The intersection of a rational set and of a recog-
nisable set is rational.

5.2 Matrix representations of transductions

Let M be a monoid. We denote by P(M) the semiring of subsets of M with
union as addition and the usual product of subsets as multiplication. Note that
both Rat(M) and Rec(M) are subsemirings of P(M). Let also P(M)n×n denote
the semiring of n× n-matrices with entries in P(M).

Let M and N be two monoids. A transduction τ : M → N is a relation on
M and N , viewed as a function from M to P(N). One extends τ to a func-
tion P(M) → P(N) by setting τ(P ) =

⋃
m∈P τ(m). The inverse transduction

τ−1 : N → M is defined by τ−1(Q) = {m ∈ M | τ(m) ∩Q 6= ∅}. The transduc-
tion is rational if the set {(m,n) ∈ M × N | n ∈ τ(m)} is a rational subset of
M ×N .

A transduction τ : A∗ → M admits a linear matrix representation (λ, µ, ν)
of degree n if there exist n > 0, a monoid morphism µ : A∗ → P(M)n×n, a row
vector λ ∈ P(M)1×n and a column vector ν ∈ P(M)n×1 such that, for all u ∈ A∗,
τ(u) = λµ(u)ν.

A substitution from A∗ to a monoid M is a monoid morphism from A∗ to
P(M). Thus a substitution has linear matrix representation of degree 1.

Kleene-Schützenberger’s theorem (see [2]) states that a transduction τ : A∗ →
M is rational if and only if it admits a linear matrix representation with entries
in Rat(M).

The following result already suffices for most of the applications we have in
mind. It relies on the fact that every monoid morphism M → N can be extended
to a semiring morphism P(M) → P(N) and, for each n > 0, to a semiring
morphism P(M)n×n → P(N)n×n.
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Theorem 5.5. Let τ : A∗ → M be a transduction that admits a linear matrix
representation (λ, µ, ν) of degree n and let P be a subset of M recognised by a
morphism η : M → N . Then the language τ−1(P ) is recognised by the submonoid
ηµ(A∗) of the monoid of matrices P(N)n×n.

This result was generalised in [40, 41]. Let us say that a transduction τ : A∗ →
M admits a matrix representation (S, µ) of degree n if there exist a morphism
µ : A∗ → P(M)n×n and an expression S(X1,1, . . . , Xn,n) where S is a possi-
bly infinite union of products involving arbitrary languages and the variables
(Xi,j)16i,j6n, such that, for all u ∈ A∗, τ(u) = S[µ1,1(u), . . . , µn,n(u)]. Theorem
5.5 can now be generalized as follows.

Theorem 5.6. Let τ : A∗ →M be a transduction that admits a matrix represen-
tation (S, µ) of degree n and let P be a subset of M recognised by a morphism
η : M → N . Then the language τ−1(P ) is recognised by the submonoid ηµ(A∗) of
the monoid of matrices P(N)n×n.

Example 5.1. Let us come back to the example
√
L = {u ∈ A∗ | u2 ∈ L}.

Observe that
√
L = τ−1(L) where τ(u) = u2 . Clearly τ admits the matrix

representation (S, µ) where µ(u) = u and S = X2.

Example 5.2. Let us show that if L is a regular language and S is a subset of
N

2 then the language

LS = {u ∈ A∗ | there exist (x, y) ∈ A∗ and (p, q) ∈ S

such that |x| = p|u|, |y| = q|u| and xuy ∈ L}

is also regular. It suffices to observe that LS = τ−1(L) where the transduction
τ(u) =

⋃
(p,q)∈S A

p|u|uAq|u| admits the matrix representation (S, µ), where

µ(u) =



A|u| ∅ ∅
∅ u ∅
∅ ∅ A|u|


 and S(X1,1, . . . , X3,3) =

⋃

(p,q)∈S
Xp

1,1X2,2X
q
3,3

Example 5.3. Finally the reader who likes more complicated examples may
prove by the same method that if L ⊆ {a, b}∗ is regular, then the following
language is also regular (D∗ is the Dyck language):

L′ =
⋃

n square-free

{u ∈ A∗ | D∗u⌊
√
n⌋anun!b ∩ L 6= ∅}

Many more examples can be found in [40, 41].
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5.3 Decompositions of languages

For each n > 0, consider the transduction τn : A
∗ → (A∗)n defined by

τn(u) = {(u1, . . . , un) | u1 · · · un = u}
Theorem 5.7. Let L be a language of A∗. The following conditions are equiva-
lent:

(1) L is rational,

(2) for some n > 0, τn(L) is a recognisable subset of (A∗)n,

(3) for all n > 0, τn(L) is a recognisable subset of (A∗)n.

Proof. (1) implies (3). Let A = (Q,A, · , i, F ) be the minimal automaton of L.
For each state p, q of A, let Lp,q be the language accepted by A with p as initial
state and q as unique final state. Let S = {i} ×Qn−2 × F . We claim that

τn(L) =
⋃

(q0,...,qn)∈S
Lq0,q1 × Lq1,q2 × · · · × Lqn−1,qn (5.1)

Let R be the right hand side of (5.1). Let (u1, . . . , un) ∈ τn(L). Let q0 = i,
q1 = q0 · u1, . . . , qn = qn−1 · un. Since u1 · · · un ∈ L, one has qn ∈ F and hence
(q0, . . . , qn) ∈ S. Moreover, by construction, u1 ∈ Lq0,q1 , . . . , un ∈ Lqn−1,qn and
hence (u1, . . . , un) ∈ R.

Let now (u1, . . . , un) ∈ R. Then, for some (q0, . . . , qn) ∈ S, one has u1 ∈ Lq0,q1 ,
. . . , un ∈ Lqn−1,qn . It follows that q1 = q0 · u1, . . . , qn = qn−1 · un and thus
i· u1 · · · un = qn ∈ F and hence u ∈ L.

6 Profinite topology

Let M be a monoid. A monoid morphism ϕ : M → N separates two elements u
and v of M if ϕ(u) 6= ϕ(v). By extension, we say that a monoid N separates two
elements of M if there exists a morphism ϕ : M → N which separates them. A
monoid is residually finite if any pair of distinct elements of M can be separated
by a finite monoid.

Let us consider the class M of monoids that are finitely generated and resid-
ually finite. This class include finite monoids, free monoids, free groups, free
commutative monoids and many others. It is closed under direct products and
thus monoids of the form A∗

1 × A∗
2 × · · · × A∗

n are also in M.
Each monoid M of M can be equipped with the profinite metric, defined as

follows. Let, for each (u, v) ∈M2,

r(u, v) = min
{
Card(N) N separates u and v }

Then we set d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and
2−∞ = 0. One can show that d is an ultrametric and that the product on M is
uniformly continuous for this metric.
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6.1 Uniformly continuous functions and recognisable sets

The connection with recognisable sets is given by the following result:

Proposition 6.1. Let M,N ∈ M and let f : M → N be a function. Then the
following conditions are equivalent:

(1) for every L ∈ Rec(N), one has f−1(L) ∈ Rec(M),

(2) the function f is uniformly continuous for the profinite metric.

Here is an interesting example [42].

Proposition 6.2. The function g : A∗ × N → A∗ defined by g(x, n) = xn is
uniformly continuous.

Example 6.1. As an application, let us show that if L is a regular language of
A∗, then the language

K = {u ∈ A∗ | u|u| ∈ L}
is also regular. Indeed, K = h−1(L), where h is the function defined by h(u) =
u|u|. Observe that h = g ◦ f , where f : A∗ → A∗ × N is the monoid morphism
defined by f(u) = (u, |u|) and g is the function defined in Proposition 6.2. Now
since L ∈ Rec(A∗), one gets g−1(L) ∈ Rec(A∗ × N) by Proposition 6.2 and
f−1(g−1(L)) ∈ Rec(A∗) since f is a monoid morphism. Thus K is regular.

Uniformly continuous functions from N to N are of special interest. A function
f : N → N is residually ultimately periodic (rup) if, for each monoid morphism h
from N to a finite monoid F , the sequence h(f(n)) is ultimately periodic. It is
cyclically ultimately periodic if, for every p > 0, there exist two integers m > 0
and r > 0 such that, for each n > m, f(n) ≡ f(n + r) (mod p). It is ultimately
periodic threshold t if the function min(f(n), t) is ultimately periodic.

For instance, the functions n2 and n! are residually ultimately periodic. The
function

(
2n
n

)
is not cyclically ultimately periodic. Indeed, it is known that

(
2n
n

)
≡

2 mod 4 if and only if n is a power of 2. It is shown in [49] that the sequence
⌊√n⌋ is not cyclically ultimately periodic.

Let us mention a last example, first given in [10]. Let bn be a non-ultimately
periodic sequence of 0 and 1. The function f(n) = (

∑
06i6n bi)! is residually

ultimately periodic. It follows that the function ∆f(n) = f(n+ 1)− f(n) is not
residually ultimately periodic since min(∆f(n), 1) = bn.

The following result was proved in [3].

Proposition 6.3. For a function f : N → N, the following conditions are equiv-
alent:

(1) f is uniformly continuous,

(2) f is residually ultimately periodic,

(3) f is cyclically ultimately periodic and ultimately periodic threshold t for all
t > 0.
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The class of cyclically ultimately periodic functions has been studied by Siefkes
[49], who gave in particular a recursion scheme for producing such functions. The
class of residually ultimately periodic sequences was also thoroughly studied in
[10, 56] (see also [27, 28, 48]). Their properties are summarized in the next
proposition.

Theorem 6.4. Let g and g be rup functions. Then the following functions are
also rup: f ◦ g, f + g, fg, f g,

∑
06i6g(n) f(i),

∏
06i6g(n) f(i). Furthermore, if

f(n) > g(n) for all n and lim
n→∞

(f − g)(n) = +∞, then f − g is also rup.

In particular, the functions fk and n → kf(n) (for a fixed k), are rup. The
tetration function n2 (exponential stack of 2’s of height n), considered in [48],
is also rup, according to the following result: if k is a positive integer, then the
function f(n) defined by f(0) = 1 and f(n+ 1) = kf(n) is rup.

The existence of non-recursive rup functions was established in [48]: if f is
a strictly increasing, non-recursive function, then the function g(n) = n!f(n) is
non-recursive but is rup.

Coming back to regular languages, Seiferas and McNaughton [48] proved the
following result.

Theorem 6.5. Let f : N → N be a rup function. If L is regular, then so is the
language

P (f, L) = {x ∈ A∗ | there exists y ∈ A∗ such that |y| = f(|x|) and xy ∈ L}.

Here is another application of rup functions. A filter is a strictly increasing
function f : N → N. Filtering a word a0a1 · · · an by f consists in deleting the
letters ai such that i is not in the range of f . For each language L, let L[f ]
denote the set of all words of L filtered by f . A filter is said to preserve regular
languages if, for every regular language L, the language L[f ] is also regular. The
following result was proved in [3].

Theorem 6.6. A filter f preserves regular languages if and only if the function
∆f defined by ∆f(n) = f(n+ 1)− f(n) is rup.

6.2 Transductions and recognisable sets

Some further topological results are required to extend Proposition 6.1 to trans-
ductions.

The completion of the metric space (M,d), denoted by (M̂, d), is called the
profinite completion of M . Since multiplication on M is uniformly continuous,
it extends, in a unique way, to a multiplication on M̂ , which is again uniformly
continuous. One can show that M̂ is a metric compact monoid.
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Let K(M̂) be the monoid of compact subsets of M̂ . The Hausdorff metric on

K(M̂) is defined as follows. For K,K ′ ∈ K(M̂), let

δ(K,K ′) = sup
x∈K

inf
x′∈K′

d(x, x′)

h(K,K ′) =





max(δ(K,K ′), δ(K ′, K)) if K and K ′ are nonempty,

0 if K and K ′ are empty,

1 otherwise.

By a standard result of topology, K(M̂), equipped with this metric, is compact.

Let now τ : M → N be a transduction. Define a map τ̂ : M → K(N̂) by
setting, for each x ∈ M , τ̂(x) = τ(x), the topological closure of τ(x). The
following extension of Proposition 6.1 was proved in [42].

Theorem 6.7. Let M,N ∈ M and let τ : M → N be a transduction. Then the
following conditions are equivalent:

(1) for every L ∈ Rec(N), one has τ−1(L) ∈ Rec(M),

(2) the function τ̂ : M → K(N̂) is uniformly continuous.

Let us say that a transduction τ is uniformly continuous, if τ̂ is uniformly con-
tinuous. Uniformly continuous transductions are closed under composition and
they are also closed under product:

Proposition 6.8. Let τ1 : M → N1 and τ2 : M → N2 be uniformly continuous
transductions. Then the transduction τ : M → N1 × N2 defined by τ(x) =
τ1(x)× τ2(x) is uniformly continuous.

Proposition 6.9. For every M ∈ M, the transduction σ : M → M defined by
σ(x) = x∗ is uniformly continuous.

7 Further examples

8 Further examples and conclusion

Here are a few results relating regular languages and Turing machines.

Theorem 8.1 ([9, Theorem 3.84, p. 185]). The language accepted by a one-tape
Turing machine that never writes on its input is regular.

Theorem 8.2 (Hartmanis [21]). The language accepted by a one-tape Turing
machine that works in time o(n log n) is regular.

The following result is proposed as an exercise in [9, Exercise 4.16, p. 243].
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Theorem 8.3. The language accepted by a Turing machine that works in space
o(log log n) is regular.

Theorem 8.4 ([45]). If a language and its complement are support of a rational
series, then it is a regular language.

Many other examples that could not be included in this survey, notably the
work of Bertoni, Mereghetti and Palano [4, Theorem 3, p. 8] on 1-way quantum
automata and the large literature on splicing systems.

I would be very grateful to any reader providing me new interesting examples
to enrich this survey.
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