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We apply the well-established theoretical method developed for geometrical nonlinearities of
micro/nano-mechanical clamped beams to circular drums. The calculation is performed under
the same hypotheses, the extra difficulty being to analytically describe the (coordinate-dependent)
additional stress generated in the structure by the motion. Specifically, the model applies to non-
axisymmetric mode shapes. An analytic expression is produced for the Duffing (hardening) nonlinear
coefficient, which requires only the knowledge of the mode shape functions to be evaluated. This
formulation is simple to handle, and does not rely on complex numerical methods. Moreover, no
hypotheses are made on the drive scheme and the nature of the in-plane stress: it is not required
to be of electrostatic origin. We confront our predictions with both typical experimental devices
and relevant theoretical results from the literature. Generalization of the presented method to
Duffing-type mode-coupling should be a straightforward extension of this work. We believe that
the presented modeling will contribute to the development of nonlinear physics implemented in 2D
micro/nano-mechanical structures.
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I. INTRODUCTION

The field of micro- and nano- electro-mechanics
(MEMS and NEMS) [1–3] has been continuously expand-
ing over the last decades. These devices, which transduce
motion into electrical signals, have been both developed
into sensors (e.g. pressure gauge [4]) and components
(e.g. r.f. signal mixer [5]). Beyond the notorious ac-
celerometer [6] and mass spectroscopy [7] applications, it
even becomes possible today to embed nanomechanical
elements into quantum electronic circuits [8–10].

Within the field, nonlinearities can be both a limita-
tion or a resource. For all systems that build on linear
response, nonlinearities of all kinds limit the dynamic
range of the device [11]. On the other hand, one can de-
vise efficient schemes that rely on nonlinearities to work:
this very rich area includes applications such that e.g.
amplification of small signals [12], bit storage [13, 14],
and synchronization of oscillators [15, 16] among others.

In both cases, understanding and mastering the
sources of nonlinearities is required, in order to tai-
lor them on demand: maximizing, or minimizing them
[17–20]. The main feature that impacts the dynamics
of MEMS/NEMS is a Duffing-type nonlinear behavior
[21, 22]. The basic modeling capturing the physics is

a k̃ x3 restoring force inserted in the dynamics equation
of the mechanical mode; in practice, other terms may
also contribute and be taken into account [22, 23].

Even if the materials are perfectly Hookean, all devices
experience nonlinear behavior at large deformations:
these arise from purely geometrical considerations. For
flexural doubly-clamped beams, it consists of the extra
stress stored in the beam under motion because of
stretching [22]. This effect has been widely studied
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FIG. 1: (Color online) Schematic of a doubly-clamped device,
in its fundamental flexure (n = 0 mode). The axial force load
Sz,0 is here tensile.

experimentally, even beyond the nonlinear features of a
single mode: the same effect indeed couples all the flex-
ural modes of the structure [24–27]. The measurements
are in very good agreement with the simple stretching
theory, that can be found e.g. in Ref. [22].

For these reasons, we propose to extend this modeling
to the 2D case of a drum. Our aim is to produce an
analytic, robust and simple expression for the geometric
nonlinear Duffing coefficient, similar to the 1D solution.
The modeling remains at a generic level, not introducing
any specific drive fields, and applies to non-axisymmetric
modes as well as to axisymmetric ones. We shall start in
Section II by reviewing the beam nonlinear mathematics,
and discuss the concepts and limitations of this approach.
In Section III, we present the adaptation of it to a 2D
axisymmetric geometry; the stress field is discussed in
Section IV and the solution is given in Section V. Our
results are discussed in Section VI, with a comparison to
both experiments and theory from the literature.
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II. BEAM THEORY BASIS

Let us start by recalling the basics of the geometrical
nonlinear modeling of clamped beams. We first write
the Euler-Bernoulli equation that applies to thin-and-
long structures [28, 29]:

EzIz
∂4f(z, t)

∂z4
+ Sz

∂2f(z, t)

∂z2
= −ρAz

∂2f(z, t)

∂t2
, (1)

with Ez the Young’s modulus, Iz the second moment of
area, Sz the axial force load, ρ the mass density and Az
the section area. The z index refers to the axis pointing
along the beam, see Fig. 1. The beam is assumed ho-
mogeneous with a constant cross section over its length
L. The function f(z, t) describes the transverse motion of
the structure (in the x direction), with the proper bound-
ary conditions. This equation essentially neglects rota-
tional inertia of beam elementary elements δz, and all
shearing forces.

When dealing with small displacements, Eq. (1) is
solved by a linear superposition of eigenmodes fn(z, t):

fn(z, t) = xn(t)ψn(z), (2)

with ψn(z) the mode shape of mode n (no units), and
corresponding mode resonance frequency ωn. xn(t) is
the time-dependent motion associated with the mode;
by means of a Rotating-Frame Transform, it writes
an(t) cos(ωt + φ) with an(t) a slow varying amplitude
variable, nonzero only for ω ≈ ωn (resonance condition).
Here, Sz = Sz,0 = σ0Az the initially stored axial load
in the structure (from uniaxial stress σ0). With this
convention, Sz is negative for a tensile stored stress.
Note that the quantitative value of xn(t) depends on
the normalization choice of ψn(z); in this paper we
will always normalize modal functions to the maximum
displacement amplitude, such that at this abscissa zn
one gets ψn(zn) = 1.

The stretching of the beam writes Sz = Sz,0+∆S with
|∆S| = EzAz ∆L/L and ∆L the extension [22]:

∆L =
1

2

∫ L

0

(
∂f(z, t)

∂z

)2
dz, (3)

expanded at lowest order in f . Note that from Eq.
(2) for a single mode, this expression is quadratic in
motion amplitude xn(t), thus a simple Rotating-Wave
Approximation leads to an extension ∆L ∝ a2n (the
slow variable): the nonlinear stretching is essentially a
static effect, which is why there is no time-delay in the
relationship between ∆S and ∆L. For a superposition
of modes, a similar quadratic nonlinear coupling between
them is obtained (see e.g. Ref. [24]).

The basic nonlinear modeling consists then in re-
injecting Eq. (3) into Eq. (1), and neglecting any other
alterations due to the large motion amplitude (see discus-
sion below). For a single mode f → fn, the projection of

Tr,0
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FIG. 2: (Color online) Schematic of a drum device, in its fun-
damental flexure ({n = 0,m = 0} mode). The biaxial force
2πRd Tr,0 is here tensile.

Eq. (1) onto it (i.e. multiplying the equation by ψn and
integrating over the beam length) leads to the definition
of modal parameters:

mn=ρAz

∫ L

0

[ψn(z)]
2
dz, (4)

kn=EzIz

∫ L

0

[
d2ψn(z)

dz2

]2
dz − Sz,0

∫ L

0

[
dψn(z)

dz

]2
dz, (5)

k̃n=
EzAz
2L

(∫ L

0

[
dψn(z)

dz

]2
dz

)2
, (6)

with mn the mode mass, kn the mode spring constant
and k̃n the Duffing nonlinear parameter. The resonance
frequency verifies ωn =

√
kn/mn. Including in Eq. (1)

a damping and a drive term is straightforward [22].
The obtained equation of motion for xn is then the one
of a harmonic oscillator plus a purely cubic nonlinear
restoring term +k̃n xn(t)3. k̃n is always positive, because
of stretching (the mode “hardens”); in the steady-state
(an = constant), the resonant response measured while
sweeping the drive frequency upwards will be pulled up,
with the frequency at maximum amplitude amaxn given

by ωresn = ωn+βn (amaxn )2 with βn = 3
8ωn

k̃n
kn

[22, 23, 30].
The free-decay solution can also be analytically produced
[23].

Beyond the agreement with experiments already men-
tioned, a discussion on the genesis and validity of this
theory is in order. A thorough discussion of the histor-
ical developments can be found in e.g. Ref. [31, 33].
The first attempt to model the stretching is due to
Woinowsky-Krieger [34]. He considered hinged-hinged
bars, and restricted his analysis to the simple approxi-
mation ψn(z) = sin(nπ z/L), n > 0 for the mode shapes.
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Burgreen [35] considered the same situation for n = 1
only, but extended it to the case where a compressive ax-
ial load is imposed (Sz,0 > 0 here). Eisley [36] proposed
also a solution for the first mode of clamped-clamped
beams, assuming ψ1(z) = 1− cos(2πz/L). In all of these
studies, nonlinear effects stemming from inertia and cur-
vature were neglected; their main achievement was to
produce an analytic solution for the Duffing equation
(written for xn[t]) in terms of Jacobi Elliptic functions
[34–36]. The modeling has then been adapted by Yurke
et al. [21], defining modal parameters as a function of lin-
ear mode shapes ψn(z) without a sinewave ansatz. This
is the procedure we reproduced above; solving the Duff-
ing equation for xn(t) is an extra step that we do not
discuss and can be found in e.g. Refs. [22, 23, 30, 31].

Inertia and curvature nonlinearities at large deflections
have been studied by Crespo da Silva and Glynn, first
for a clamped-free configuration [37, 38] and then for a
clamped-sliding one [39]. It turns out that the obtained
dynamics equation are of same order as the ones obtained
for pure stretching (these Refs. extend the problem up
to order 3 in xn): the result is thus a similar Duffing-like
behavior, and there is no a priori reason to neglect these
terms in the stretching theory. Indeed, in a later series
of articles, Crespo da Silva considered both extensional
and curvature-inertia nonlinearities [40, 41]. The trial
functions used for the mode shapes were here the linear
solutions ψn(z), the approach re-used later on since Ref.
[21]. His analysis demonstrated that extensional coeffi-
cients in the dynamics equation are dominant compared
to the others [41]; this then justifies not to take the latter
into account in Eq. (6).

However, the accuracy of the Euler-Bernoulli nonlin-
ear modeling itself remains questionable. Considering
inextensional beams, only inertia and curvature nonlin-
ear terms exist. For macroscopic cantilevers, Anderson et
al. [42] showed that the first mode displays a hardening
nonlinearity, while the second mode displays softening.
But more recent experiments using nano-mechanical de-
vices demonstrated that for the first mode, experiments
do not match theory: the measured Duffing coefficient
is very small, with even a sign change depending on as-
pect ratio [43]. To date, this has not been explained
to our knowledge. Finally, one approximation which we
did not question so far is the use of the linear mode
shape as trial function. While this is obviously more
accurate than a simple sinewave (valid only in specific
cases), it is not the exact solution of the nonlinear equa-
tion. Beyond approximate models obtained e.g. from the
method of multiple scales [31], an expansion of it can be

written as fn(z, t) = xn(t)ψn(z) +
∑
k>1 xn(t)kδψ

(k)
n (z)

with δψ
(k)
n (z) corrective functions matching the bound-

ary conditions, and verifying δψ
(k)
n (zn) = 0 (such that

xn remains defined as maximum amplitude deflection).
It is obvious that injecting this expression in Eq. (1),

the δψ
(k)
n (z) do generate terms that impact the nonlin-

ear coefficients weighting x2n, x
3
n in the dynamics equa-

FIG. 3: (Color online) Calculated mode shape ψn,m(r, θ) for
mode {n = 2,m = 1} (radius Rd = 1). Top: high-stress limit.
Bottom: low-stress limit. Both are very similar in topography.

tion. Considering the success of the basic modeling for
doubly-clamped beams, we have to assume that at least

in this configuration the δψ
(k)
n (z) contributions remain

numerically small; but to our knowledge this has not been
demonstrated analytically.

The pragmatic point of the present paper is thus
to adapt the very same reasoning applied to doubly-
clamped beams to the case of circular drum resonators.
We shall not question the theoretical limits mentioned
above, but will compare our result to both theory and
experiments from the literature.

III. FORMULATION OF THE PROBLEM

We now develop the same ideas for the case of a 2D
circular structure, see Fig. 2. We first remind the reader
about the conventional linear theory [3]. The generic for-
malism applying to thin drums [obtained within the same
reasoning as Eq. (1)] is the Kirchhoff-Love equation:

Dr ∆2f(r, θ, t) + Tr,0 ∆f(r, θ, t) = −ρh∂
2f(r, θ, t)

∂t2
, (7)
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Dr

FIG. 4: (Color online) Normalized stretching function ε
plotted for mode {n = 2,m = 1} in high-stress limit (with
zn,m/Rd = 1). The stretched surface area Rdδθ∆r is indi-
cated on the graph (central circle represents the drum).

with ∆ · · · = 1
r
∂
∂r (r ∂···∂r ) + 1

r2
∂2···
∂θ2 the Laplacian operator

(here in polar coordinates), Dr = 1
12Erh

3/(1 − ν2r ) the
flexural rigidity in the plane of the drum (νr being Pois-
son’s ratio), 2πRd Tr,0 = 2πRdhσ0 the tension within
the drum, h its thickness and Rd its radius. We assume
materials properties Er, νr, ρ, σ0 and thickness h to be
homogeneous and isotropic over the device; in Eq. (7),
the Tr,0 term resulting from the biaxial stress σ0 is taken
negative for tensile load.

In the limit of small displacements, we write:

fn,m(r, θ, t) = zn,m(t)ψn,m(r, θ), (8)

with ψn,m(r, θ) = φn,m(r) cos (n θ) the mode shapes and
zn,m(t) the motion amplitude; now two indexes are nec-
essary to label all 2D flexural modes of the structure.
Two simple limits are considered in this paper: the high-
stress case (membranes, Dr = 0 with Tr,0 < 0 here), and
the low-stress one (plates, Tr,0 = 0). Using the boundary
conditions, the solutions write:

φn,m(r) = (9)

BesselJn

(
λn,mr
Rd

)
BesselJn

(
λn,mrn,m

Rd

) ,
or

BesselIn

(
λn,mr
Rd

)
− BesselIn(λn,m)

BesselJn(λn,m)
BesselJn

(
λn,mr
Rd

)
BesselIn

(
λn,mrn,m

Rd

)
− BesselIn(λn,m)

BesselJn(λn,m)
BesselJn

(
λn,mrn,m

Rd

) ,
for high-stress and low-stress respectively. λn,m is the
mode parameter and rn,m the radial position of the
maximum amplitude (occurring for given angles θ when

n 6= 0). We give the first modes λn,m and rn,m in Tab. I
(Appendix A); the mode {n = 2,m = 1} is displayed as
an example in Fig. 3 for the two limits (top: high-stress,
bottom: low-stress).

The stretching in 2D is a change of surface area per
unit angle. This writes mathematically:

δS

δθ
= (10)

1

2

∫ Rd

0

[(
∂f(r, θ, t)

∂r

)2
+

1

r2

(
∂f(r, θ, t)

∂θ

)2]
rdr,

at lowest order in f . Geometrically, this quantity is
directly linked to the radial strain ε = ∆r/Rd expe-
rienced by the drum at its edge: δS = Rdδθ∆r, i.e.
δS(θ,t)
δθ = R2

d ε(θ, t) [see Fig. 4]. Injecting the mode shape
Eq. (8) into Eq. (10), one obtains:

ε(θ, t) =

(
zn,m(t)

Rd

)2

× (11)[
C

(1)
n,m + C

(2)
n,m

2
+
C

(1)
n,m − C(2)

n,m

2
cos(2n θ)

]
,

where we have defined (constants with no dimensions):

C(1)
n,m =

1

2

∫ Rd

0

(
dφn,m(r)

dr

)2

rdr, (12)

C
(2)
0,m = C

(1)
0,m, (13)

C(2)
n,m =

1

2

∫ Rd

0

n2

r2
φn,m(r)2 rdr for n 6= 0.

The C
(1,2)
n,m constants of the first modes are given in Tab.

IV, Appendix C. We omit indexes n,m in the labeling of
ε for simplicity. The function Eq. (11) is plotted in Fig.
4 for mode {n = 2,m = 1} in the high-stress limit.

For n = 0, the problem is isotropic and the solution
rather straightforward. However for n 6= 0, the stress
within the drum has an extra angle-dependent component
cos(2n θ). Eq. (7) has thus to be modified to:

Dr ∆2f (14)

+

∫ +h/2

−h/2

1

r

∂

∂r

(
σr r

∂f

∂r

)
+

1

r2
∂

∂θ

(
σθ
∂f

∂θ

)
dz

= −ρh∂
2f

∂t2
,

with σr(r, θ, z, t), σθ(r, θ, z, t) the superposition of the ini-
tial biaxial stress σ0 plus the elastic response of the drum
to the strain ε, Eq. (11). These stress components are
defined below. As for beams, we neglect any other nonlin-
ear contribution arising from the large motion amplitude;
shear stresses (e.g. σr,θ component) are not taken into
account in Kirchhoff-Love theory (as in Euler-Bernoulli).
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IV. STRESS FIELD

The next step is thus to compute the stress field within
the device; this is indeed the extra difficulty that arises
in 2D. As for beams, we assume that the stretching is
adiabatic, i.e. the stress/strain relation can be treated in
a time-independent manner. The total stress field is the
sum of a homogeneous contribution, plus the response to
the angle-dependent stretching. The former is straight-
forward (e.g. Appendix B):

σhom.r = σ0 − Er
1

1− νr
εhom., (15)

σhom.θ = σ0 − Er
1

1− νr
εhom., (16)

σhom.z = 0, (17)

with all shears equal to zero σr,z = σr,θ = σθ,z = 0.
The − sign above comes from our stress convention.
In the problem at stake, from Eq. (11) we have

εhom. =
(
zn,m

Rd

)2 [C(1)
n,m+C(2)

n,m

2

]
. This stress field compo-

nent remains biaxial.

To compute the angle-dependent term, we start
with an ansatz for the associated displacement field
{ur, uθ, uz}:

ur = Rd fr(r, z) ε
angl.(θ), (18)

uθ = Rd fθ(r, z)
dεangl.(θ)

dθ
, (19)

uz = h fz(r, z) ε
angl.(θ), (20)

with εangl. =
(
zn,m

Rd

)2 [C(1)
n,m−C

(2)
n,m

2 cos(2n θ)

]
. These ex-

pressions are then injected in the well-known equilibrium
equations of elasticity theory (see e.g. [2]), neglecting in-
ertial terms; these are given for the interested reader in
Appendix B.

Introducing reduced variables r̃ = r/Rd and z̃ = z/h,
one can show that the displacement functions have to be
written, at lowest order in h/Rd � 1 (thin structure):

fr(r̃, z̃) = cr(r̃) |z̃|+ br(r̃) + ar(r̃) (z̃)
2

[
h

Rd

]2
, (21)

fθ(r̃, z̃) = cθ(r̃) |z̃|+ bθ(r̃) + aθ(r̃) (z̃)
2

[
h

Rd

]2
, (22)

fz(r̃, z̃) = cz(r̃) |z̃|+ bz(r̃) + az(r̃) (z̃)
2

[
h

Rd

]2
− 1

4(1− νr)

(
cr(r̃)− (2n)2 cθ(r̃) + r̃ dcr(r̃)dr̃

r̃

)
(z̃)

2
. (23)

For the nine (adimensional) functions aX , bX , cX (X =
r, θ, z) of the r̃-variable, we then chose the following
ansatz:

br(r̃) = br,0 r̃
α, (24)

bθ(r̃) = bθ,0 r̃
α, (25)

FIG. 5: (Color online) Stress components σangl.r (top) and

σangl.θ (bottom) computed for mode {n = 2,m = 1} in the
high-stress limit. The graph has been normalized to Er = 1,
Rd = 1, and zn,m/Rd = 1 (using νr = +0.3).

cr(r̃) = cr,0 r̃
α, (26)

cθ(r̃) = cθ,0 r̃
α, (27)

bz(r̃) = bz,0 r̃
α−1, (28)

cz(r̃) = cz,0 r̃
α−1, (29)

ar(r̃) = ar,0 r̃
α−2, (30)

aθ(r̃) = aθ,0 r̃
α−2, (31)

and:

az(r̃) = az,0 r̃
α−3, (32)

which leads to seven equations linking the above intro-
duced constants. Obviously, α ≥ 3 to guarantee a physi-
cal solution.

Three more equations are obtained from the stress
boundary conditions on the surface of the drum:
σz(r, θ, z = ±h/2) = 0, σr,z(r, θ, z = ±h/2) = 0 and
σθ,z(r, θ, z = ±h/2) = 0. The last relation is obtained
from the stretching on the periphery, equating the radial
strain ∂ur/∂r to εangl. at r = Rd (see Fig. 4). Solving
the problem under Mathematica R©, we list the constants
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appearing in Eqs. (25-32) in Tab. II, Appendix B (as
a function of n and νr). The exponent α is found to be
2n+ 1, reminding n 6= 0.

The θ-dependent stress field can finally be calculated.
The normal components write, in the limit h/Rd ≈ 0:

σangl.r = −Er η(n)r (νr)

(
r

Rd

)α−1
εangl., (33)

σangl.θ = −Er η(n)θ (νr)

(
r

Rd

)α−1
εangl., (34)

σangl.z = 0. (35)

The functions η
(n)
r (νr) and η

(n)
θ (νr) with n 6= 0 are de-

fined by:

η(n 6=0)
r (νr) =

1 + 2n− 2(1 + n)νr
(1 + 2n)(1 + νr)

, (36)

η
(n 6=0)
θ (νr) = − 3 + 4n

(1 + 2n)(1 + νr)
. (37)

The only nonzero shear stress is σr,θ (see Appendix B).
It shall be neglected in this modified Kirchhoff-Love the-
ory, as already stated. As an example, the computed
(normalized) stress components are displayed in Fig. 5
for mode {n = 2,m = 1}, in the high-stress limit.

Angle-dependent terms Eqs. (33-35) and homogeneous
terms Eqs. (15 -17) can be rewritten in a compact form:

σr=σ0 − Er

[
η(0)r (νr) ε

hom. + η(n)r (νr)

(
r

Rd

)2n

εangl.

]
, (38)

σθ=σ0 − Er

[
η
(0)
θ (νr) ε

hom. + η
(n)
θ (νr)

(
r

Rd

)2n

εangl.

]
, (39)

σz=0, (40)

provided we define η
(0)
r (νr) = η

(0)
θ (νr) = η(0)(νr) =

1/(1− νr). The stress is still planar, and independent of
z, but σr 6= σθ and is neither homogeneous nor isotropic.
Injecting these in Eq. (14), we can now solve the problem
at hand.

V. MODE PARAMETERS

Having found the stress field, we can now project Eq.
(14) on a given mode {n,m}. We thus define modal
parameters:

Mn,m = ρh

∫ 2π

0

∫ Rd

0

[ψn,m(r, θ)]
2
rdrdθ, (41)

Km,n = Dr

∫ 2π

0

∫ Rd

0

[
ψn,m(r, θ)∆2ψn,m(r, θ)

]
rdrdθ

+ Tr,0

∫ 2π

0

∫ Rd

0

[ψn,m(r, θ)∆ψn,m(r, θ)] rdrdθ, (42)

in a similar fashion to Eqs. (4 - 5). The resonance fre-

quencies ωn,m =
√
Km,n/Mn,m reduce to:

ωn,m = (43)√
|Tr,0|
ρ h

(
λn,m
Rd

)
or√
Dr

ρ h

(
λn,m
Rd

)2
,

in the limit of high-stress and low-stress devices, respec-
tively. We give mass and spring values for the first modes
in Tab. III, Appendix C.

Beyond the usual linear coefficients, the Duffing term
analogous to Eq. (6) finally writes:

K̃n,m = −Erh
R2
d

× (44)[
C

(1)
n,m + C

(2)
n,m

2
η(0)(νr)

∫ 2π

0

∫ 1

0

[ψn,m(r̃, θ)∆ψn,m(r̃, θ)] r̃dr̃dθ

+
C

(1)
n,m − C(2)

n,m

2
×(

η(n)r (νr)
π

2

∫ 1

0

φn,m(r̃)

r̃

d

dr̃

(
r̃2n+1 dφn,m(r̃)

dr̃

)
r̃dr̃

+ η
(n)
θ (νr)

n2π

2

∫ 1

0

r̃2n+1 φn,m(r̃)2

r̃3
r̃dr̃

)]
,

with the integrals written in normalized units r̃ = r/Rd
(no dimensions).

Numerical values for the integrals defining the coeffi-
cients K̃n,m are listed and discussed for the first modes in
Appendix C, Tabs. V and VI. For beams, Eq. (6) leads

to a scaling of the Duffing parameter k̃n ∝ EzAz/L
3.

Similarly here, Eq. (44) leads to K̃n,m ∝ Er(h 2πRd)/R
3
d;

in both cases, the Duffing effect is a stiffening.

VI. DISCUSSION

As for beams, there is a tremendous literature on
nonlinear plates and membranes. In Section II, we re-
viewed the beam-based modeling in order to clarify the
basis of the theory that we adapt here in 2D; for a de-
tailed account of historical developments in the model-
ing of drums, we direct the interested reader to Refs.
[31, 44, 45].

Let us however illustrate the theoretical state-of-art
with typical results from the field of MEMS and NEMS.
In the last decades, the fast development of micro and
nano-mechanics has been an impetus to new theoretical
support, especially using modern numerical computation
capabilities. Especially, the use of electrostatic actua-
tion has been directly incorporated in the modeling (e.g.
Ref. [17] for beam-based structures). For clamped cir-
cular plates, the conventional approach is to reduce the
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FIG. 6: (Color online) Comparison between our theory (stars)
and Ref. [31] (squares) in units of Erh/R

2
d, computed for

ν = 1/3; see text.

problem to a system of coupled ordinary differential equa-
tions, and ultimately rely on numerical methods for pre-
dictions [46, 47]. Indeed, numerical integration of non-
linear equations including electrostatic drives has proven
to be an extremely efficient tool for fitting experimental
data; this is the procedure followed in Ref. [48] to access
values of the Young’s moduli in graphene membranes.

In contrast, our modeling remains at a generic level,
not introducing any specific drive fields: we model only
the stretching effect with no hypothesis on the origin of
in-built stress. The aim is to produce an analytic expres-
sion for the Duffing coefficient. Besides, all these works
deal with axisymmetric modes; Eq. (44) applies to any
{n,m}.

From Ref. [31], we reproduce here the analytical mod-
eling of axisymmetric modes. The nonlinear coefficient
K̃normn=0,m normalized to Erh/R

2
d is written as:

K̃norm0,m =

∞∑
k=1

[∫ 1

0
(dφ0,m[r̃]/dr̃)

2
BesselJ1(ζkr̃) dr̃

]2
(ζ2k − 1 + ν2) [BesselJ1(ζk)]

2 , (45)

with the ζk parameters tabulated for ν = 1/3 therein
(k > 0 integer) [32]. Comparison with our expression is
given in Fig. 6, summing up to k = 12. In the displayed
range, this leads to a numerical accuracy better than the
size of the symbols. The two models converge towards
each other for large m, with our numerical value above
the one of Ref. [31]; for m > 1 the difference is less than
about 30 %.

Beyond comparison to existing theory, we shall as-
sess the validity of our modeling by comparing it to
benchmark measured devices from the literature in their
{n = 0,m = 0} resonance: a MEMS type silicon-nitride
membrane in the high-stress limit, a top-down graphene
NEMS device (low stress) and finally an aluminum drum-
head NEMS that is typically used in quantum electronics
experiments.

In Ref. [49] the nonlinear behavior of a square-like sil-
icon nitride drum has been studied. From Fig. 1 (b) of
this article, we infer a Duffing parameter normalized to
the mode mass of about K̃0,0/M0,0 ≈ +1.5 1023 m−2s−2.
This fits the data for weak enough excitations; with larger
drives, other nonlinear features kick in [49]. Even though
the initial stress σ0 stored in the structure is not very
high (110 MPa), the device is well within the membrane
limit. Looking at Fig. 2 (a) from Ref. [49] which dis-
plays the optically measured pattern of the first mode,
it appears that it can be accurately approximated by a
circular shape of radius Rd ≈ 210 µm. From the param-
eters given in the publication (supplementary material,
Er = 240 GPa, ρ = 3200 kg/m3, thickness h = 480 nm),
taking a standard Poisson ratio of νr = +0.3, we ob-
tain K̃0,0/M0,0 ≈ +1.2 1023 m−2s−2. The corresponding
mode resonance frequency calculated is 338 kHz, match-
ing also consistently the measured 321 kHz.

In Ref. [50] the nonlinear behavior of a (multilayer)
graphene drum has been studied. The reported stored
stress is very low (about 5 MPa), and the device is bet-
ter described in the plate limit. From parameters quoted
in the publication (Er ≈ 700 GPa, ρ = 600 kg/m3,
Rd = 2.5 µm, h = 5 nm, neglecting the Poisson ratio)

we compute K̃0,0/M0,0 ≈ +3.3 1031 m−2s−2 for a res-
onance frequency of 12.8 MHz. Again, this is in close
agreement with measured values of +2. 1031 m−2s−2 and
14.5 MHz respectively, given in the publication for the
zero DC voltage bias limit.

In Ref. [51], the nonlinear dynamics of an opto-
mechanical system consisting of an aluminum drumhead
device coupled to a microwave cavity has been studied.
The device is about 8.5 µm in radius and 170 nm in
thickness (Appendix of Ref. [51]), and displays a reso-
nance frequency for the fundamental out-of-plane flex-
ure of 6.8 MHz. The in-built stress σ0 is not accu-
rately known, but should be in the range 0 − 60 MPa.
We take for aluminum the bulk values Er = 70 GPa,
ρ = 2700 kg/m3 and νr = +0.35. The Duffing parameter
that is fit onto the mechanical frequency shift (Fig. 4 of

Ref. [51]) is about K̃0,0/M0,0 ≈ +7. 1027 m−2s−2. This
matches within ±50 % the theoretical estimate based on
our modeling, for high-stress and low-stress limits, with
a calculated frequency matching 6.7 MHz.

VII. CONCLUSION

Following the same methodology as for beams, we
present a theory describing the geometrical (stretching)
nonlinearity of drum devices. The basic hypotheses are
to neglect any other nonlinear features apart from the ex-
tra tensile stress, to neglect shearing forces, and to treat
the stretching as a static effect. Two limits are consid-
ered for numerical estimates: high-stress (membranes)
and low-stress (plates), but the mathematical description
is written in a generic fashion. The difficulty lies in the
calculation of the stress profile induced in the stretched
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drum for non-axisymmetric modes; the analytic solution
however exists in the limit of a thin structure.

We thus present a simple and fully analytic model-
ing of the Duffing nonlinear coefficient K̃n,m of circu-
lar plates and membranes. Only the knowledge of the
mode shapes is necessary for the calculation of K̃n,m,
through simple integrals evaluation; the first numerical
values are given in Appendix. No hypotheses are made
on the drive schemes, neither on the nature of the in-
built biaxial stress. The theory is compared to existing
analytics from Ref. [31], and to benchmark experimental
data [49–51]. In both cases, the agreement is good.

Further comparison with experiments should be done
with higher modes, especially non-axisymmetric ones
(n 6= 0). Besides, the presented theory can be in principle
extended to mode-coupling [24, 25]; an experimental and
theoretical study of this regime would definitely assess
the validity of the presented mathematical methods.

VIII. DATA AVAILABILITY
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data were created or analyzed in this study.
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APPENDIX A: MODE PARAMETERS

In the Table below we give the first modes λn,m and
rn,m parameters for both high-stress (H.S.) and low-
stress (L.S.) limits. Inserting these in Eqs. (9) one can
easily compute the corresponding mode shapes (see Fig.
3 for an example).

APPENDIX B: STRESS FIELD SOLUTION

We remind the reader basics of elasticity theory ex-
pressed in cylindrical coordinates. The strain fields can

mode {n,m} H.S. λn,m H.S. rn,m L.S. λn,m L.S. rn,m

{0, 0} 2.40483 0. 3.19622 0.
{0, 1} 5.52008 0. 6.30644 0.
{1, 0} 3.83171 0.4805123 4.61090 0.4102482
{1, 1} 7.01559 0.2624418 7.79927 0.2358243
{0, 2} 8.65373 0. 9.43950 0.
{2, 0} 5.13562 0.5947163 5.90568 0.5258299
{1, 2} 10.1735 0.1809784 10.9581 0.1680282
{2, 1} 8.41724 0.3628549 9.19688 0.3319174
· · · · · · · · · · · · · · ·

TABLE I: First mode parameters. Left: high-stress (H.S.),
right: low-stress (L.S.). For n = 0 modes, the maximum
amplitude is at the center (r0,m = 0).

be written in terms of the displacement fields:

εr =
∂ur
∂r

,

εθ =
ur
r

+
1

r

∂uθ
∂θ

,

εz =
∂uz
∂z

,

for the normal components, and:

2εr,θ =
∂uθ
∂r
− uθ

r
+

1

r

∂ur
∂θ

,

2εr,z =
∂ur
∂z

+
∂uz
∂r

,

2εθ,z =
1

r

∂uz
∂θ

+
∂uθ
∂z

,

for the shear strains.

For an isotropic homogeneous Hookean material, we
have:


σr
σθ
σz
σr,θ
σr,z
σθ,z

 =
Er

(1 + νr)(1− 2νr)

(
H
)


εr
εθ
εz

2εr,θ
2εr,z
2εθ,z


with (H) =


1− νr νr νr 0 0 0
νr 1− νr νr 0 0 0
νr νr 1− νr 0 0 0
0 0 0 1−2νr

2 0 0

0 0 0 0 1−2νr
2 0

0 0 0 0 0 1−2νr
2


for the relationship between stresses (σ) and strains (ε).
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The equilibrium equations then write:

∂σr
∂r

+
1

r

∂σr,θ
∂θ

+
1

r
(σr − σθ) +

∂σr,z
∂z

= 0,

∂σr,θ
∂r

+
1

r

∂σθ
∂θ

+ 2
σr,θ
r

+
∂σθ,z
∂z

= 0,

∂σr,z
∂r

+
1

r

∂σθ,z
∂θ

+
σr,z
r

+
∂σz
∂z

= 0,

when neglecting the inertial terms.

The solution for the homogeneous stretching compo-
nent is straightforward. The well-known displacement
field simply writes:

fr(r, z) = r,

fθ(r, z) = 0,

fz(r, z) = − 2νr
1− νr

z,

with ur = fr ε
hom., uθ = 0, uz = fz ε

hom. by definition.
Then εr = εθ = εhom. and εz = −2νrε

hom./(1 − νr); all
other components of the strain field are zero. Clearly,
imposing a radial stretching also causes nonzero tangen-
tial and vertical strains. The resulting stresses are Eqs.
(15-17).

The case of the angular-dependent component is much
more complex. Injecting in the above the ansatz Eqs.
(18-20) for the displacement fields, and writing the prob-
lem in reduced coordinates, we realize that the solu-
tion should be of the type Eqs. (21-23) at lowest order
in h/Rd. The symmetry of the drum with respect to
z → −z has been used. To further reduce the problem,
another ansatz is needed for the r̃-dependent functions in-
troduced in the writing of the solution: we assume them
to be power laws, Eqs. (25-32). Taking into account the
boundary conditions (no z-component stress on the sur-
face of the drum, and fixed radial strain at the periphery),
we end up with the constants listed in Tab. II.

The ε0 term is simply the prefactor of the angular-
dependent strain, εangl. = ε0 cos(2n θ). The stresses do
depend on z̃2. However, in the limit h/Rd → 0 these
terms vanish and the stress components are homoge-
neous within the thickness of the drum. Also σz = 0:
the stress state is planar. The two normal components

σangl.r , σangl.θ Eqs. (33-34) are displayed in Fig. 5 for
mode {n = 2,m = 1} in the high-stress limit.

Furthermore, the only nonzero shear stress component

is σangl.r,θ . It then writes:

σangl.r,θ = −Er
n(−3 + νr) + (−2 + νr)

(1 + 2n)(1 + νr)

(
r

Rd

)2n

ε0 sin(2n θ),

with the − sign matching our stress convention (tensile).
It is neglected in the presented modeling.

Parameter Expression

br,0 ε0/(1 + 2n)
bθ,0 br,0 2(1 + n)(2− νr)/(2n)2

cr,0 0
cθ,0 0
bz,0 0
cz,0 br,0 2(1 + n)νr
ar,0 −br,0 2[(1 + n)(2− νr)− n2]
aθ,0 br,0 n[1− 4(1 + n)(2− νr)/(2n)2]
az,0 0
α 2n+ 1

ε0
(
zn,m

Rd

)2 C
(1)
n,m−C(2)

n,m

2

TABLE II: Strain coefficients of the angular-dependent con-
tribution, as a function of n, νr. ε0 is the amplitude of the
cos(2n θ) stretching term.

APPENDIX C: MASS, SPRING AND DUFFING
PARAMETERS

In this Appendix we give numerical estimates for mass,
spring constant and nonlinear parameters calculated for
the first modes, in the two simple limits of high-stress
and low-stress.

mode {n,m} H.S. Mn,m H.S. Kn,m L.S. Mn,m L.S. Kn,m

{0, 0} 0.269513 0.779325 0.182834 9.54057
{0, 1} 0.115780 1.763983 0.101896 80.5872
{1, 0} 0.239561 1.758616 0.184581 41.7156
{1, 1} 0.133016 3.273413 0.119933 221.883
{0, 2} 0.073686 2.759075 0.067543 268.132
{2, 0} 0.243735 3.214208 0.200046 121.669
{1, 2} 0.092082 4.765268 0.085466 616.168
{2, 1} 0.155586 5.511635 0.142446 509.546
· · · · · · · · · · · · · · ·

TABLE III: Mass and spring constant for the first modes
(norm. integrals, see text). Left: high-stress (H.S.) and right:
low-stress (L.S.).

For this purpose, we re-write the relevant integrals in
an adimensional form such that:

Mn,m = ρhπR2
dMn,m,

and:

Km,n =

2πRd |Tr,0|
Rd

Kn,m

or
Dr 2πRd
R3
d

Kn,m,

in the high-stress and low-stress limits, respectively.
ρhπR2

d is the mass of the drum (in kg), and 2πRd |Tr,0|
the force tensioning the device at the periphery (in N,
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equivalent to Sz for the beam case, see Figs. 1 and 2).
Similarly, the flexural rigidity times perimeter Dr 2πRd
replaces the product EzIz of the Euler-Bernoulli model-
ing. Numerical values for Mn,m and Kn,m are listed in
Tab. III. Note that the mass parameters Mn,m obtained
in both high-stress and low-stress limits are very close.
Resonance frequencies are then given by Eq. (43).

mode {n,m} H.S. C
(1)
n,m H.S. C

(2)
n,m L.S. C

(1)
n,m L.S. C

(2)
n,m

{0, 0} 0.389664 0.389664 0.316669 0.316669
{0, 1} 0.881992 0.881992 0.851698 0.851698
{1, 0} 1.139994 0.618625 0.920002 0.630386
{1, 1} 2.60152 0.671898 2.50136 0.682519
{0, 2} 1.37954 1.37954 1.34492 1.34492
{2, 0} 1.62609 1.58811 1.31374 1.62645
{1, 2} 4.07293 0.692365 3.96830 0.696559
{2, 1} 3.71904 1.79259 3.55652 1.83054
· · · · · · · · · · · · · · ·

TABLE IV: Nonlinear coefficients C
(1,2)
n,m computed for the

first modes. Left: high-stress (H.S.) and right: low-stress
(L.S.). Note the specificity of n = 0 modes (by definition

C
(1)
0,m = C

(2)
0,m, no angular dependence of strain/stress).

In Tab. IV we give the stretching C
(1,2)
n,m constants (no

units) calculated for the first modes. High-stress and low-
stress cases are again presented; the obtained numerical
values in the two limits are very similar. As an illustrative
example, the stretching function ε calculated for mode
{n = 2,m = 1} in the high-stress limit is presented in
Fig. 4 (in normalized units).

We finally propose numerical estimates for the nonlin-

mode {n,m} H.S. K̃
(1)
n,m H.S. K̃

(2)
n,m H.S. K̃

(3)
n,m

{0, 0} 0.779325 X X
{0, 1} 1.76398 X X
{1, 0} 1.75862 0.352992 -0.0598902
{1, 1} 3.27341 0.578822 -0.0332539
{0, 2} 2.75908 X X
{2, 0} 3.21421 0.421149 -0.0997277
{1, 2} 4.76527 0.817227 -0.0230206
{2, 1} 5.51164 0.607419 -0.0562541
· · · · · · · · · · · ·

TABLE V: Nonlinear Duffing coefficients K̃
(1,2,3)
n,m (no units)

computed for the first modes, high-stress (H.S.) limit. Note

that K̃
(1)
n,m = Kn,m (H.S.), Tab. III. For n = 0 modes, K̃

(2,3)
0,m

are irrelevant (X above).

ear coefficients written as:

K̃n,m = +
Er h2πRd

R3
d

×[
C

(1)
n,m + C

(2)
n,m

2
η(0)(νr)K̃

(1)
n,m +

C
(1)
n,m − C(2)

n,m

2
×
(
η(n)r (νr)K̃

(2)
n,m + η

(n)
θ (νr)K̃

(3)
n,m

)]
,

where the adimensional K̃
(1,2,3)
n,m are given in Tabs. V

and VI (high-stress and low-stress limits respectively).
Note the chosen normalization, that matches the Euler-
Bernoulli formalism with h2πRd the cross-section area of

the device at the clamp; in the high-stress limit, K̃
(1)
n,m =

Kn,m.

From Tabs. V and VI, the C
(1,2)
n,m values of Tab. IV and

the expressions of the functions η
(n)
r,θ (νr) [Eqs. (36,37)

and subsequent text], one realizes that the geometrical
Duffing nonlinear parameter is dominated by the homoge-
neous contribution. As a result, K̃n,m is always positive,
as in the beam case. Finally, one can see that the numer-

ical evaluations of K̃
(1,2,3)
n,m are about twice larger in the

high-stress limit than in the low-stress case. As such, for
identical material parameters (Er, νr, ρ) except the biax-
ial stress σ0 and identical geometry (Rd, h), a membrane

Duffing nonlinearity K̃n,m (H.S.) is approximately twice
larger than for a plate (L.S.).

mode {n,m} L.S. K̃
(1)
n,m L.S. K̃

(2)
n,m L.S. K̃

(3)
n,m

{0, 0} 0.316669 X X
{0, 1} 0.851698 X X
{1, 0} 0.775194 0.205519 -0.0461452
{1, 1} 1.59194 0.433603 -0.0299831
{0, 2} 1.34492 X X
{2, 0} 1.47010 0.209512 -0.066682
{1, 2} 2.33243 0.663581 -0.0213665
{2, 1} 2.69353 0.388931 -0.0474821
· · · · · · · · · · · ·

TABLE VI: Nonlinear Duffing coefficients K̃
(1,2,3)
n,m (no units)

computed for the first modes, low stress (L.S.) limit. For

n = 0 modes, K̃
(2,3)
0,m are irrelevant (X above).
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