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Abstract—In order to limit and slow the development of diseases, they 

have to be diagnosed early as possible to treat patients in a better and 

more rapid manner. In this paper, we focus on a noninvasive and quick 

method based on diffuse fields in elastography to detect diseases that 

affect the stiffness of organs. To validate our method, a phantom 

experiment numerically pre-validated is designed. It consists of seven 

vibrators that generate white noises in a bandwidth of [80-300] Hz and 

then a complex acoustic field in a phantom. Waves are tracked by a linear 

ultrasound probe L11-4v linked to a Verasonics Vantage System and are 

converted into a particle velocity 2D map as a function of time. The phase 

velocity of the shear waves is calculated using a temporal and 2D spatial 

Fourier transform and an adapted signal-processing method. Shear wave 

velocity dispersion measurement in the frequency bandwidth of the 

vibrators enables one to characterize the dynamic hardness of the 

material through the viscoelastic parameters μ and η in an acquisition 

time shorter than a second (Tacq=300 ms). With the aim of estimating the 

consistency of the method, the experiment is performed N=10 times. The 

measured elastic modulus and viscous parameter that quantify the 

dynamic properties of the medium correspond to the expected values: μ = 

1.23±0.05 kPa and η = 0.51±0.09 Pa∙s. 

 
Index Terms — complex acoustic field, elastography, rheology, 

ultrasound imaging 

I. INTRODUCTION 

The aim of the method presented below is to detect diseases that 
affect the stiffness of biological tissues to improve the care of 
patients and monitor their pathologies. Various studies show that 
there is a direct link between the viscoelastic parameters of the 
affected organs and diseases such as Alzheimer disease [1], tumors in 
the brain tissue [2], skin problems [3], or liver fibrosis [4]. 
Ultrasound elastography is a modality that quantitatively measures 
the elasticity of a material. In the medical field, it tends to 
complement or even substitute for palpation, which suffers from 
limitations such as its qualitative nature and the fact that it is a 
surface-based and operator-dependent examination method. The goal 
is to detect diseases as soon as possible and classify them by stage to 
slow their spread.  

 
Vibration-Controlled Transient Elastography (VCTE) based on 

Fibroscan (Echosens, Paris, France) is considered today as the 
reference device to noninvasively assess liver stiffness, which has 
been shown to be a good surrogate marker of liver fibrosis [5]. One 
major issue when using VCTE is the necessity to find an optimal 
measurement window before triggering measurements. Indeed, the 
presence of artifacts like lungs, ribs or blood vessels disturbs the 
shear wave propagation and makes the stiffness estimation difficult 
 
 

 

[6]. In this context, it would be interesting to develop a method that 
would make possible to analyze shear wave propagation even in the 
case of a complex and perturbed field. In radiation force elastography 
based method like Shear Wave Elasticity Imaging (SWEI) [7] or 
Shear Wave Elastography (SWE) [8,9] the shear wave is perfectly 
controlled with an ultrasound focused beam. The shear wave speed 
(SWS) is measured in the direction of the wave propagation to avoid 
the bias due to the presence of an angle between the direction of 
propagation and the direction of analysis. The main interest of our 
method is the fact that the shear sources position and their temporal 
evolution can be unknown. The presence of reflective structures, such 
as hard membranes around an organ, creates rebounds that expend 
the k-space of the acoustic field and reinforce the performance of our 
analysis with our approach. 

 
 Vibration sources can be passive: the physiological noise 

naturally present in the human body [10], pulsatility of the blood 
circulation, cardiac beating or muscle activities are all acting as shear 
wave sources. However, sources can be active by using external 
vibrators [5], loudspeakers [11,12] or using anatomical pathways as 
waveguide [5,13] without knowing exactly the position of the shear 
source. The central point of the algorithm is the time and 2D space 
Fourier transform to split the complex acoustic field into 
spatiotemporal frequencies assuming the medium locally isotropic 
and homogeneous. For each temporal pulsation ω, a 2D k-space 
analysis allows us to estimate the wave vector k of multiple waves 
that propagate in a soft medium. The phase velocity cs(ω) is linked to 
the wave vector k(ω) and the pulsation ω by expression Eq.1: 

 ��� = �/�(�) (1) 

 
By varying the pulsation ω, and carrying out the spatial analysis, 

we are able to measure the phase velocity evolution with frequency 
cs(ω). Shear viscosity η is an important parameter to consider for the 
study of soft tissues [14]. Through a rheological model, the Voigt 
model in this study, shear elasticity μ and shear viscosity η are 
estimated from cs(ω) dispersion. Since the medium is not purely 
elastic, we don’t have the possibility to use the simple relation Eq.2: 

 
��� = � (2) 

 

where ρ is the medium density. This work is inspired by the time-

reversal analysis of acoustic fields recently developed by S. Catheline 

[15] and the study led by H. Zhao [16], who designed directional filters 

that separate elementary shear waves which compose a complex diffuse 

field, e.g., they turned off all sources except the one in the selected 

direction.  

The study is divided into two parts: a first part with simple case of a 

continuous progressive monochromatic plane wave source (Part II.A) 

and a second part with a more complicated field (Part II.B). Then, to 
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verify the reliability of our method, the phantom validation results are 

presented. 

II. METHOD OF PHASE VELOCITY MEASUREMENT USING SPACE AND 

TIME FOURIER TRANSFORM 

We are interested in the particle velocity field � induced by wave’s 
propagation through a medium. Those waves are generated by 
sources randomly positioned in the imaging plane and with unknown 
temporal evolution. Since the field is composed of multiple waves 
which propagate in different directions pointed by their own wave 
number k, it is judicious for our analysis to use plane wave 
decomposition where we associate the plane wave magnitude A to the 
phase term in the classical form (Eq 3). To simplify the calculation, 
the complex plane wave expansion method is used for this study [17]. 
For each angular frequency ω, there is infinity of wave numbers 
going in all directions given by wave vector k (Eq 4). Thus, the 
complex particle velocity v and dispersion relation are: 

 (�, �) = � � �� (���, �) exp��(��� ∙ �� − ��)� ������ !"! !#  (3) 

 
with: 
 �(�) = �/��(�) (4) 

 
The plane wave magnitude A at pulsation ω has significant 

magnitude if the wave vector k satisfies the dispersion relation (Eq 4). 

A. Extract velocity from a monochromatic plane progressive wave 

 To explain the basics of the method, we use the simple case of a 
monochromatic plane wave (Eq 5) passing through a plane as 
follows: 

 �($, %, �) = � exp&�(�'#$ + �)#% − �� + *)+ (5) 
 

 where: �� = �/,�'#� + �)#�   
 
 The previous form of the signal can be rewritten as a function of 
the angle θ between the direction of propagation and the Oz axis (Eq 
6). 
 �'# =  2π ∙ cos(2) /3 and �)# = 2π ∙ sin(2) /3 (6) 
 
 Now, we fix the time at instant t = t0 and take a snapshot of a 
region of interest presented in the Figure 1.  
 

 
Fig. 1.  Particle velocity v(z,x,t = 2 ms) that propagates with angle θ = 30 o. 

 The product of the time and frequency is associated with a 
constant phase shift φt = 2πft0 + φ = 0: 

 �($, %) = � exp&��#(cos 2 × $ + sin 2 × x)+ (7) 

 �# = ,�'#� + �)#� = 1/3 = �/��(�) (8) 

 
 The particle velocity signal now being established, parameters of 
the wave field are chosen. As an example, the time frequency is f = 
100 Hz, the incident ray has an angle θ = 30 o from the axial axis z 
and the shear wave speed is imposed at cs = 1.15 m/s. 
 Then the space Fourier transform is used to measure the wave 
number. Both parameters ω and λ enable the calculation of velocity cs 
as previously defined in equation (Eq 8). 
 The 2D space Fourier transform is applied to the particle velocity 
data at v(f = 100 Hz, θ = 30 o) to find the wavelength λ and phase 
velocity cs [18], which enables the calculation of the mean shear 
modulus μ of the medium in the region of interest if the density of the 
probe medium ρ is known. The complex signal v(kz,kx) at f = 100 Hz 
contains information about the amplitude and direction of the wave 
because of the phase (Eq 9). 
 |�(�9, �:)| = � ;(�' − �'#, �) − �)#) (9) 

 
 For a monochromatic wave, since k0=2πf/cs then Az ≠ 0 for only 
one point of coordinates (kx0, kz0) as presented in Figure 2.  
 

 
Fig. 2.  Space Fourier Spectrum magnitude |vz(kz,kx)| from a plane shear 

wave vz(z,x,f = 100 Hz). 

 
 We can determine the direction of propagation of the waves and 
the source direction by finding the maximum of the magnitude 
|v(kz,kx)| using method explained in section B. We find: 
  �'# = 473 rad ∙ m"C, �)# = 273 rad ∙ m"C 

 
 resulting in: 

 �# = ,(473 rad ∙ m"C)� + (273 rad ∙ m"C)� = 546 rad ∙ m"C  
 

 In this step, each parameter of the equation of the particle velocity 
is fully known (Eq 10), and it can be rewritten as a function of space 
and time with their values:  
 �($, %, �) = � exp��F(473 rad ∙ m"C) × $ + (273 rad ∙ m"C) × % −2G(100 I$) × �J� (10) 

 
 Finally, with frequency f0, velocity cs(f0) can be deduced by 
finding the location of A as a non-zero value and applying equation 

13. With the spatiotemporal frequencies (k0= 546 rad∙m-1, f0 = 100 
Hz), the phase velocity is approximately cs(100 Hz) = 1.15 m/s. The 
value calculated is equal to the imposed one. 
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B. Extract velocity from a complex wave field 

 Now, let us take the example of a complex acoustic field that came 
from multiple sources at same frequency. In this case, assuming 
isotropy of sources, waves originate from all around the region of 
interest. Assuming linear acoustic, waves propagate independently in 
different directions and create an interference pattern which 
continuously changes with time. This situation is equivalent to the 
sum of multiple monochromatic plane waves, as represented in 
Figure 3. Our method enables us to determine the direction of 
acoustic sources all around the region of interest. 
 

 
Fig. 3. Real part of the particle velocity for a diffuse field (21 acoustic 

sources) at 3 instants. 
 

 That complex field, shown in Figure 3, was computed with Ns = 21 
acoustic sources excited at frequency f = 100 Hz, which were 
distributed all around a material from θ = -135 o to 135 o with an 
angle between sources of Δθ = 13.5 o. The empty space, between 
sources 1 and 21 in Figure 4, represents the location of a probe and 
anticipates the experimental part of this study. The grid for this 
mathematical model contains vectors of length Nz = 362, Nx = 248 
with identical spatial resolutions Δz = Δx = 150 µm. 
 

 
Fig. 4. Drawing of 21 sources setup around a circular medium from -135 ° to 

135 ° with 13.5 ° between sources. 

 
 As previously, the space Fourier transform is applied to the data. 
To improve the space resolution, zero padding is used. The 
performance of the fast Fourier transform algorithm is optimized 
when the lengths of the transformed signal are an exact power of two 
in each dimension; thus, we take the power of two superior to the 
length of the vector and fill the void with zeros [19]. To obtain an 
identical frequency resolution on between z and x axes, lengths must 
be identical for both directions x and z because the original spatial 
resolutions are equal Δz = Δx. Sampling parameters are grouped in 
Table 1 (part III.). 

 For a homogeneous and isotropic medium, the velocity remains 
identical everywhere and is independent of the propagation’s 
direction. If the resolution in each direction is the same, then the 
spectrum |v(kz,kx)| of the diffuse field is a ring around the center 
(kz,kx) = (0;0). This spectrum is a Dirac delta function summation that 
forms a circle drawn on Figure 4. 
 

 
Fig. 5. Space Fourier Spectrum magnitude |vz(kz,kx)| of the diffuse field 

constructed from 21 plane shear waves. 

 
 Obviously, there is no source at the location of the ultrasonic 
sensor, so the ring will not be complete as shown in Figure 5. As 
presented in Figure 4, no wave comes from the probe to the medium 
in the z axis direction, which explains the blank space in its front. We 
can approximately measure the radius by selecting the maximum of a 
high amplitude peak. For example, the maximum is located near kx = 

0 rad∙m-1 and kz = -500 rad∙m-1. Unfortunately, this is no optimal 
method because it does not take account the 2D characteristics of the 
spectral data.  
 
 Some problems prevent us from properly determining the velocity 
of shear waves, such as the finite length of the signals, the sampling, 
the medium attenuation or the multiplicity of the sources. Those 
problems induce issues such as the lack of resolution, periodization 
of the spectrum and interferences, which constrain us to use 
techniques to find the closest value of the mean phase velocity of the 
shear waves. To remove the side lobe effect and inconstancy of the 
spectrum, we imagine what appears similar to the spectrum of a 
perfect theoretical diffuse field |vT(k,c)|, which represents a circular 
continuous array of isotropic sources placed all around a medium 
[20]. In the 2D space Fourier domain, |vT(k,c)| is ideally a circle of 
Dirac functions 1/λ away from the origin. Following this reasoning 
the template of reference spectrum can be modeled in 2D by a 
Gaussian function (Eq 11) with both mean value and standard 
deviation variable and a high order n. 
 |�K(�, �)| = exp L− C� MN"NOPQ R�ST , U �# = �/�VW = X/�(�YZW�)[/\] (11) 

 
 σg is the standard deviation of the Gaussian that is linked to the 
spectrum obtained from the data, n is the order of the Gaussian 
function, and W is the full width at half maximum (FWHM) of the 
peak. A higher order of the Gaussian corresponds to a steeper slope 
of the curve and a tray in the summit. To have a good compromise 
between the gate and the Gaussian functions, we increase the order n 
to three as drawn in Figure 6. 
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Fig. 6. Gaussian ring for velocity cs(100 Hz) = 1.15 m/s;  

standard deviation σg = 1.88 rad∙m-1; order n = 3. 

 
 Gaussian crowns |vT(c)| are generated for several velocity values c 
= [0.8:0.01:1.8] m/s, multiplied with the result of the space Fourier 
transform of the particle velocity data |v| to create the function γ(c) 
(Eq. 12): 
 ^(�) = |�| × |�_(�)| (12) 

 
 The summation of γ(c) over all points in the 2D space gives the 
autocorrelation value at lag 0 (Eq. 13).  
 Γ(�) = ∑ ∑ ^(�)NbNc = ∑ ∑ |�| × |�_(�)|dbdc  (13) 

 
 These values Γ(c) give information about similarity between the 
template |vT(c)| and the complex acoustic field |v| created by 21 
sources.  
 

 
Fig. 7. Upper line: Gaussian crown for several velocity values c = 

[0.7;1.15;1.6] m/s. Lower line: γ(c) corresponding to the multiplication of 

|vT(c)|. The resulting correlation Γ(c) are respectively Γ(0.7 m/s) = 1.1 m²/s², 
Γ(1.15 m/s) = 9.2 m²/s², Γ(1.6 m/s) = 2.4 m²/s². 
 
 The Gaussian crowns are plotted on Figure 7 for c = 0.7 m/s, c = 
1.15 m/s and c = 1.6 m/s. The corresponding γ(c) function for these 
three values c is then computed and the results presented in Figure 7. 
The corresponding Γ values are Γ(0.7 m/s) = 1.1 m²/s², Γ(1.15 m/s) = 
9.2 m²/s² and Γ(1.6 m/s) = 2.4 m²/s². The maximum of the Γ function 
provides us the mean wave velocity c. A bell curve is observed in 
Figure 8, so a parabolic interpolation around the three highest values 
enables us to omit the sampling effects. 
 

 
Fig. 8. The coefficient correlation Γ(c) corresponding to the multiplication of 

|v| by |vT(k,c)| with c = [0.8:0.01:1.8] m/s in function of the celerity c. 

�e = arg max(Γ(�))  (14) 

 
 The value given by the algorithm is the mean velocity of the 
waves in the entire region of interest is cs = 1.145 m/s (Eq 14). This 
result coincides with the imposed value of the shear wave velocity 
with an error ε = 0.43 %. 

III. PHANTOM VALIDATION 

The method will be applied to experimental data using identical 
parameters. First, it will be applied to plane waves that propagate in 
two different directions. Second, it will be applied to a diffuse 
acoustic field. To generate shear waves, electro dynamic exciters (EX 
45 S-8 Ω from VISATRON®, Germany) are used. The waves cross 
phantoms of different shapes depending on the requirements of the 
experimental setup: parallelepiped for the plane waves and 
cylindrical for the diffuse field. The shapes are homemade soft gels 
made of triblock SEBS copolymer (Kraton Polymers, Univar, France) 
dissolved in white mineral oil. The scatters used were silica powder 
[21]. The speed of ultrasound in those media is fixed to cp = 1450 
m/s. 

For phantom experiments, data are recorded by a Verasonics® 
ultrasound scanner (Kirkland, WA 98034, USA) with the Vantage 
platform in the ultrafast mode (>1000 frames per second) and plane 
wave imaging. A 128-elements linear array transducer L11-4v 
working at fus = 6.5 MHz is used. A classical Delay And Sum (DAS) 
beamforming with F# = 1 is applied on experimental data. Each frame 
is made from the sum of na = 3 planes with angles of α = [-3 o,0 o,3 o], 
an interval of Δtnxa = 150 µs between planes and a pause of Δtnxf = 
200 µs for the next frame (Fig. 9). The image framerate is PRF = 2 
kHz, which corresponds to an interval of Δtprf = 500 µs between 
frames (Eq 15). 

 ∆tijk = (na − 1) × ∆tl)m + ∆tl)n (15) 

 

 
Fig. 9. Ultrasound imaging sequence with 3 angles 

 
 The lateral resolution is Δx = 150 µm with a transducer pitch of 
300 µm. Data are sampled at 4×fUS but beamformed at a fraction of 
the probe pitch for the axial resolution (Eq 16).  
 Δ% = pq��r 2⁄ , Δ$ = pq��r 10⁄ t �u/8wxy (16) 

 
 This setting is done to easily obtain an identical spatial resolution 
in the 2D spatial Fourier domain and no longer dependent on the 
speed of ultrasonic wave cp. The acquisition duration is simply 
determined from all delays and the number of frames Nt = 700 frames 
(Eq 17). 
 zm{| = }~ × ∆�ijk = 700 × 500 μs = 350 ms     (17) 

 
The US scanner gives access to raw data, which are transferred to 

the computer for post-processing. The delay-and-sum beamforming 
method is used to convert the data into radio frequency (RF) data 
[22]. The RF data are converted to complex IQ data (In-phase data, 
Quadrature data) with a numerical Hilbert transform along the Oz 
axis. Then, the temporal lag 1 autocorrelation is applied to the images 
to calculate the axial particle velocity vz and edit a movie in the 
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imaging plane, where we observe propagating waves (Eq 18). 
 �' �$ − Y��c� , % − Y��b� , � − Y���� � = − ���∆���� ΔΦ (18) 

 
where: ΔΦ = arg �� � � ��($ − �, % − �, � − �)Y���"C

��# ��∗($ − �, %Y���"C
��#

Y���"C
��# − �, � − � − 1)� 

 
As previously mentioned, the particle velocity is a function of the 

phase, so the ambient noise strongly disrupts the measurement 
regardless of the signal-to-noise ratio. To avoid parasitic phase shifts, 
especially when the Doppler signal is weak, the correlation is made 
on a small spatiotemporal volume, which is moved on the matrix, as 
explained in Figure 10 [23]. This process naturally degrades the 
resolution but is necessary to smooth the signal. The spatial window 
lapz = 40 = 5lapx is selected, which is five times higher than lapx = 8 
Then the size of the 3D block of data considered for the phase 
estimation is 1.2 mm × 1.2 mm × 3 ms (Fig. 10). Windows and shifts 
values are not randomly chosen. We want axial and lateral 
resolutions at same size for particle velocity map then the 2D space 
block is shifted by five points axially (5 over 40, i.e. 12.5 % shift) 
and one point laterally (1 over 8, i.e. 12.5 %).  

 

 
Fig. 10. Correlation with a 3D kernel of length lapz, lapx, lapt. 

 
The axial and lateral overlaps Sz = Sx = 88 % are identical and we 

have the same spatial resolution as the simulation with Δz = Δx = 150 
µm. 

This particle velocity movie is used to measure the wave speed 
with space and time Fourier transform. Then, the elasticity is deduced 
using equation 1. The resolution setting and number of points for 
these experiments are identical to the presented simulations for 
comparison. All sampling parameters are listed in the table 1 below: 
 

TABLE I 
RESOLUTION OF THE PARTICLE VELOCITY DATA MATRIX  

 
Axial  

component z 
Lateral 

component x 

Time  
component t 

RF size Nz = 1846 Nx = 255 Nt = 700 
RF resolution dz = 30 µm dx = 150 µm dt = 500 µs 
Lap Lapz = 40 Lapx = 8 Lapt = 6 
Shift sz = 5 sx = 1 st = 1 
Overlap Sz = 88 % Sx = 88 % St= 83 % 
V size Nz’ = 362 Nx’ = 248 Nt’ = 694 
V resolution Δz = 150 µm Δx = 150 µm Δz = 500 µs 

A. Experimental validation for plane wave 

The experimental setup is shown in Figure 11. A 100 Hz 
continuous sinusoidal wave generator supplies a shaker, which is 
linked to the plate, to create a plane wave into a parallelepiped 
phantom, whose dimensions are 115 mm × 60 mm × 50 mm and 
where shear waves propagate at speed cs = 1.63 m/s. 

Two measurements are made: first, a plate is placed on the side of 
the probe; second, the plate is facing the probe. This device verifies 
whether the Fourier transform method works in the simple case of 

monochromatic plane waves. 
 

 
Fig. 11. Left: exciter on the side of the US probe generating a plane 

vz(z,x,t) shear wave. Right: exciter in front of the US probe generating a plane 

vx(z,x,t) shear wave. 
 
With a plane condition, the shear wave is purely transversally 

polarized, and the displacement of the medium particles is collinear 
to the z-axis when the plate is on the side of the phantom and the 
wave propagates along x. The Dirac delta function is located on the 

kx-axis at approximately -500 rad∙m-1. 
 
Hence, conventional elastography imaging techniques are used 

(Eq 18) to compute the axial particle velocity: v = vz(z,x,t) (Figure 
12). 

 
Fig. 12. Left: axial particle velocity vz(z,x,t = 2.5 ms). Center: temporal 

evolution of the particle velocity vz(38 mm,12 mm,t) (at point A). Right: 2D 

velocity spectrum vz(kz,kx,f = 100 Hz). 
 
As expected, a Dirac function is located on the kx-axis at 

approximately -500 rad∙m-1 in the k-space (Fig. 12). Thus, our 
method works if the waves can be observed in the particle velocity 
movie at each sampling time ti. When the plate is placed in front of 
the probe, the waves propagate along the z axis, but the particle 
movements are purely lateral, so the particle velocity along the z-axis 
is zero. This lateral component of the particle velocity v = vx(z,x,t) is 
computed using vector velocity imaging method already proposed by 
our group for in vivo contractile properties measurement of muscle 
[24]. 

 

 
Fig. 13. Left: axial particle velocity vx(z,x,t = 2.5 ms). Center: temporal 

evolution of the particle velocity vx(38 mm,12 mm,t) (at point A). Right: 2D 

velocity spectrum vx(kz,kx,f = 100 Hz). 
 
The wave arrives from the top and propagates in the direction of 

the bottom image, as seen in Figure 13, meaning the wave vector is 
oriented to the bottom. The Dirac delta function is located on the kz-

axis at approximately -500 rad∙m-1. The corresponding wavelength λ 
is the same than for the first configuration using the axial particle 
velocity vz(z,x,t). For accuracy, the crown cross-correlation is applied 
to the experimental data to find a precise velocity value. The obtained 
velocity in each direction is csz = 1.59 m/s and csx = 1.57 m/s each at 
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100 Hz. Both results are quite similar even if the slight difference due 
to signal noise ratio than are different for estimated axial and lateral 
velocities. 

B. Experimental validation for complex wave field 

 The experimental setup is shown on Figure 14. Seven electro 
dynamic exciters are set around a soft phantom, whose characteristics 
are as follows: diameter d = 120 mm, density ρ = 905 kg/m3 where 
shear waves propagate at approximately c = 1.1 m/s. The vibrators 
are held by homemade 3D-printed adjustable holders to perfectly fit 
the shape of the medium. The 3D-printed L-shaped stems with square 
toes S = 10 mm × 10 mm are stuck on the flat surface of the vibrators 
to generate preferentially shear waves into the region of interest. 
Because of the relatively reduced dimensions of the phantom, if we 
consider the size of human organs and wave attenuation in the 
medium, only seven sources can be placed. Those electro dynamic 
exciters are each driven by amplifiers (Velleman modules Stereo 
Amplifier Module 2 × 30W VM113) with seven different noise 
generators from identical bandwidth Bv = [80-300 Hz]. We generate 
those noises to get closer to the passive elastography measurement 
conditions [25], which enables us to calculate the dispersion of the 
phantom elasticity E in the bandwidth. 
 

 
Fig. 14. Left: Photograph of the experimental system. Center: drawing of the 
experimental system setup. Right: L-shape stem with square toe fixed of the 
plate of vibrators in order to generate a shear wave source condition. 
 
 To justify this source arrangement, we examine the case of a 
vibrator, whose stem is tangent to the gel at an angle of θ = -90 o and 
vibrates in the z direction (θ = 0 o). The geometry is defined in Figure 
16 with σ vertical and upwards. Radiation patterns show that it is 
necessary to exert tangential movements to the gel surface to generate 
shear waves [26]. Furthermore, stems whose toes are the size of the 
wavelength of the shear wave λs~1 cm at 150 Hz induce a strongly 
diffracted shear wave. Finally, by adding the contributions on the x 
and z-axes, the displacement of a point source that emits a temporal 
Dirac signal is determined. The other radiations of other vibrators are 
obtained by simply rotating the radiation patterns gxz and gzz around 
the phantom. The change of basis from is made by rotation using 
matrix R(θj) (Eq 19): 
 �F2�J = �sin (2�) −cos (2�)cos (2�) sin (2�) � (19) 

 
 The phantom is assumed to be a linear time-invariant (LTI) system 
to calculate the response to any mechanical stress by simply 
convoluting it with the impulse response, i.e., the Green functions 
(Eq 20).  
  �� = �¡C¢ sinF2�J − ¡¢¢ cosF2�J�£)���� + �¡C¢ cosF2�J + ¡¢¢sin (2�)�£'���� (20) 

  
 And then taking advantage of the convolution derivations 
properties we can deduce the shape of the particle velocity impulse 
response by derivating the stress function σj (Eq 21). 
 '�e (�, �) = ¡'�e (�, �)⨂¥~V�(�) (21) 

 

 This relation shows that displacement and velocity have identical 
radiation patterns; the only difference is the temporal shape of the 
wave. With knowledge about the Green functions, we can determine 
the shape of the waves that radiate in the probed soft material (Figure 
15). L-shaped stems are used to polarize shear waves in the axis of 
these stems to make them converge at the center of the gel, where is 
the region of interest. 
 

 
Fig. 15. Displacement vector u induced by two vibrators with a shear stress 

applied to the surface of the phantom. The reference frame exeyez is fixed and 
the other reference frames e1e2e3 are linked to exciters around the phantom. 

 
 Another point to carry out is the fact that compression waves are 
notably fast: approximately cp ~ 1500 m/s, which results in a 
significantly long wavelength of λp ~ 10 m at f = 100 Hz. The gel is 
distorted instantaneously in the whole region compared to the 
Doppler time base but with different amplitudes due to attenuation 
and diffraction.  

 
Fig. 16. 2D space Fourier transform |v(kz,kx,f = 100 Hz)| of the complex shear 
wave field v(kz,kx,f = 100 Hz) with an additional compression wave situated at 

the origin of the (kz,kx) grid. 
 
 Even if theoretically the amplitude of the P-wave is one million 
times smaller than S-wave (cp/cs)2 >106, P-waves are present in our 
experiment. Their associated space frequencies 1/λp tend toward zero 
and appear like a spot in the center of 2D spatial Fourier transform 
(Eq 22), as shown in Figure 16. 
 �u = ���¦ = ��d�¦ = C## §'C¨�# ©.�«[ = 0.4 rad ∙ m"C (22) 

IV. RESULTS AND DISCUSSION 

We are interested in measuring dispersion of shear velocity as 
function of frequency. Thus, the time component of the Doppler axial 
particle velocity is Fourier transformed to indicate the frequencies of 
the propagating waves in the phantom.  

 �($, %, �) = �'($, %, �) 
 
As shown in Figure 17, a point A is selected in the ROI at (za; xa) 

near the border of the ROI, where waves are not much attenuated at 
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this location. 
 

Fig. 17. Left: Axial particle velocity vz(z,x,t = 2.5 ms) measured with ultrafast 
US imaging. Center: temporal evolution of vz(43.09 mm,11.85 mm,t) (at point 
A). Right: time Fourier transform of the measured particle velocity |vz(43.09 

mm,11.85 mm,t)| (at point A). 

 
 In Figure 17, the spectrum extends up to the peak near 150 Hz 

and small magnitudes are observed. The wave at a particular point is 
the summation of all the S-waves generated by the 7 vibrators. Since 
the temporal evolution of vibrations are not the same and the 
observation point can be random, the resulting wave is a summation 
of sometime constructive and at another time destructive that leads to 
a small magnitude. For this reason, the temporal evolution of the 
particle velocity and its spectrum shown in Figure 17 are highly 
variables. At low frequency, since there is a weak attenuation it 
results a high magnitude. When the frequency increases, the 
attenuation does as well, resulting in a magnitude loss. Now by fixing 
the time frequency, we can highlight the wavelength using the time 
Fourier transform. The complex acoustic field can be decomposed 
into monochromatic waves through the time Fourier transform simply 
by selecting a frequency and plotting it in the imaged region as 
shown in Figure 18.  

 

 
Fig. 18. Real and imaginary parts of the particle velocity vz(z,xx,f) at several 

time frequencies f = [83,101,116,138,153,178] Hz. 

 
With this representation, we can determine that the directions of 

the sources are behind the concave part of the waves. It is interesting 
to note that the 2D interference patterns of real and imaginary parts of 
vz(z,x) in Figure 18 are not exactly the same for the different selected 
frequencies in the temporal spectrum. For example, at 83 Hz the field 
is highly variable and this is difficult to predict the position of 
vibrators. However, at 101 Hz waves are more regular and rather 
vertical with a clear visualization of the wavelength. And at high 
frequency we can see the position of some sources. 

 
Fig. 19. Particle velocity spectrum magnitude |vz(kz,kx,f)| at several 

frequencies f = [83,101,116,138,153,178] Hz. 
 
 The following results of the time-space Fourier transform on 

experimental data are obtained and plotted for several time 
frequencies in the k-space in Figure 19. The circle radius 2π/λ 
increases with frequency. As shown visually on Figure 19, we notice 
the dominance of some sources at each frequency simply based on 
the magnitude of the spectrum. We also notice a widening of the 
spectrum of our particle velocity data |vz(kz,kx,f)| as a function of the 
frequency in our analysis bandwidth. The reason for this growth is 
due to the shear wave attenuation in the phantom involving a term 
convoluted with our imposed excitation. The Fourier transform of 

exp(-α∙r) is the function 1/(α+jk) which its magnitude is a bell-
shaped curve. The FWHM is a function of α which increase with 
frequency since the attenuation α increase with frequency. We 
measure the full width at half maximum W of the spectrum of our 
data at several frequencies (Fig. 20). Then we perform a first order 
interpolation to adjust the calculation of Gaussian rings |vT(k,c)| (Eq. 
11) with frequency. This broadening effect could be used to estimate 
the viscosity but the main part of the attenuation is due to wave 
diffraction which is an unknown of our problem. 

 
Fig. 20. Spectrum width W in a plane section of k as a function of the time 

frequency f. 

 

 Then, the cross-correlation algorithm is applied at each time 
frequency to determine the Γ(f,c) functions. Similar to the simulation 
part, the maximum of each Γ(c) function indicates the velocity cs(f) of 
the shear waves that pass through the medium for each frequency. 

 

 
Fig. 21. Left: Γ function at six frequencies. Right: Shear wave velocity as a 
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function of the frequency 
In Figure 21, we can notice that there is no ambiguity for the c 

determination from Γ(c) for each frequency in the analysis 
bandwidth. Because of the measurement errors, sampling and 
particularity attenuation, the analysis is limited to 192 Hz. To 
illustrate this point, the maximum of the axial particle velocity 
amplitude Az is plotted on Figure 22 as a function of frequency from 
50 Hz to 270 Hz in order to highlight the attenuation effect.  

 

 
Fig. 22. Normalized axial particle velocity amplitude Az as a function of 

the frequency compared to the normalized shear wave velocity dispersion 

curve cs. 

 

In our frequency selection, the signal decreases according to the 
frequency and after the upper band, it drops significantly. 
Furthermore, a sudden fall is observed before the low band. At one 
fixed frequency, in the case where the signal to noise ratio is too low, 
our correlation algorithm will not recognize the spectral ring and will 
return a false value. From the dispersion curve cs(f) shown in Figure 
21, we deduce the medium shear viscoelastic parameters (μ,η). Using 
a dynamic mechanical analysis, the phantom can be modeled by a 
purely elastic spring μ and a purely viscous damper η in parallel, as 
established by the Kelvin-Voigt material model. This dynamical 
model yields the relation between the strain ε of the probed medium 
and the applied stress σ to generate that strain (Eq 23). This model is 
described by a differential equation depending on viscoelastic 
parameters: 

 V(�) = �¬(�) + ¬®(�) (23) 

 
Then, we can calculate the complex space frequency. Using the 

ratio of the complex time-space frequency (Eq 24), we can find the 
velocity of shear waves. Thus, the shear wave velocity depends on 
the viscoelastic parameters [27]: 

 

��(�) = ��#¯ �MC �°±² �\R
C ³C �°±² �\ , with ��# = ³µ́ (24) 

 
From the values of cs(ω), using nonlinear least-squares 

minimization method from equation 24, the viscoelastic parameters 
(μ,η) are deduced from 80 to 196 Hz as shown in Figure 23. We 

obtained the values μ1 = 1.17 kPa and η1 = 0.62 Pa∙s. 
 

 
Fig. 23. Voigt model superposed to the measured shear wave velocity 

dispersion curve 

 
To ensure that the experiment is repeatable, N = 10 measurements 

with identical configurations and with different white noise signals 
were performed and plotted in Figure 24. The values of viscoelastic 
parameters for each experiment and their medians and IQR were 
calculated and listed in Table 2. 

 

 
Fig. 24. Phase velocity as a function of frequency for N = 10 experiments 

TABLE II 
RESULTS OF THE VISCOELASTIC PARAMETERS MEASUREMENT 

Experiment 
number N 

Elastic Modulus µ (kPa) Viscous modulus η (Pa∙s) 

01 1.17 0.62 
02 1.25 0.4 

03 1.20 0.58 
04 1.25 0.46 
05 1.23 0.52 
06 1.25 0.48 
07 1.19 0.60 
08 1.23 0.51 
09 1.24 0.50 
10 1.22 0.54 
Median 1.23 0.53 

IQR 0.05 0.09 

 
According to Equation 24, SWS dispersion is quantified by the 

parameter ωη/µ  which is the ratio between viscosity effect and 
elasticity effect. Thus, the slope of the dispersion curve is not a 
measurement of the viscosity but a measurement of the significance 
of one effect relative to the other. If the dispersion slope is the same 
for two different elasticities, this implies that the viscosity follows the 
same proportion of change. A purely linear solid without viscosity 
will give a constant curve with frequency. The elastic parameter µ 
estimated at 0 Hz will be in this case equal to the measured value 
obtained from the Voigt model and the viscosity will be insignificant. 



8 First Author et al.: Title 

In Figure 23, we measured a small variation of the SWS with 
frequency. As shown in Figure 24, with 10 acquisitions, these 
measurements are highly repeatable. The elastic modulus has an IQR 

of 0.05 kPa and the shear viscosity an IQR of 0.09 Pa∙s. 
 

 
Fig. 25. Viscous parameter η versus elastic parameter μ for each measurement 

 

We notice in Figure 25 than when the measured shear modulus µ  
is high, the associated viscosity is rather small. It is due to a change 
in the slope of cs(f) which is very sensitive to small variations 
induced by noise peaks at high frequency. A relativity low slope will 
give a high shear elasticity obtained at 0 Hz and a relatively small 
viscosity. Inversely, a relatively higher slope will give a shear 
elasticity at zero frequency smaller, associated with a higher 
viscosity. We observe that SWS curvature increase more rapidly 
when frequency decreases under 80 Hz for all 10 measurements. This 
reason pushed us to restrict the frequency band for the application of 
the Voigt rheological analysis above this frequency. The SWS is 
around 1.2 m/s at 80 Hz (Fig. 24), thus the shear wavelength is 1.5 
cm. This wavelength is even much lower that the size of the phantom 
which is 12 cm diameter. Then boundary effects appear because of 
phantom dimension which are close to the wavelength. The same 
trend is obtained by Kijanaka [28] and also by Sack [29]. The fast 
variation of the SWS at very low frequency can be due to presence of 
guided wave [30] but we have volume wave and not guided wave in 
our experiment. One possible explanation is a near field effect due to 
diffraction. Our sources have a 1 cm² size which is smaller than the 
1.5 cm wavelength. In this case the radiation is complex and the 
spatial derivation of the wave phase ∂Φ/∂r is not linear with the 
position r and the plane wave approximation is not valid. cs(ω) at a 
particular frequency is cs(ω) = ω/(∂Φ/∂r) which is not equal to ω/k in 
the near field. From the ten acquisitions, we obtained µ  = 1.23 ± 0.05 

kPa for the shear elastic modulus and η = 0.53 ± 0.09 Pa∙s for the 
shear viscosity of our phantom. 

V. CONCLUSION AND OUTLOOKS 

The presented spectrum cross-correlation method enables us to 
calculate the dynamic viscoelasticity in the region of interest by 
measuring the mean velocity in this area. The reliability of the 
method increases with the increase in number of repetitions N of the 
experiment. The experiment is extremely fast (less than one second 
per acquisition). Furthermore, it works with complex acoustic fields 
to provide an active measurement. The position of the source is an 
unknown of the inverse problem and it is not a limitation for this 
method unlike main transient elastography methods. For future in 
vivo experiment, both active and passive measurements are available, 
and the waves can be created by physiological noise. Nevertheless, 
the algorithm is memory-consuming: more than 10 Million elements 
with double-precision 64 bites per element). Some parameters must 

be manually adjusted, such as the shape of the mask, which require us 
to consider the medium homogeneity.  

When plan to use our method in vivo to estimate the liver rheology 
using vibrators situated all around the volunteer rib cage. This offers 
an elegant solution to solve the complicated problem of the wave 
field disturbance due to the presence of the ribs in TE. We will also 
use our method for thyroid elastography using complex physiological 
field created by our voice. The preliminary results obtained singing a 
linear chirp in the 100-300 Hz bandwidth was very promising. We 
can visualize the shear waves propagate in the thyroid coming from 
all the larynx area and reverberate at the different interfaces resulting 
in a complex shear wave field [31].  

Some recent studies use similar techniques for clinical applications 
that exploit Rayleigh waves (surface waves) to highlight skin and 
lung diseases [32] or induce shear waves at 100, 150 and 200 Hz to 
quantify the increased intracranial hypertension [33]. These results 
give us hope for clinical studies of our method that aims to measure 
viscoelastic parameters by analysis of the space and time spectrum. 
With the method presented in this paper, we will be able to measure 
in vivo the shear viscosity conjointly with the shear elastic modulus 
in the 100-300 Hz bandwidth. 
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