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How to prove that a language is regular or star-free? 1

This survey article presents some standard and less standard methods used to prove that a language is regular or star-free.

. Surprisingly, there is hardly any exercise to prove that a language is star-free. In this paper, we present various methods to prove that a language is regular or star-free.

1 Background

Regular and star-free languages

Let's start by reminding us what a regular language and a star-free language are. Definition 1.1. The class of regular languages is the smallest class of languages containing the finite languages that is closed under finite union, finite product and star.

The definition of star-free languages follows the same pattern, with the difference that the star operation is replaced by the complement: Definition 1.2. The class of star-free languages is the smallest class of languages containing the finite languages that is closed under finite union, finite product and complement.

For instance, the language A * is star-free, since A * = ∅ c . More generally, if B is a subset of A, then B * is star-free since

B * = A * - a∈A-B A * aA * = a∈A-B ∅ c a∅ c c
On the alphabet {a, b}, the language (ab) * is star-free since

(ab) * = (b∅ c + ∅ c a + ∅ c aa∅ c + ∅ c bb∅ c ) c .
Since regular languages are closed under complement, every star-free language is regular, but the converse is not true: one can show that the language (aa) * is not star-free.

Early results and their consequences

Kleene's theorem [START_REF] Kleene | Representation of events in nerve nets and finite automata[END_REF] states that regular languages are accepted by finite automata.

Theorem 1.3. Let L be a language. The following conditions are equivalent:

(1) L is regular,

L is accepted by a finite deterministic automaton,

L is accepted by a finite non-deterministic automaton.

Given a language L and a word u, the left [right] quotient of L by u are defined by u -1 L = {v | uv ∈ L} and Lu -1 = {v | vu ∈ L}, respectively. The quotients of a regular [star-free] language are also regular [star-free].

Here is another standard result, due to Nerode.

Theorem 1.4. A language is regular if and only if it has finitely many left (respectively right) quotients.

Example 1.1. Nerode's theorem suffices to show that if L 1 and L 2 are regular [star-free], then the language L = {uw | there exists v such that uv ∈ L 1 and vw ∈ L 2 } is also regular [star-free]. Indeed L = v∈A * (L 1 v -1 )(v -1 L 2 ) and since L 1 and L 2 are regular [star-free], this apparently infinite union can be rewritten as a finite union. Thus L is regular [star-free].

Recognition by a monoid and syntactic monoid

It is often useful to have a more algebraic definition of regular languages, based on the following result.

Proposition 1.5. Let L be a language. The following conditions are equivalent:

(1) L is regular, (2) L is recognised by a finite monoid, (3) the syntactic monoid of L is finite.

For readers who may have forgotten the definitions used in this proposition, here are some reminders. A language L of A * is recognised by a monoid M if there is a surjective monoid morphism f : A * → M and a subset P of M such that f -1 (P ) = L.

The syntactic congruence of a language L of A * is the equivalence relation ∼ L on A * defined as follows: u ∼ L v if and only if, for every x, y ∈ A * , xuy and xvy are either both in L or both outside of L. The syntactic monoid of L is the quotient monoid A * /∼ L .

Moreover, the syntactic monoid of a regular language is the transition monoid of its minimal automaton, which gives a convenient algorithm to compute it. It is also the minimal monoid (in size, but also for the division ordering 1 ) that recognises the language.

Syntactic monoids are particularly useful to show that a language is star-free. Recall that a finite monoid M is aperiodic if, for every x ∈ M , there exists n 0 such that x n+1 = x n . Theorem 1.6 (Schützenberger [START_REF] Schützenberger | On finite monoids having only trivial subgroups[END_REF]). For a language L, the following conditions are equivalent:

(1) L is star-free, (2) L is recognised by a finite aperiodic monoid, (3) the syntactic monoid of L is a finite aperiodic monoid.

Schützenberger's theorem is considered, right after Kleene's theorem, as the most important result of the algebraic theory of automata.

Example 1.2. The languages (ab + ba) * and (a(ab) * b) * are star-free, but the languages (aa) * and (a + bab) * are not. This is easy to prove by computing the syntactic monoid of these languages.

The following classic example is a good example of the usefulness of the monoid approach. For each language L, let

√ L = {u | uu ∈ L}. Proposition 1.7. If L is regular [star-free], then so is √ L. Proof. Let h : A * → M be the syntactic morphism of L, let P = h(L) and let Q = {x ∈ M | x 2 ∈ P }. Then h -1 (Q) = {u ∈ A * | h(u) ∈ Q} = {u ∈ A * | h(u) 2 ∈ P } = {u ∈ A * | h(u 2 ) ∈ P } = {u ∈ A * | u 2 ∈ L} = √ L.
Thus M recognises √ L and the result follows.

Although the star operation is prohibited in the definition of a star-free language, some languages of the form L * are star-free. A submonoid M of A * is pure if, for all u ∈ A * and n > 0, the condition u n ∈ M implies u ∈ M . The following result is due to Restivo [START_REF] Restivo | Codes and aperiodic languages[END_REF] for finite languages and to Straubing [START_REF] Straubing | Relational morphisms and operations on recognizable sets[END_REF] for the general case.

Theorem 1.8. If L is star-free and L * is pure, then L * is star-free.

Here is another example, based on [START_REF] Stearns | Regularity preserving modifications of regular expressions[END_REF]Theorem 5]. For each language L, let

f W (L) = {u ∈ A * | there exists x, z ∈ A * and y ∈ W with u = xz and xyz ∈ L} Proposition 1.9. If L is regular [star-free], then so is f W (L).
Proof. Let h : A * → M be the syntactic morphism of L and let P = h(L). Note that the conditions

x -1 Lz -1 ∩ W = ∅ and P ∩ h(x)h(W )h(z) = ∅ are equivalent, for any x, z ∈ A * . Setting R = h(W ) and T = {(u, v) ∈ M × M | uRv ∩ P = ∅} one gets f W (L) = (u,v)∈T h -1 (u)h -1 (v).
and the result now follows easily.

Iteration properties

The bible on this topic is the book of de Luca and Varricchio [START_REF] De Luca | Finiteness and regularity in semigroups and formal languages[END_REF]. I only present here a selection of their numerous results.

Pumping

The standard pumping lemma is designed to prove that a language is non-regular, although some students try to use it to prove the opposite. In a commendable effort to comfort these poor students, several authors have proposed extensions of the pumping lemma that characterise regular languages. The first is due to Jaffe [START_REF] Jaffe | A necessary and sufficient pumping lemma for regular languages[END_REF]:

Theorem 2.1. A language L is regular if and only if there is an integer m such that every word x of length m can be written as x = uvw, with v = 1, and for all words z and for all k 0, xz ∈ L if and only if uv k wz ∈ L.

Stronger versions were proposed by Stanat and Weiss [START_REF] Stanat | A pumping theorem for regular languages[END_REF] and Ehrenfeucht, Parikh and Rozenberg [START_REF] Ehrenfeucht | Pumping lemmas for regular sets[END_REF], but the most powerful version was given by Varricchio [START_REF] Varricchio | A pumping condition for regular sets[END_REF].

Theorem 2.2. A language L is regular if and only if there is an integer m > 0 such that, for all words x, u 1 , . . . , u m and y, there exist i, j with 1 i < j m such that for all k > 0, 

xu 1 • • • u i-1 (u i • • • u j ) k u j+1 • • • u m y ∈ L ⇐⇒ xu 1 • • • u m y ∈ L 2.2
• • • u n y ∈ L ⇐⇒ xu σ(1) • • • u σ(n) y ∈ L. (3) L is permutable if it is permutable for some n > 1.
These definitions were introduced by Restivo and Reutenauer [START_REF] Restivo | On cancellation properties of languages which are supports of rational power series[END_REF], who proved the following result.

Proposition 2.4. A language is regular if and only if it is periodic and permutable.

Iteration properties

The book of de Luca and Varricchio [START_REF] De Luca | Finiteness and regularity in semigroups and formal languages[END_REF] also contains many results about iterations properties. Here is an example of this type of results. Proposition 2.5. A language L is regular if and only if there exist integers m and s such that for any z 1 , . . . , z m ∈ A * , there exist integers h, k with 1 h k m, such that for all for all u, v ∈ A * ,

uz 1 • • • z m v ∈ L ⇐⇒ uz 1 • • • z h-1 (z h • • • z k ) n z k+1 • • • z m v ∈ L, (2.1) 
for all n s.

Rewriting systems and well quasi-orders

Rewriting systems and well quasi-orders are two powerful methods to prove the regularity of a language. We follow the terminology of Otto's survey [START_REF] Otto | On the connections between rewriting and formal language theory[END_REF].

Rewriting systems

A rewriting system is a binary relation R on A * . A pair (ℓ, r) from R is usually referred to as the rewrite rule or simply the rule ℓ → r. A rule is

special if r = 1, context-free if |ℓ| 1, inverse context-free if |r| 1, length-reducing if |r| < |l|.
It is monadic if it is length-reducing and inverse context-free. A rewriting system is special (context-free, inverse context-free, length-reducing, monadic) if its rules have the corresponding properties.

The reduction relation * -→ R the reflexive and transitive closure of the singlestep reduction relation → R defined as follows: u → R v if u = xℓy and v = xry for some (ℓ, r) ∈ R and some x, y ∈ A * . For each language L, we set

[L] * -→ R = {v ∈ A * | there exists u ∈ L such that u * -→ R v}
A rewriting system R is said to preserve regularity if, for each regular language L, the language [L] * -→ R is regular. The following result is well-known.

Theorem 3.1. Inverse context-free rewriting systems preserve regularity.

Proof. Let R be an inverse context-free rewriting system and let L be a regular language. Starting from the minimal deterministic automaton of L, construct an automaton with the same set of states, but with 1-transitions, by iterating the following process: for each rule u → 1 and for each path p u q, create a new transition p 1 -→ q; for each rule v → a with a ∈ A and for each path p v q, create a new transition p a -→ q. The automaton obtained at the end of the iteration process will accept [L] * -→ R .

A similar technique can be used to prove the following result [START_REF] Pin | Topologies for the free monoid[END_REF]. If K is a regular language, then the smallest language L containing K and such that xu + y ⊆ L =⇒ xy ∈ L is regular.

Suffix rewriting systems

A suffix rewriting system is a binary relation S on A * . Its elements are called suffix rules. The suffix-reduction relation * -→ S defined by S is the reflexive transitive closure of the single-step suffix-reduction relation defined as follows: u → S v if u = xℓ and v = xr for some (ℓ, r) ∈ S and some x ∈ A * . Prefix rewriting systems are defined symmetrically. For each language L, we set

[L] * -→ S = {v ∈ A * | there exists u ∈ L such that u * -→ S v}
The following early result is due to Büchi [START_REF] Büchi | Regular canonical systems[END_REF].

Theorem 3.2. Suffix (prefix) rewriting systems preserve regularity.

Deleting rewriting systems

We follow Hofbauer and Waldmann [START_REF] Hofbauer | Deleting string rewriting systems preserve regularity[END_REF] for the definition of deleting systems. If u is a word, the content of u is the set c(u) of all letters of u occurring in u. A precedence relation is an irreflexive and transitive binary relation. A precedence relation < on an alphabet A can be extended to a precedence relation on

A * , by setting u < v if c(u) = c(v) and, for each a ∈ c(u), there exists b ∈ c(v) such that a < b. A rewriting system R is <-deleting if for each rule ℓ → r of R, ℓ < r.
Hofbauer and Waldmann [START_REF] Hofbauer | Deleting string rewriting systems preserve regularity[END_REF] proved the following result.

Theorem 3.3. Every deleting string rewriting system preserves regularity.

Rules of the form

u n → u m
Rules of the form u n → u m were studied in several papers, for instance [START_REF] Ehrenfeucht | On regularity of languages generated by copying systems[END_REF][START_REF] Bovet | On the regularity of languages on a binary alphabet generated by copying systems[END_REF][START_REF] Leupold | On regularity-preservation by string-rewriting systems[END_REF].

The following result is due to Bovet and Varricchio [START_REF] Bovet | On the regularity of languages on a binary alphabet generated by copying systems[END_REF].

Proposition 3.4. The rewriting systems {(u → uu) | u ∈ {a, b} * } and {(u → uu) | u ∈ {a, b} * , |u| 2} both preserve regularity.
This result can be used to solve the following exercise. Let L be a language such that, for all x, y ∈ A * , x -1 Ly -1 is a semigroup. Prove that L is regular. Indeed, this condition implies that xuy ∈ L implies xu 2 y ∈ L.

Several results were obtained by Leupold [START_REF] Leupold | Languages generated by iterated idempotency[END_REF][START_REF] Leupold | On regularity-preservation by string-rewriting systems[END_REF]. Let us say that a rewriting system is k-period-expanding [k-period-reducing] if its rules are of the form u n → u m , with n < m [m < n] and |u| = k. Any union of finitely many k-periodexpanding and k-period reducing SRSs is called a k-periodic rewriting system. Proposition 3.5 (Leupold).

(1) Every k-periodic rewriting system preserves regularity.

(2) For each k 3, the rewriting system {(u → uu) | |u| k} preserves regularity.

(3) For each k and for m n, the rewriting system {u n → u m | |u| k} preserves regularity.

Well quasi-orders

A quasi-order (or preorder ) on A * is a reflexive and transitive relation. A quasiorder is stable (or monotone) if, for all words u, v, x, y, the condition u v implies xuy xvy. A language U is an upper set with respect to a quasi-order is the conditions u ∈ U and u v imply v ∈ U . The upper set generated by a language L is the language ↑ L = {u ∈ A * | there exists v ∈ L such that v u} A quasi-order on A * is a well quasi-order (wqo) if every upper set is generated by some finite language. The connection with regular languages was first established in [START_REF] Ehrenfeucht | On regularity of contextfree languages[END_REF] (see also [START_REF] De Luca | Finiteness and regularity in semigroups and formal languages[END_REF]Theorem 6.3.1,p. 203] and [START_REF] Varricchio | Well quasi-orders in formal language theory[END_REF]). Theorem 3.6. A language is regular if and only if it is an upper set with respect to some stable well quasi-order on A * .

It follows that if the reduction relation defined by a rewriting system is a well quasi-order, then this rewriting system preserves regularity. Actually, a stronger property holds. Following Conway [START_REF] Conway | Regular Algebra and Finite Machines[END_REF], let us say that a rewriting system R is a total regulator if for any language L, the language [L] * -→ R is regular.

Theorem 3.7. Any rewriting system whose reduction relation is a well quasiorder is a total regulator.

The most famous example is the rewriting system {1 → a | a ∈ A}, which defines the subword ordering. A word

u = a 1 • • • a n is a subword of a word v if v ∈ A * a 1 A * • • • A * a n A * .
Higman's theorem states that if A is finite, the subword relation is a well quasi-order on A * . It follows that for any language L (regular or not), the shuffle product L A * is regular.

The following result extends Higman's theorem on the subword order. Let us say that a set H of words of A * is unavoidable if the language A * -A * HA * is finite.

Theorem 3.8 (Ehrenfeucht, Haussler, Rozenberg [START_REF] Ehrenfeucht | On regularity of contextfree languages[END_REF]Theorem 4.8]). If H is a unavoidable finite set of words of A * , then the reduction relation of the rewriting system {1 → u | u ∈ H} is a well quasi-order on A * .

A similar result holds for rewriting systems with rules of the form a → u, where a is a letter. Theorem 3.9 (Bucher, Ehrenfeucht and Haussler [6, Theorem 2.3]). Let R be a finite rewriting system with rules of the form a → x with a ∈ A and x ∈ A * . The following conditions are equivalent:

(1) the relation *

-→ R is a well quasi-order, (2) The set {ax | x ∈ A * and a * -→ R ax} ∪ {xa | x ∈ A * and a * -→ R xa} is unavoidable, (3) The set {axa | x ∈ A * and a * -→ R axa} is unavoidable.
It follows for instance that the following rewriting systems are total regulators:

R 1 = {a → aa, a → aba, b → bb, b → bab} R 2 = {a → b, b → a, b → bb}
Bucher, Ehrenfeucht and Haussler [START_REF] Bucher | On total regulators generated by derivation relations[END_REF] considered context-free rewriting systems related to semigroup morphims. Recall that an ordered semigroup is a semigroup equipped with a stable partial order. Let (S, ) be a finite ordered semigroup and let σ : A + → S be a semigroup morphism. Consider the rewriting system

R σ = {a → u | a ∈ A, u ∈ A + and σ(a) σ(u)}.
Let L be a finite set of languages of A + . Consider a (possibly infinite) system of inequations of the form

P i (X 1 , . . . , X n ) ⊆ E i (X 1 , . . . , X n ) (i ∈ I) (3.1)
where each P i (X 1 , . . . , X n ) is a product built from the variables X 1 , . . . , X n and arbitrary constant languages and each E i (X 1 , . . . , X n ) is an expression built from the variables X 1 , . . . , X n and constant languages belonging to the set L ∪ {1}, using concatenation, possibly infinite union and possibly infinite intersection. Note that the expressions E i can also use Kleene star, since it can be rewritten as an infinite union of products.

Theorem 3.10 (Kunc [START_REF] Kunc | Regular solutions of language inequalities and well quasi-orders[END_REF]). Let σ : A + → S be a semigroup morphism that recognises all languages in L. If * -→ Rσ is a well quasi-order on A * , then the components of every maximal solution of (3.1) is regular and they are star-free is S is aperiodic.

Characterising the semigroup morphisms for which * -→ Rσ is a well quasi-order, is an open problem. However, Kunc found a complete answer for finite semigroups (S, =) ordered by the equality relation.

Theorem 3.11 (Kunc [START_REF] Kunc | Regular solutions of language inequalities and well quasi-orders[END_REF]). Let (S, =) be a finite ordered semigroup ordered by the equality relation and let σ : A + → S be a surjective semigroup morphism. Then the relation * -→ Rσ is a well quasi-order on A * if and only if S is a chain of simple semigroups.

In particular any finite group is a simple semigroup. It follows that if L is a language recognised by a finite group, then, for any subset S of N, the language n∈S L n is regular. Example 3.1. The following example is given by Kunc [START_REF] Kunc | Regular solutions of language inequalities and well quasi-orders[END_REF]Example 19]. Let L be the language consisting of those words u ∈ A + which contain some occurrence of b and where the difference between the length of u and the number of blocks of occurrences of b in u is even. Here is the minimal automaton of this language. Let us consider the inequality aXaXa ⊆ LXL with one variable X. It is easy to verify that this inequality has a largest solution, namely the regular language (a 2 ) * ab 2 a(a 2 ) * ∪ A * bA + bA * .

Equations and inequalities

Inequations in languages in which the right hand side is a constant language were first considered by Conway [START_REF] Conway | Regular Algebra and Finite Machines[END_REF], see also Bala [START_REF] Bala | Complexity of regular language matching and other decidable cases of the satisfiability problem for constraints between regular open terms[END_REF]. In Chapter 21 of the forthcoming Handbook of Automata Theory, Kunc and Okhotin [START_REF] Kunc | Language equations[END_REF] give the following remarkable result. Consider a finite system of inequations of the form

j∈J i P i,j (X 1 , . . . , X n ) ⊆ C i (1 i k) (3.2)
where each P i,j (X 1 , . . . , X n ) is a product of arbitrary constant languages and variables, each C i is a constant regular language and each index set J i is possibly infinite.

Theorem 3.12 (Kunc and Okhotin [START_REF] Kunc | Language equations[END_REF]). Every system of the form (3.2) has only finitely many maximal solutions and every maximal solution has all components regular. If all C i are star-free, then the maximal solutions are star-free. Furthermore, the result still holds if any inequalities are replaced by equations.

Proof. Let h : A * → M be the simultaneous syntactic monoid of the languages

C i . If (L 1 , . . . , L n ) is a solution, then so is (h -1 h(L 1 ), . . . , h -1 h(L n ))
. It follows that every solution is contained in a solution in which all components are recognised by h and the result follows.

Inequations of the form XK ⊆ LX were considered by Kunc [START_REF] Kunc | Regular solutions of language inequalities and well quasi-orders[END_REF].

Theorem 3.13 (Kunc [START_REF] Kunc | Regular solutions of language inequalities and well quasi-orders[END_REF]). Let K be an arbitrary language and let L be a regular language. Then the greatest solution of the inequality XK ⊆ LX is regular.

The situation is totally different for equations of the type XK = LX. Indeed Kunc [START_REF] Kunc | The power of commuting with finite sets of words[END_REF] has shown that there exists a finite language L such that the greatest solution of the equation XL = LX is co-recursively enumerable complete.

Logic

Logic can be used in various ways to characterise regular languages. We consider successively logic on words, linear temporal logic and logic on trees.

Logic on words

Let u = a 1 . . . a n be a nonempty word on the alphabet A. The domain of u, denoted by Dom(u), is the set Dom(u) = {1, . . . , n}. For each letter a ∈ A, let a be a unary predicate symbol, where ax is interpreted as "the letter in position x is an a". We also use the binary predicate symbols < and S, interpreted as the usual order relation and the successor relation on Dom(u), respectively. The language defined by a sentence ϕ is the set

L(ϕ) = {u ∈ A + | u satisfies ϕ}.
We let FO[<] and MSO[<] denote the set of first-order and monadic secondorder formulas of signature {<, (a) a∈A }, respectively. Similarly, we let FO[S] and MSO[S] denote the same sets of formulas of signature {S, (a) a∈A }.

Let us say that a syntactic fragment of logic F captures a class of languages C if every sentence of the fragment F defines a language of C and every language of C can be defined by a sentence of F .

Two famous results are a natural ingredient of this survey. The first one is due to Buchi [START_REF] Büchi | Weak second-order arithmetic and finite automata[END_REF] and was independently obtained by Elgot [START_REF] Elgot | Decision problems of finite automata design and related arithmetics[END_REF] and Trakhtenbrot [START_REF] Trakhtenbrot | Behavior and synthesis[END_REF].

Theorem 4.1 (Buchi [7]). MSO[S] captures the class of regular languages.

The second one relates first order logic and star-free languages.

Theorem 4.2 (McNaughton [36]). FO[<] captures the class of star-free languages.

Second order logic SO is much more expressive than monadic second order, but two successive results led to a complete characterisation of the syntactic fragments of SO -in the signature {S, (a) a∈A } -that capture the regular languages.

A quantifier prefix is any word on the alphabet {∃, ∀}. A quantifier prefix class is any set of quantifier prefixes. For any quantifier prefix Q, let Σ 1 0 (Q) (resp. Π 1 0 (Q)) be the set of all formulas of the shape ∃R Qϕ (resp. ∀R Qϕ) where R is a list of relations and ϕ is quantifier free. For every k 0, let

Σ 1 k+1 (Q) (resp., Π 1 k+1 (Q)) be the set of all formulas of the form ∃R Φ (resp. ∀R Φ) where Φ is a Π 1 k (Q) (resp. Σ 1 k (Q)) formula. Finally, for every quantifier prefix class Q, let Σ 1 k (Q) = Q∈Q Σ 1 k (Q). The fragment Σ 1
1 , also known as existential second order and frequently denoted by ESO, was first explored by Eiter, Gottlob and Gurevich [START_REF] Eiter | Existential second-order logic over strings[END_REF].

Theorem 4.3 (Eiter, Gottlob and Gurevich [START_REF] Eiter | Existential second-order logic over strings[END_REF]). A syntactic fragment ESO(Q) captures the regular languages if and only if Q is a quantifier prefix class contained in ∃ * ∀(∀ ∪ ∃ * ) whose intersection with ∃ * ∀{∃, ∀} + is nonempty.

The proof of this result is very difficult. It relies on combinatorial methods related to hypergraph transversals for the fragment ∃ * ∀∃ * and on more logical techniques for the fragment ∃ * ∀∀. Eiter, Gottlob and Gurevich further proved the following dichotomy theorem: a class ESO[Q] either expresses only regular languages or it expresses some NP-complete languages.

The fragments Σ 1 k (Q), with k 2, were explored by Eiter, Gottlob and Schwentick [START_REF] Eiter | Second-order logic over strings: regular and non-regular fragments[END_REF]. Theorem 4.4 (Eiter, Gottlob and Schwentick [START_REF] Eiter | Second-order logic over strings: regular and non-regular fragments[END_REF]). The fragments Σ 1 2 (∀∀) and Σ 1 2 (∀∃) capture the class of regular languages. Furthermore, for each k 0, the fragments Σ 1 k (∀) and Σ 1 k (∃) only define regular languages. For more information on this topic, the reader is invited to read the beautiful survey of Eiter, Gottlob and Schwentick [START_REF] Eiter | The model checking problem for classes of second-order logic: a survey[END_REF].

Linear temporal logic

Linear temporal logic (LTL for short) on an alphabet A is defined as follows. The vocabulary consists of an atomic proposition p a (for each letter a ∈ A), the usual connectives ∨, ∧ and ¬ and the temporal operators X (next), F (eventually) and U (until ). The formulas are constructed according to the following rules:

(1) for every a ∈ A, p a is a formula, (2) if ϕ and ψ are formulas, so are ϕ ∨ ψ, ϕ ∧ ψ, ¬ϕ, Xϕ, Fϕ and ϕ U ψ. Semantics are defined by induction on the formation rules. Given a word w ∈ A + , and n ∈ {1, 2, ..., |w|}, we define the expression "w satisfies ϕ at the instant n" (denoted (w, n) |= ϕ) as follows:

(1) (w, n) |= p a if the n-th letter of w is an a.

( If ϕ is a temporal formula, we say that w satisfies ϕ if (w, 1) |= ϕ. The language defined by a LTL formula ϕ is the set L(ϕ) of all words of A + that satisfy ϕ.

) (w, n) |= ϕ ∨ ψ (resp. ϕ ∧ ψ, ¬ϕ) if (w, n) |= ϕ or (w, n) |= ψ (resp. if (w, n) |= ϕ and (w, n) |= ψ, if (w, n) does not satisfy ϕ). (3) (w, n) |= Xϕ if (w, n + 1) satisfies ϕ. ( 2 
A famous result of Kamp [START_REF] Kamp | Tense Logic and the Theory of Linear Order[END_REF] states that LTL is equivalent to the first-order logic of order. As a consequence, one gets the following result. Theorem 4.5. A language of A + is star-free if and only if it is LTL-definable.

We just defined future temporal formulas but one can define in the same way past temporal formulas by reversing time: it suffices to replace next by previous, eventually by sometimes and until by since. The expressive power of this extended temporal logic remains the same: it still captures the class of star-free languages.

Rabin's tree theorem

We now consider the structure (A * , (S a ) a∈A ), where each S a is a binary relation symbol, interpreted on A * as follows: S a (u, v) if and only if v = ua. Let ϕ(X) be a monadic second order formula with a free set-variable X. We write ∃!X ϕ(X) as a short hand for the formula ∃X ϕ(X) ∧ ∀Y [ϕ(Y ) → (Y = X)] . A language L is said to be definable in MSO[(S a ) a∈A ] if there exists a monadic second order formula ϕ(X) such that L satisfies ∃!X ϕ(X).

The following result is a consequence of Rabin's tree theorem [START_REF] Rabin | Decidability of second-order theories and automata on infinite trees[END_REF].

Theorem 4.6. A language of A * is regular if and only if it is definable in MSO[(S a ) a∈A ].

Transductions

Transductions proved to be a powerful tool to study regular languages. Let us first recall some useful facts about rational and recognisable sets.

Rational and recognisable sets

Let M be a monoid. A subset P of M is recognisable if there exists a finite monoid F , and a monoid morphism ϕ : M → F such that P = ϕ -1 (ϕ(P )).

It is well known that the class Rec(M ) of recognisable subsets of M is closed under Boolean operations, left and right quotients and under inverses of monoid morphisms. The recognisable subsets of a product of monoids were described by Mezei (unpublished).

Theorem 5.1. Let M 1 , . . . , M n be monoids. A subset of M 1 × • • • × M n is recog- nisable if and only if it is a finite union of subsets of the form R 1 × • • • × R n , where R i ∈ Rec(M i ).
Furthermore, the following property holds:

Proposition 5.2. Let A 1 , . . . , A n be finite alphabets. Then Rec(A * 1 × • • • × A * n ) is closed under product.
The class Rat(M ) of rational subsets of M is the smallest set R of subsets of M containing the finite subsets and closed under finite union, product and star (where X * is the submonoid of M generated by X). Rational sets are closed under monoid morphisms.

Let A be a finite alphabet. Then, by Kleene's theorem, Rec(A * ) = Rat(A * ). Although Kleene's theorem does not extend to arbitrary monoids, a weaker property holds for finitely generated monoids. [START_REF] Mcknight | Kleene quotient theorems[END_REF]). Let M be a monoid. The following conditions are equivalent:

Theorem 5.3 (McKnight

(1) M is finitely generated, (2) every recognisable subset of M is rational, (3) the set M is a rational subset of M .

Furthermore one has:

Theorem 5.4 (McKnight [START_REF] Mcknight | Kleene quotient theorems[END_REF]). The intersection of a rational set and of a recognisable set is rational.

Matrix representations of transductions

Let M be a monoid. We denote by P(M ) the semiring of subsets of M with union as addition and the usual product of subsets as multiplication. Note that both Rat(M ) and Rec(M ) are subsemirings of P(M ). Let also P(M ) n×n denote the semiring of n × n-matrices with entries in P(M ).

Let M and N be two monoids. A transduction τ : M → N is a relation on M and N , viewed as a function from M to P(N ). One extends τ to a function P(M ) → P(N ) by setting τ (P ) = m∈P τ (m). The inverse transduction

τ -1 : N → M is defined by τ -1 (Q) = {m ∈ M | τ (m) ∩ Q = ∅}. The transduc- tion is rational if the set {(m, n) ∈ M × N | n ∈ τ (m)} is a rational subset of M × N .
A transduction τ : A * → M admits a linear matrix representation (λ, µ, ν) of degree n if there exist n > 0, a monoid morphism µ : A * → P(M ) n×n , a row vector λ ∈ P(M ) 1×n and a column vector ν ∈ P(M ) n×1 such that, for all u ∈ A * , τ (u) = λµ(u)ν.

A substitution from A * to a monoid M is a monoid morphism from A * to P(M ). Thus a substitution has linear matrix representation of degree 1.

Kleene-Schützenberger's theorem (see [START_REF] Berstel | Transductions and context-free languages[END_REF]) states that a transduction τ : A * → M is rational if and only if it admits a linear matrix representation with entries in Rat(M ).

The following result already suffices for most of the applications we have in mind. It relies on the fact that every monoid morphism M → N can be extended to a semiring morphism P(M ) → P(N ) and, for each n > 0, to a semiring morphism P(M ) n×n → P(N ) n×n . Theorem 5.5. Let τ : A * → M be a transduction that admits a linear matrix representation (λ, µ, ν) of degree n and let P be a subset of M recognised by a morphism η : M → N . Then the language τ -1 (P ) is recognised by the submonoid ηµ(A * ) of the monoid of matrices P(N ) n×n . This result was generalised in [START_REF] Pin | Some operations and transductions that preserve rationality[END_REF][START_REF] Pin | Une application de la représentation matricielle des transductions[END_REF]. Let us say that a transduction τ : A * → M admits a matrix representation (S, µ) of degree n if there exist a morphism µ : A * → P(M ) n×n and an expression S(X 1,1 , . . . , X n,n ) where S is a possibly infinite union of products involving arbitrary languages and the variables (X i,j ) 1 i,j n , such that, for all u ∈ A * , τ (u) = S[µ 1,1 (u), . . . , µ n,n (u)]. Theorem 5.5 can now be generalized as follows.

Theorem 5.6. Let τ : A * → M be a transduction that admits a matrix representation (S, µ) of degree n and let P be a subset of M recognised by a morphism η : M → N . Then the language τ -1 (P ) is recognised by the submonoid ηµ(A * ) of the monoid of matrices P(N ) n×n .

Example 5.1. Let us come back to the example

√ L = {u ∈ A * | u 2 ∈ L}. Observe that √ L = τ -1 (L)
where τ (u) = u 2 . Clearly τ admits the matrix representation (S, µ) where µ(u) = u and S = X 2 .

Example 5.2. Let us show that if L is a regular language and S is a subset of N 2 then the language L S = {u ∈ A * | there exist (x, y) ∈ A * and (p, q) ∈ S such that |x| = p|u|, |y| = q|u| and xuy ∈ L} is also regular. It suffices to observe that L S = τ -1 (L) where the transduction τ (u) = (p,q)∈S A p|u| uA q|u| admits the matrix representation (S, µ), where

µ(u) =   A |u| ∅ ∅ ∅ u ∅ ∅ ∅ A |u|   and S(X 1,1 , . . . , X 3,3 ) = (p,q)∈S X p 1,1 X 2,2 X q 3,3
Example 5.3. Finally the reader who likes more complicated examples may prove by the same method that if L ⊆ {a, b} * is regular, then the following language is also regular (D * is the Dyck language):

L ′ = n square-free {u ∈ A * | D * u ⌊ √ n⌋ a n u n! b ∩ L = ∅}
Many more examples can be found in [START_REF] Pin | Some operations and transductions that preserve rationality[END_REF][START_REF] Pin | Une application de la représentation matricielle des transductions[END_REF].

Uniformly continuous functions and recognisable sets

The connection with recognisable sets is given by the following result: Proposition 6.1. Let M, N ∈ M and let f : M → N be a function. Then the following conditions are equivalent:

(1) for every L ∈ Rec(N ), one has f -1 (L) ∈ Rec(M ),

(2) the function f is uniformly continuous for the profinite metric.

Here is an interesting example [START_REF] Pin | A topological approach to transductions[END_REF].

Proposition 6.2. The function g : A * × N → A * defined by g(x, n) = x n is uniformly continuous.

Example 6.1. As an application, let us show that if L is a regular language of A * , then the language

K = {u ∈ A * | u |u| ∈ L} is also regular. Indeed, K = h -1 (L)
, where h is the function defined by h(u) = u |u| . Observe that h = g • f , where f : A * → A * × N is the monoid morphism defined by f (u) = (u, |u|) and g is the function defined in Proposition 6.2. Now since L ∈ Rec(A * ), one gets g -1 (L) ∈ Rec(A * × N) by Proposition 6.2 and f -1 (g -1 (L)) ∈ Rec(A * ) since f is a monoid morphism. Thus K is regular.

Uniformly continuous functions from N to N are of special interest. A function f : N → N is residually ultimately periodic (rup) if, for each monoid morphism h from N to a finite monoid F , the sequence h(f (n)) is ultimately periodic. It is cyclically ultimately periodic if, for every p > 0, there exist two integers m 0 and r > 0 such that, for each n m, f (n) ≡ f (n + r) (mod p). It is ultimately periodic threshold t if the function min(f (n), t) is ultimately periodic.

For instance, the functions n 2 and n! are residually ultimately periodic. The function 2n

n is not cyclically ultimately periodic. Indeed, it is known that 2n n ≡ 2 mod 4 if and only if n is a power of 2. It is shown in [START_REF] Siefkes | Decidable extensions of monadic second order successor arithmetic[END_REF] that the sequence ⌊ √ n⌋ is not cyclically ultimately periodic.

Let us mention a last example, first given in [START_REF] Carton | The Monadic Theory of Morphic Infinite Words and Generalizations[END_REF]. Let b n be a non-ultimately periodic sequence of 0 and 1. The function f

(n) = ( 0 i n b i )! is residually ultimately periodic. It follows that the function ∆f (n) = f (n + 1) -f (n) is not residually ultimately periodic since min(∆f (n), 1) = b n .
The following result was proved in [START_REF] Berstel | Operations preserving recognizable languages[END_REF].

Proposition 6.3. For a function f : N → N, the following conditions are equivalent:

(1) f is uniformly continuous, (2) f is residually ultimately periodic, (3) f is cyclically ultimately periodic and ultimately periodic threshold t for all t 0.

The class of cyclically ultimately periodic functions has been studied by Siefkes [START_REF] Siefkes | Decidable extensions of monadic second order successor arithmetic[END_REF], who gave in particular a recursion scheme for producing such functions. The class of residually ultimately periodic sequences was also thoroughly studied in [START_REF] Carton | The Monadic Theory of Morphic Infinite Words and Generalizations[END_REF][START_REF] Zhang | Automata, Boolean matrices, and ultimate periodicity[END_REF] (see also [START_REF] Kosaraju | Correction to "Regularity preserving functions[END_REF][START_REF] Kozen | On regularity-preserving functions[END_REF][START_REF] Seiferas | Regularity-preserving relations[END_REF]). Their properties are summarized in the next proposition. Theorem 6.4. Let g and g be rup functions. Then the following functions are also rup: f

• g, f + g, f g, f g , 0 i g(n) f (i), 0 i g(n) f (i). Furthermore, if f (n) g(n) for all n and lim n→∞ (f -g)(n) = +∞, then f -g is also rup.
In particular, the functions f k and n → k f (n) (for a fixed k), are rup. The tetration function n 2 (exponential stack of 2's of height n), considered in [START_REF] Seiferas | Regularity-preserving relations[END_REF], is also rup, according to the following result: if k is a positive integer, then the function f (n) defined by f (0) = 1 and f

(n + 1) = k f (n) is rup.
The existence of non-recursive rup functions was established in [START_REF] Seiferas | Regularity-preserving relations[END_REF]: if f is a strictly increasing, non-recursive function, then the function g

(n) = n!f (n) is non-recursive but is rup.
Coming back to regular languages, Seiferas and McNaughton [START_REF] Seiferas | Regularity-preserving relations[END_REF] proved the following result. Here is another application of rup functions. A filter is a strictly increasing function f : N → N. Filtering a word a 0 a 1 • • • a n by f consists in deleting the letters a i such that i is not in the range of f . For each language L, let L[f ] denote the set of all words of L filtered by f . A filter is said to preserve regular languages if, for every regular language L, the language L[f ] is also regular. The following result was proved in [START_REF] Berstel | Operations preserving recognizable languages[END_REF]. Theorem 6.6. A filter f preserves regular languages if and only if the function ∆f defined by ∆f (n) = f (n + 1)f (n) is rup.

Transductions and recognisable sets

Some further topological results are required to extend Proposition 6.1 to transductions.

The completion of the metric space (M, d), denoted by ( M , d), is called the profinite completion of M . Since multiplication on M is uniformly continuous, it extends, in a unique way, to a multiplication on M , which is again uniformly continuous. One can show that M is a metric compact monoid.

Theorem 8.3. The language accepted by a Turing machine that works in space o(log log n) is regular. Theorem 8.4 ([45]). If a language and its complement are support of a rational series, then it is a regular language.

Many other examples that could not be included in this survey, notably the work of Bertoni, Mereghetti and Palano [4, Theorem 3, p. 8] on 1-way quantum automata and the large literature on splicing systems.

I would be very grateful to any reader providing me new interesting examples to enrich this survey. 
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  The syntactic semigroup of L is defined by the relations a 3 = a, b 3 = b, ab 2 = a 2 b, ba 2 = b 2 a and bab = b 2 . It is a chain of two simple semigroups whose elements are represented by the words a, a 2 and b, b 2 , ab, ab 2 , ba, b 2 a, aba, ab 2 a, respectively.

Example 4 . 1 .

 41 ) (w, n) |= Fϕ if there exists m such that n m |w| and (w, m) |= ϕ. (5) (w, n) |= ϕ U ψ if there exists m such that n m |w|, (w, m) |= ψ and, for every k such that n k < m , (w, k) |= ϕ. Note that, if w = w 1 w 2 • • • w |w| , (w, n) |= ϕ only depends on the word w = w n w n+1 • • • w |w| . Let w = abbababcba. Then (w, 4) |= p a since the fourth letter of w is an a, (w, 4) |= Xp b since the fifth letter of w is a b and (w, 4) |= F(p c ∧ Xp b ) since cb is a factor of babcba.

Theorem 6 . 5 .

 65 Let f : N → N be a rup function. If L is regular, then so is the language P (f, L) = {x ∈ A * | there exists y ∈ A * such that |y| = f (|x|) and xy ∈ L}.
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  Periodicity and permutationDefinition 2.3. Let L be a language of A * .(1) L is periodic if, for any u ∈ A * , there exist integers n, k > 0 such that, for all x, y ∈ A * , xu n y ∈ L ⇐⇒ xu n+k y ∈ L.(2) L is n-permutable if, for any sequence u 1 , . . . , u n of n words of A * , there exists a nontrivial permutation σ of {1, . . . , n} such that, for all x, y ∈ A * , xu 1
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Let M and N be monoids. We say that M divides N if there is a submonoid R of N and a monoid morphism that maps R onto M .
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Decompositions of languages

For each n > 0, consider the transduction τ n : A * → (A * ) n defined by

Theorem 5.7. Let L be a language of A * . The following conditions are equivalent:

(1) L is rational, (2) for some n > 0, τ n (L) is a recognisable subset of (A * ) n , (3) for all n > 0, τ n (L) is a recognisable subset of (A * ) n .

Proof.

(1) implies [START_REF] Berstel | Operations preserving recognizable languages[END_REF]. Let A = (Q, A, • , i, F ) be the minimal automaton of L.

For each state p, q of A, let L p,q be the language accepted by A with p as initial state and q as unique final state. Let S = {i} × Q n-2 × F . We claim that

Let R be the right hand side of (5.1). Let (u 1 , . . . , u n ) ∈ τ n (L). Let q 0 = i,

one has q n ∈ F and hence (q 0 , . . . , q n ) ∈ S. Moreover, by construction, u 1 ∈ L q 0 ,q 1 , . . . , u n ∈ L q n-1 ,qn and hence

Then, for some (q 0 , . . . , q n ) ∈ S, one has u 1 ∈ L q 0 ,q 1 , . . . , u n ∈ L q n-1 ,qn . It follows that q 1 = q 0 • u 1 , . . . ,

Profinite topology

Let M be a monoid. A monoid morphism ϕ : M → N separates two elements u and v of M if ϕ(u) = ϕ(v). By extension, we say that a monoid N separates two elements of M if there exists a morphism ϕ : M → N which separates them. A monoid is residually finite if any pair of distinct elements of M can be separated by a finite monoid.

Let us consider the class M of monoids that are finitely generated and residually finite. This class include finite monoids, free monoids, free groups, free commutative monoids and many others. It is closed under direct products and thus monoids of the form

Each monoid M of M can be equipped with the profinite metric, defined as follows. Let, for each (u, v) ∈ M 2 , r(u, v) = min Card(N ) N separates u and v } Then we set d(u, v) = 2 -r(u,v) , with the usual conventions min ∅ = +∞ and 2 -∞ = 0. One can show that d is an ultrametric and that the product on M is uniformly continuous for this metric.

Let K( M ) be the monoid of compact subsets of M . The Hausdorff metric on K( M ) is defined as follows. For K, K ′ ∈ K( M ), let

By a standard result of topology, K( M ), equipped with this metric, is compact. Let now τ : M → N be a transduction. Define a map τ : M → K( N ) by setting, for each x ∈ M , τ (x) = τ (x), the topological closure of τ (x). The following extension of Proposition 6.1 was proved in [START_REF] Pin | A topological approach to transductions[END_REF]. Theorem 6.7. Let M, N ∈ M and let τ : M → N be a transduction. Then the following conditions are equivalent:

(1) for every L ∈ Rec(N ), one has Proposition 6.9. For every M ∈ M, the transduction σ : M → M defined by σ(x) = x * is uniformly continuous.

Further examples 8 Further examples and conclusion

Here are a few results relating regular languages and Turing machines. ). The language accepted by a one-tape Turing machine that never writes on its input is regular.

Theorem 8.2 (Hartmanis [START_REF] Hartmanis | Computational complexity of one-tape Turing machine computations[END_REF]). The language accepted by a one-tape Turing machine that works in time o(n log n) is regular.

The following result is proposed as an exercise in [START_REF] Carton | Langages formels, calculabilité et complexité[END_REF]Exercise 4.16,p. 243].