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Univ Rennes, Inria, CNRS, IRISA

Rennes, France

Abstract—Loop pipelining is a key optimization in mod-
ern HLS tools for synthesizing efficient hardware datap-
aths. Existing techniques for automatic loop pipelining are
limited by static analysis that cannot precisely analyze loops
with data-dependent control-flow and/or memory accesses.
We propose a technique for speculative loop pipelining that
handles both control-flow and memory speculations in a
unified manner. Our approach is entirely expressed at the
source-level, allowing a seamless integration to develop-
ment flows using HLS. Our evaluation shows significant
improvement in throughput over standard loop pipelining.

I. INTRODUCTION

Although FPGA accelerators benefit from excellent
energy/performance characteristics, their usage is hin-
dered by the lack of high-level programming tools. High-
Level Synthesis (HLS) tools aim at making FPGAs more
accessible by enabling the automatic derivation of highly
optimized hardware designs, directly from high-level
specifications (C, C++, OpenCL). Although HLS is now
a mature technology, existing tools still suffer from many
limitations, and are usually less efficient compared to
manual designs by experts.

HLS tools take algorithmic specifications in the form
of C/C++ as inputs, just like standard compilers. They
benefit from decades of progress in program optimization
and parallelization, since most of these optimizations are
also relevant for deriving efficient hardware.

In practice, the usage of HLS tools resembles that
of CAD tools, such as Logic/RTL synthesizers, where
the design process involves a lot of interactions with
the user. These interactions allow the exploration of
performance and area trade-offs in the resulting hard-
ware. They usually consist in evaluating the impact of
certain key optimizations to derive the best solution
given performance and/or area constraints.
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Loop pipelining is one of these key transformations,
as it enables the synthesis of complex yet area-efficient
hardware datapaths. Current HLS tools are effective at
applying loop pipelining to loops with regular control
and simple memory access patterns, but struggle with
data-dependent control-flow and/or memory accesses.
The main reason is that existing loop pipelining tech-
niques rely on static schedules, which cannot precisely
capture data-dependent behaviors.

In this work, we address this limitation through a
speculative loop pipelining framework supporting both
control-flow and memory dependence speculation. More
specifically, our contributions are the following:

• Speculative Loop Pipelining (SLP) for HLS, ex-
pressed entirely as source-level transformations.

• Automation of SLP in a source-to-source compiler.
• An experimental evaluation of the approach that

shows significant performance improvement over
standard loop pipelining.

An important strength of our work is that the speculative
design is expressed entirely at the source-level. This
allows our approach to be seamlessly integrated into
HLS design flows providing two key benefits: (i) the
pipelined datapath is synthesized by the HLS tools that
are capable of deriving efficient designs, and (ii) we do
not compromise on the ease-of-use aspects: programmers
keep all the productivity benefits (e.g., easier/faster test-
ing) of having high-level specifications.

The rest of this paper is organized as follows. Sec-
tion II introduces loop pipelining in HLS and its current
limitations. Section III details our source-level trans-
formations to realize SLP, and Section IV describes
its automation. We evaluate our work in Section V,
discuss related work in Section VI, and conclude in
Section VII.

II. BACKGROUND AND MOTIVATION

Designing efficient hardware accelerators using HLS
relies on the ability to uncover and exploit parallelism

1



for(i=3;i<…;i++) {
x[i]= S(x[i-3]); 
y[i]= F(y[i-1]); 

}

F1 F2 F3 F4 F5 F6

S1 S2 S3 S4 S5 S6
S1 S2 S3 S4 S5

S1 S2 S3 S4

Pipelined execution trace 

S

F

Stage 1
Stage 2

Stage 3

Pipelined datapath sketch

Pipelined loop kernel

Stage 1

Stage 2

Stage 3

Iterations

Fig. 1. A pipelined loop kernel. The function S is mapped to a three-
stage pipelined operator and has a dependence distance of three. The
function F is mapped to a single-stage operator, with a dependence
distance of one. This gives a pipelined schedule with II=1 and ∆=3.

from the algorithm. Unlike compilers targeting CPUs or
GPUs, where the target hardware is known at compile
time, HLS tools enjoy more degrees of freedom. As a
consequence, quantifying the effective performance of a
design is more complex than for a programmable device.

A. Loop Pipelining in HLS

The performance of a hardware accelerator is deter-
mined by its achievable clock speed (fmax), and its
operation-level parallelism (i.e., the number of useful
operations per cycle). HLS optimizations may affect
either of these two characteristics.

Loop pipelining is one of such optimizations that
consists in overlapping the execution of consecutive
iterations of a loop. A pipelined loop is characterized
by two metrics.

• The pipeline latency (∆) corresponds to the num-
ber of pipeline stages in the synthesized datapath.

• The Initiation Interval (II) is the delay separating
the execution of two consecutive iterations. When
targeting FPGAs, designers generally aim for fully
pipelined loops with II=1.

Figure 1 shows a simple kernel along with its fully
pipelined execution (that is, with II=1). The value pro-
duced by S is said to have a dependence distance of
three, since it is used three iterations later. If the distance
is shorter than three, then the II must be increased to
wait for the next iteration’s input to be computed. HLS
tools use compiler analyses to determine if consecutive
iterations of a loop can be executed in parallel, which
may not be possible due to dependences and/or resource
constraints (e.g., memory ports).

Loop pipelining slightly differs from software pipelin-
ing, which targets instruction-set based architectures [1],
because the latency of operations in the resulting hard-
ware datapath can be flexibly tuned to the target clock
speed specified by the designer. Therefore, the depth of
the resulting pipelined schedule can be made larger to
enable higher clock speeds. Because of the abundant
number of registers in FPGAs, the area overhead due to
pipelining is low, making it an effective transformation
(datapaths with 100+ pipeline stages are not uncommon).

B. Limits of Loop Pipelining
HLS tools rely on simple dependence analysis tech-

niques, and often fail at precisely identifying how much
a loop can actually be pipelined. Although there are
more advanced analyses and optimizations [2]–[5], the
compiler still fails at identifying pipeline opportunities
in many situations. This is the case when the control
flow and/or access patterns become too irregular and/or
data-dependent to be amenable to any compiler analysis.

For example, consider the loop kernel shown in Fig-
ure 2a, which exposes two execution paths: a fast path
(single cycle), and a slow path (three cycles). In this
kernel, the actual execution path depends on the value of
x, which is only known at runtime. Because of this, any
static dependence analysis fails at precisely computing
the dependences. Therefore, the compiler has no choice
but to follow a conservative (i.e., worst-case) schedule,
as illustrated in Figure 2b. In this schedule, the compiler
conservatively assumes that the slow path is always
taken, and does not expose iteration-level parallelism.

Such examples are quite common in practice, espe-
cially when dealing with emerging application domains
such as graph analytics, network packet inspection, or
algorithms operating on sparse data structures.

However, the execution of multiple iterations may be
overlapped by speculating that the fast path is always
taken, as illustrated in Figure 2c. In case of a misspec-
ulation, operations started with incorrect values (C(x)
and F(x) at the fourth iteration) must be canceled, and
wait for the correct values to become available (S(x)
at the third iteration). This approach is similar to that
of a pipelined in-order CPU, where the execution of in-
structions is speculatively overlapped, which potentially
causes pipeline hazards.

Existing work on speculative execution for HLS ei-
ther addresses the problem of runtime data-dependence
management [6], [7], or improve tool support for loops
with complex control-flow [8]–[13]. The only exception
is the work by Josipović et al. [14] that adds speculation
to dataflow circuits and is capable of addressing both
issues. We discuss related work further in Section VI.
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do {
if(C(x)) {
// slow
x = S(x);

} else {
// fast
x = F(x);

}
} while (!x)

(a) Loop with data-dependent control flow.

C1 C2 C3
C1 C2 C3

F1 F2 F3
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(b) Static loop pipelining (II=3).

C1 C2 C3 C4 - C4 C5 C6 C7

C1 C2 C3 - - C4 C5 C6

F1 F2 F3 F4 - F4 F5 F6 F7

S1 S2 S3 S4 - S4 S5 S6 S7
S1 S2 S3 - - S4 S5 S6

S1 S2 S3 - - S4 S5

Stage 1

Stage 2
Stage 3

Stage 1
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Iterations

(c) Speculative pipelining (average II=1.4).

Fig. 2. Comparison of standard loop pipelining and speculative loop pipelining. In Figure 2c, C(x) at the third iteration evaluates to true,
causing misspeculation. Average II assumes 20% misspeculation rate.

III. PROPOSED APPROACH

Our goal is to automatically derive circuits implement-
ing SLP from C programs. This section describes the
program transformations we use to achieve this.

A. Speculative Loop Pipelining at the Source-Level

We propose to express SLP directly at the source-
level, in contrast to prior work [7], [14] that operates
at the HLS back-end or at the RTL-level. Our insight
consists in decoupling the pipeline control logic from
the pipelined datapath in the source code.

We take advantage of this decoupling as follows:
• We increase the dependence distance exposed in

the datapath by speculating over the outcome of
a conditional. This extra slack allows the HLS tool
to derive more aggressively pipelined designs.

• We enhance the control logic to monitor the loop
execution and handle misspeculations.

A key characteristic of this source-level transforma-
tion is that it does not directly perform operation-level
pipelining. Instead, this task is delegated to the HLS
loop pipelining optimization. This approach has many
benefits:

• It simplifies code generation and testing, preserves
the benefits of static pipelining (low control over-
head, ability to share resources when targeting
II>1, etc.) while benefiting from the performance
improvements offered by a speculative schedule.

• Since the misspeculation detection logic is directly
weaved into the code, cycle-accurate performance
numbers can be obtained simply by executing the
program and tracking misspeculation overhead.

Figure 3 shows an example of our source-level im-
plementation of SLP. The transformation takes estimated
pipeline latency of each path as inputs: ∆C = 2, ∆S = 5,
and ∆F = ∆H = 1. The resulting code exposes a shorter
critical path length (∆F) to the HLS tools, enabling fully

pipelined schedules with II=1, by speculatively using
outputs of F.

In this transformed source code, loop iterations corre-
spond to cycles in the eventual HW, and no longer cor-
respond to the original loop iterations. The functions op-
erate over circular buffers (see 1 ), and the dependence
distances over these buffers bound the pipeline depth.
For example, S uses s_x[t-5], and hence S may
take up to five cycles to produce mis_x[t]. Since
the dependence analyses in HLS tools are sometimes
too conservative, we use annotations1 to override their
analysis when necessary.

The control is delegated to a Finite State Machine
(see 3 ) whose state is updated every iteration. The role
of each state is as follows:

• The FILL state is the pipeline startup phase.
• The RUN state is the speculative pipeline steady-

state. During this stage, the correctly speculated
values are committed to their corresponding vari-
ables. The FSM remains in the RUN state until a
misspeculation is detected, in which case the state
transits to the STALL state.

• The STALL state is used during misspeculation
recovery. It is used as a wait state until the outcome
of the recovery path is ready. When this is the case,
the FSM switches to the ROLLB state.

• The ROLLB state is the last stage of the misspecu-
lation recovery process. In this state, the recovered
state is committed and then the pipeline is restarted
by looping back to the FILL state.

The rollback mechanism (see 4 ) is implemented in
the datapath as a conditional statement. The speculated
value is replaced by the value computed in the recovery
path. The commit step (see 5 ) is implemented as a col-
lection of guarded assignments to the original variables.
The committed value for a speculated variable is selected

1Our example uses Vivado HLS annotation style to override dis-
tances for each buffer (see 2 ).

3



do {
#pragma hls pipeline II=1

ctrl[t]  = C (s_x[t-2]); 

mis_x[t] = S (s_x[t-5]);

s_x[t] = F (s_x[t-1],s_y[t-1]);

s_y[t] = H (s_x[t-1],s_y[t-1]);    

cs = nextState(cs,ctrl[t]); 

if (cs.rollback) {

s_y[t] = s_y[t-4];

s_x[t] = mis_x[t]

}

if (cs.commit) {

x = cs.sel? s_x[t-1]:mis_x[t];

y = s_y[t-1];

}

t++;

} while(!(x && cs.commit));

RUN

IDLE

STALL

FILL

ctrl,
cnt:=1

cnt=0

sel=1
commit=1

ROLLB

cnt=0

sel=0
commit=1
rollback=1

enum tstate = {IDLE, FILL, … }

struct fsm {

int3 cnt;
tstate cs;
bool commit,rollback,sel;

} cs;
1

4

5

6

3

#pragma hls distance mis_x=52
do {

tmp=x;
if(C(x)) {

// slow
x = S(tmp);

} else {
// fast
x = F(tmp,y);

}
y = H(tmp,y)

} while (!x)

C1 C2 C3 C4 - - - C4 C5 C6
C1 C2 C3 - - - - C4 C5

S1 S2 S3 S4 - - - S4 S5 S6
S1 S2 S3 - - - - S4 S5

S1 S2 S3 - - - - S4
S1 S2 S3 - - - -

S1 S2 S3 - - -

Iterations

F1 F2 F3 F4 - - - F4 F5 F6

H1 H2 H3 H4 - - - H4 H5 H6

FILL →
 RUN

RUN
→

 RUN
RUN

→
 RUN

RUN
→

 STALL
STALL →

STALL
STALL →

ROLLB
ROLLB →

FILL
FILL →

RUN
RUN

→
 RUN

RUN
→

 RUN

Latency estimates
C 2
S 5

F 1
H 1

cnt:=0

cnt:=0

cnt/=0,
cnt:=cnt-1

cnt/=0,
cnt:=cnt-1

Fig. 3. An example of SLP implemented at the source-level. The figure shows, from left to right, (a) the original code, (b) the code after
SLP, (c) the FSM invoked in the code, and (d) the pipelined schedule with SLP. The prefix s_ denotes speculative values. There are a few
simplifications: The FSM is represented as a state diagram, but is expressed as a switch/case statement in the C code. Arrays of infinite
length are used for mis_x, s_x, s_y, and ctrl, where the actual implementation uses circular buffers (using modulo addressing) whose
depths correspond to the reuse distances. Initializations of the circular buffers before entering the loop are omitted.

from either the speculated path (when speculation is
successful), or the recovery path (when speculation is
unsuccessful). In the former case, the commit uses a
previously computed result (s_x[t-1] in this case)
instead of s_x[t] to compensate for the pipeline
latency for computing ctrl[t], which is scheduled at
stage 2 in our example.

B. The Parameters of the Recovery Mechanism

The recovery mechanism is implemented as extra
control logic in the FSM, and circular buffers to keep
track of history of values produced by the datapath.

The legality of the transformation may also be split
into two: data and control. The datapath ( 1 ) does not af-
fect correctness, since it is the control logic that dictates
which values are committed. The estimated latency of
each function is used as the dependence distance to give
the HLS tools sufficient slack to pipeline the datapath.

The control-path ( 3 through 6 ) is responsible for
providing the right data to the datapath, and committing
correct values in order. The duration of recovery states in
the FSM, as well as the rollback distances, are computed
based on a schedule of all operations in the loop body
as illustrated in Figure 3 (rightmost). The FILL state
waits until both C and F are ready: one cycle in this
example. The pipeline is stalled until the slow path is
done computing, after the speculation is detected, and
hence it is the difference between latency of S and C:
three cycle, which is split between STALL and ROLLB
as described above. During rollback, all values that were
computed with incorrectly speculated values must be

do {

…

W:  tab[wr_ad] = v;
…

R:  arg = tab[rd_ad]; 
…

} while(…);

int addr_q[…],data_q[…],pos,t;

do {

data_q[pos] = v ; 

addr_q[pos++]= wr_ad ;

…

arg= tab[rd_ad];

for (k=0;k<DEPTH;k++) 

#pragma hls unroll

if (addr_q[pos-k]==rd_ad)

arg = data_q[pos-k];

if (cs.rollback) 

pos-=DEPTH;

…

if (cs.commit) {

t = data_q[pos-DEPTH];

tab[addr_q[pos-DEPTH]]= t;

}

} while(…);

2

3

1

4

Fig. 4. Rollback on arrays using a store buffer mechanism imple-
mented at the C-level. We use arrays of infinite length to simplify the
presentation. The actual implementation uses shift registers.

reverted. In this example, x is replaced by the output
of S, and outputs of H are rolled back by four cycles,
or ∆S −∆H: the difference between when H and S have
finished computing.

C. Managing Arrays

In this section, we discuss how our approach can be
extended to support array accesses. The main difficulty
is associated with the need to rollback from incorrectly
speculated operations. This can easily be achieved for
scalar variables by recording their previous values using
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shift registers. However, recording the entire state of
arrays is not practical.

We alleviate this issue through a mechanism similar
to store buffers used in speculative processors, which we
implement at the source-level as depicted in Figure 4.
This mechanism delays write operations to the memory
bank (array) through a queue of pending store operations
(data_q and addr_q; see 1 ).

Whenever a read operation is issued to the array, it
is first matched against pending writes (see 2 ). We
make sure matching is performed in parallel by fully
unrolling the comparison loop. In case of a match, the
most recent write value is returned. Otherwise, the read
is forwarded to the memory bank. This ensures that
read always access the most recent array state. It is also
possible to read data from any of the k last states of
the array, by selecting the set of pending writes matched
during the read operation.

A rollback to the dth previous array state is imple-
mented by dropping the d most recent pending writes in
the queue (see 3 ). If a state is not invalidated by the
end of the queue, the value is written to the memory.
However, this mechanism may incur significant area
overhead, and the depth of the buffer (i.e., the number
of pending writes) must be kept to a minimum.

D. Supporting Memory Speculation

Loop bodies with irregular control flow tend to have
data-dependent memory access patterns as well. Because
they are not amenable to static analysis, these patterns
limit the ability to statically pipeline the loop. Prior
work has addressed this limitation through memory
speculation: speculate that the dependence distances are
sufficiently large to overlap consecutive iterations [6],
[7], [12]–[14]. These approaches use runtime checks to
determine the actual dependence distance to detect and
to recover from memory dependence hazards. We use the
approach by Alle et al. [6] to implement memory specu-
lation at the source-level. The main difference from their
work is in the automation—we support both control-
flow and memory speculation in a single framework—
discussed in Section IV.

The rest of this section illustrates their approach
through an example in Figure 5. The original loop
(left) has two statements (R and W) that access the
array tab, creating RAW dependences. The dependence
distance cannot be analyzed at compile-time, because
of data-dependent indexing functions (H and G). Thus,
a static scheduler must conservatively assume that the
dependence distance is one. Consider the case when the
main operation (E+W) is mapped to a two-stage pipelined

#pragma hls distance tab 2
do {
#pragma hls pipeline II=1

rad = H(rad);

wad = G(wad); 

if(rad==r_wad) {

in = fwd;

} else {

in = t[rad];

}

fwd = slow(in);

t[wad] = fwd;

r_wad = wad;

} while(…);

#pragma hls distance tab 2
do {
#pragma hls pipeline II=1

s_rd_ad = H(rd_ad);

s_wr_ad = G(wr_ad);

R: s_in = tab[s_rd_ad]

E: s_v = F(s_in);  

if(s_rd_ad!=d_wr_ad) {

rd_ad = s_rd_ad;

wr_ad = s_wr_ad;

W: tab[wr_ad] = s_v;

d_wr_ad = s_wr_ad;

} else {

d_wr_ad = -1;

}

} while(…);

2

3

1

1

2

do {
rd_ad = H(rd_ad);

wr_ad = G(wr_ad);

R:  in = tab[rd_ad]

E:  v = F(in);

W:  tab[wr_ad] = v;

} while(…); RAW
backedge

Fig. 5. A loop with data-dependent memory dependence (left), and
its speculative equivalent (right), assuming one-iteration write latency.

operator. Then the II must be at least two because of
the conservatively assumed dependence distance. This
II may be reduced by speculating that the dependence
distance is at least two.

The approach by Alle et al. [6] transforms the loop
into the one depicted in Figure 5 (right). In this example,
the memory write latency is assumed to be one iteration:
writes to the tab[] array are correctly reflected to reads
two or more iterations later. (One iteration eventually
translates to one cycle when II=1.) This transformation
consists in several steps:

• The loop body is executed speculatively by reading
possibly incorrect data from array tab[] (see 1 ).
The prefix s_ denotes speculative values.

• If no address aliasing occurred, the speculation
is valid, and speculative values are committed
(see 2 ). This includes the update of array tab[].
When read and write addresses alias, speculative
values are simply discarded.

• The pending write address (d_wr_ad) either stores
the address of an on-going commit (wr_ad), or an
invalid address (-1) in case of misspeculation (see
3 ). This address is used in the next iteration to

test for aliasing.
Note that in the transformed code, loop iterations do not
correspond to the iterations in the original code. The
code implements a stall by skipping the commit and re-
computing in the next iteration. The condition evaluates
to true in the second try because (wr_ad) is set to -1 in
the first (failed) try.

In this modified code, the reuse distance for the
RAW dependence is extended to two iterations, offering
additional slack to the pipeline scheduler.

The technique can be generalized to speculate over
longer distances (longer read/write latency). Then, the
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current read address must be matched against a history
of pending write addresses. This is equivalent to a Load
Store Queue (LSQ) structure used in speculative Out-
of-Order processors. In this case, our implementation
becomes similar to that described in Figure 4.

E. Profitability of SLP

The profitability of SLP is a function of the relative
area overhead and the misspeculation rate. The effective
II increases with higher rates of misspeculation, and
at some point the speedup becomes uninteresting with
respect to the area overhead of SLP. The effectiveness
of SLP for a given loop is determined by comparing
the effective II and achievable clock speed against the
area overhead caused by speculation. The effective II
can be obtained through source-level simulation or com-
puted assuming a certain misspeculation rate. Area and
frequency estimates can only be obtained after the HLS
synthesis step.

In addition, there are some characteristics of loops
that favor SLP, which may be used to further guide the
selection of target loops:

• Relatively small number of arrays (in memory with
low latency) to avoid excessive cost in LSQs.

• Complex conditions and/or additional computations
using the results of fast/slow paths. These computa-
tions must be performed regardless of the outcome
of the condition (speculation) and takes up its own
space. This reduces the relative cost of SLP.

In other words, when the loop body is simple, the
relative overhead of SLP becomes large, requiring low
misspeculation rates to be effective.

IV. AUTOMATION IN A COMPILER

In this section, we describe how the transformations
described in Section III can be automated. We envision
our approach to be part of the interactive development
flow using HLS tools, where the use of SLP becomes
another performance tuning knob for the developer. Thus
the focus is on how to transform the code in a systematic
manner in a compiler.

A. Program representation

We use a representation based on Gated-SSA [15].
Gated-SSA is an extension of standard SSA [16] where
Φ nodes are replaced by either µ or γ nodes, and where
arrays are considered as values and updated through α
operations. The semantics of these operations are:

• µ(xout, xin) nodes appear at loop headers and select
the initial xout and loop-carried xin values of a given
variable x.

int x,rad,awd,v;
int tab[…];

do {

if (C(x)) {
x = S(x);

} else {
x = F(x);

}

rad = RA(x);
wad = WA(x);
v = tab[rad];
tab[wad]=H(v)

} while (!x)

Data-dependent
control-flow

Data-dependent
array indexing

Data-dependent
exit condition

Fig. 6. Illustrative C code snippet exposing both control-flow and
memory dependence speculation.

S F C

H

FT

int x,rad,awd,v;
int tab[…];

do {

if (C(x)) {
x = S(x);

} else {
x = F(x);

}

rad = RA(x);
wad = WA(x);
v = tab[rad];
tab[wad]=H(v)

} while (!x)

WA

xinit

xi-1

1

1
[ ]

atab

gx

µtab

tabinit

µX

tabi-1

Write 
address

array
state

New  value

index
array
state

SCC 2

SCC 1

control

RA

Fig. 7. Gated-SSA program representation. Diamonds identify back-
edges. The number inside a diamond indicates the minimum depen-
dence distance associated to the dependence.

• γ(c, xfalse, xtrue) nodes appear at joint points of a
conditional, and act as multiplexers determining
which definition reaches the confluence node.

• α(a, i, v) are used for array assignment. A new
array “value” is computed from the previous value,
a, by replacing the ith element with v. This allows
arrays to be considered as atomic objects.

Figure 7 shows the Gated-SSA representation of the
program in Figure 6. In this representation, the condi-
tional updates of x are captured by the γx node, and
the updates to array tab are represented by the αtab

node. The loop-carried dependences involving x and
tab are modeled with the µ nodes (µx and µtab) and their
corresponding back-edges tagged with the minimum
reuse distance inferred by the compiler (in this case, a
distance of one).

We extend Gated-SSA with an additional node type:
Rollback nodes are used to model rollbacks to previous
iterations. A rollback node uses two inputs (data d and
control c). When c = 0, the rollback node forwards its
most recent data value to the output. When c > 0, the
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node discards c most recent values and forwards the
value stored c iterations ago. During code generation,
rollback nodes are lowered either as circular buffers
(for scalars) or store buffers (for arrays) as explained
in Section III-C.

B. Identifying Speculative Execution Points

In the Gated-SSA representation, conditional branches
are modeled as γ nodes. Implementing control-flow
speculation amounts to speculating the outcome of a γ
node by choosing one of its input data before control
data is known. The following criteria define conditionals
where speculation is relevant:

• The γ node must be part of a critical loop whose
delay prevents pipelining. Otherwise speculation
does not improve II.

• The execution paths exposed by the conditional
must expose a fast and a slow path as in Figure 7.
If paths are balanced, speculation is useless.

The length (in terms of pipeline stages) of each path
is obtained through an analysis based on predefined
delays of operators. The delays between pairs of op-
erations in the SCC are computed, assuming no re-
source constraints, which is part of the computation of
recurrence-constrained minimum II (RecII) in iterative
modulo scheduling [1]. The delay from the µ node to
immediate predecessors of the γ node gives the path
latency estimates.

Note that the accuracy of this analysis does not affect
correctness. The path latency estimates are used to
identify fast/slow patterns and as slacks given to HLS
tools in the form of dependence distances. Inaccuracy
in the estimates leads to excessive/insufficient slacks,
affecting the performance of the design: excessive slack
increases misspeculation penalty and insufficient slack
constraints loop pipelining and may result in designs
with larger IIs and/or slower clock speeds.

In addition, profitability of SLP should be determined
as described in Section III-E to decide if SLP is applied
or not. In this paper, we assume that the conditionals to
speculate are given as programmer input.

C. Constructing the Recovery Logic

We also use latency estimates as described above to
compute the parameters of the recovery logic. One dif-
ference is that only the dependence edge corresponding
to the fast path is considered for the speculative γ node
to account for speculation. In addition, we make the
following assumptions:

• The latency of the fastest path is one; the latency
estimates are normalized to satisfy this assumption.

The HLS tools are capable of pipelining the result-
ing code with larger II if desired.

• The transformation to expose memory speculation
(discussed in Section IV-E) is already applied.

• The γ nodes to speculate are provided by the user
as annotations.

The operations corresponding to the (end of) fast, slow,
and control paths are called F, S, and C, respectively.
The delay between the µ node and when the result of
an operation X becomes available is denoted as θX.

All the parameters of the recovery logic are computed
based on the relative difference between when the output
of each operation is produced with respect to a couple
of key time stamps:

• θvalidate: when the validation of speculation happens.
This is the max of θC, θF, and θ for all other
operations that depend on F. When the validation
succeeds, all values computed with the speculative
value are committed.

• θrollback: when the rollback in case of misspeculation
happens. This is the max of θS, and θ for all other
operations that depend on S.

Then, the parameters used in the recovery logic are:
• Duration of FILL: θvalidate − 1
• Duration of stall (STALL+ROLLB): θrollback−θvalidate
• Rollback distance for operation X: θrollback − θX
• Commit distance for operation X: θvalidate − θX

The rollback distance also becomes the size of the
buffers used to store speculative values, or the store
buffers in case of arrays. Note that the buffers are
only necessary for live-out values, and arrays with write
accesses within the SCC.

D. Transformation on Gated-SSA Representation

Our speculative pipelining transformation is imple-
mented as a set of simple structural modifications to
the Gated-SSA IR, following the principles depicted in
Figure 3. These changes include:

• Modifying the distance associated to all input edges
of the γ node to expose dependence distances
matching the expected number of pipeline stages
along each input path.

• Creating shadow variables for every speculated
live-out variables, with their corresponding multi-
plexer nodes.

• Instantiating (and wiring) the FSM implementing
the misspeculation recovery logic.

• Creating an additional path exporting the commit
values out of the SCC.

• Inserting rollback nodes along the back-edges of
all non speculated live out variables.
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We then generate the HLS C code implementing the
selected speculation mechanism.

E. Memory Dependence Speculation

As explained in Section III, memory speculation can
be expressed directly at the source-level. We show how
this speculation mechanism can be exposed as a control-
flow speculation opportunity.

Figure 8 shows a transformed loop IR starting from
our earlier example (Figures 6 and 7). An additional path
involving array tab is exposed after the transformation.
This path delays the array value by one iteration—a
delay is added to the edge from µy to γtab—and is
selected as the outcome of node γtab when the RAW
dependence distance is guaranteed to be greater than one.

This modification exposes a new cycle involving γtab,
in which the cumulative dependence distance is two,
enabling a two-stage pipelined implementation for func-
tion H. From there, we can simply take advantage of
control-flow speculation to select the fast path as a
speculation target.

Memory dependence speculation should only be used
when the dependence distance is data-dependent. Oth-
erwise, memory speculation does not help reduce the
critical path length. We assume that the memory accesses
to apply memory dependence speculation are annotated
by the user.

F. Managing Concurrent Execution of SCCs

In the Gated-SSA representation, a loop involving
inter-iteration dependences manifests as a collection of
Strongly Connected Components (SCCs), each of them
involving one or more µ nodes. This is illustrated in
Figure 7 where the loop IR consists of two distinct SCCs.

Since loop-carried dependences only manifest within
an SCC, we can safely apply speculative loop pipelining
separately for each SCC. This leads to multiple concur-
rently running SCCs with their own FSMs, where some
of the SCCs may be running speculatively.

We apply the principle of decoupled software pipelin-
ing [17] to allow these SCCs to run without syn-
chronizations. In decoupled software pipelining, SCCs
synchronize with each other through FIFO channels that
are used to exchange data. An SCC halts when there is
no input available, or when the output buffers are full. In
our case, this means that each speculated SCC operates
independently and communicates through FIFOs.

In some cases, we also need to rollback and access a
previously consumed data token from an external input
node outside of the current SCC. We solve this problem

by inserting rollback nodes to all incoming edges of a
speculated SCC, as illustrated in Figure 8.

The absence of deadlocks in our approach is guaran-
teed by two important properties:

• The graph formed by all the SCCs is by definition
acyclic (cycles being embedded within SCCs).

• Within an SCC, all the values corresponding to an
iteration of the loop are written to the FIFOs at the
same time, once all values are ready (that is, in the
commit stage for SCCs with speculation).

The FIFOs between SCCs therefore act as buffers to
absorb variability in latency caused by speculation. Note
that all SCCs involved should have similar effective II.
Otherwise, the SCC with the largest II would become
the bottleneck, slowing down all other SCCs.

G. Multiple Speculations

As explained in the above, our approach naturally han-
dles multiple speculations in different SCCs. However, it
is also possible to have multiple conditionals in a single
SCC that benefit from speculation. These speculations
may be intertwined, making scheduling more challeng-
ing. In particular, the outcome of a speculated γ node
may depend on speculated values. This is illustrated in
Figure 9, where γy indirectly depends on γx.

In our approach, we handle multiple speculations in a
single SCC by viewing them as a single speculation. In
other words, we delay the resolution of all speculated γ
nodes until the last one is ready (at stage 3 in our ex-
ample). When a misspeculation is detected, the pipeline
is rolled back by multiple iterations, corresponding to
the maximum number of speculated γ nodes in the path
(two iterations in our example). This approach greatly
simplifies the control logic, as misspeculation detection
is performed at a single pipeline stage, and the rollback
distance is a constant relative to this stage.

We acknowledge that this approach increases misspec-
ulation penalty, when compared to a more fine-grained
resolution of speculations. There are many subtle trade-
offs on how to manage multiple speculations, exposing
an interesting design space of its own. We leave further
exploration of this design space as future work.

V. EVALUATION

In this section, we evaluate speculative designs pro-
duced by our approach. We first evaluate the resulting
designs in terms of their characteristics (frequency, II,
and area cost) compared with fully static designs. Then,
we discuss the final performance assuming different
misspeculation rates.
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For our experiments, we used Xilinx Vivado HLS
2019.1 as a back-end and used a Zynq xc7z020clg484-3
as the target FPGA.

A. Benchmarks

We use the following benchmarks in our evaluation:
• Ex-Simple: our first motivating example depicted

in Figure 2a.
• Ex-Rollback: our example requiring a rollback

mechanism, as depicted in Figure 3.
• Ex-Memory: an example requiring a store queue to

rollback on an array, as explained in Section III-C.
• CPU: a simple Instruction Set-Simulator (ISS) for a

toy CPU with four instructions: memory load/store,
jump, and add, operating on floating-point data.
This benchmark aims at demonstrating that our ap-
proach can automatically infer an in-order pipelined
micro-architecture (with its corresponding hazard
detection logic) directly from an ISS specification.

• Newton-Raphson: A root-finding algorithm, which
was used by Josipović et al. in their work on
speculative dataflow circuits [14]. We used the code
made available2 by the authors.

• Histogram: Weighted histogram that accumulates
floating-point weights in the corresponding bins.
We use a sparse variant used by Cheng et al. [18] in
their work on combining dynamically and statically

2https://github.com/lana555/dynamatic/

scheduled circuits. This benchmark is an example
of speculation on a memory dependence.

• gSum, gSumIf, and getTanh(double): benchmarks
used by Cheng et al. [18]. All of these codes have
a simple data-dependent condition that branches to
an inexpensive branch (no computation or default
value) or an expensive branch with a large number
of floating-point operations. We used the code made
available3 by the authors.

B. Area Overhead

Table I summarizes the HW characteristics of Specula-
tive Loop Pipelined designs (SLP) and a baseline design
with standard loop pipelining (LP). There are multiple
sources of area overhead:

• Cost of reduced II. Improving the II directly in-
creases area cost, simply because of increased
parallelism. This overhead is proportional to the
complexity of the datapath. When there is a long
chain of floating-point operations in the slow path
(e.g., gSum and gSumIf), DSP usage is multiplied
by large factors correlated with the reduction in II.

• Cost of (Load) Store buffers. These buffers are
necessary for programs that have speculative writes
to arrays, increasing overhead on some benchmarks
(Ex-Array, and Histogram).

• When the design has multiple SCCs we added
a FIFO array for synchronizing the two loops,

3https://github.com/JianyiCheng/HLS-benchmarks/
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TABLE I
HW CHARACTERISTICS OF DESIGNS WITH STANDARD LOOP PIPELINING (LP) AND SPECULATIVE LOOP PIPELINED DESIGNS (SLP).

Benchmark II fmax LUTs FFs SRLs DSPs BRAMs
LP SLP LP SLP LP SLP LP SLP LP SLP LP SLP LP SLP

Ex-Simple 3 1 143 137 157 442 119 358 0 0 3 3 0 0
Ex-Rollback 5 1 123 124 335 743 179 581 0 0 6 6 0 0

Ex-Array 6 1 136 130 351 725 393 840 0 0 9 9 0 0
CPU 6 1 128 124 1063 1541 1146 1749 0 0 2 2 0 0

Newton-Raphson 6 1 148 153 502 802 383 956 0 51 9 9 0 0
Histogram 6 1 143 133 695 2198 483 1869 0 66 3 3 0 4

gSum 4 1 111 108 2391 6707 2819 5715 67 237 28 79 0 9
gSumIf 4 1 111 107 4152 11202 4382 8746 34 240 45 152 0 9

getTanh(double) 26 1 130 110 3533 2540 1336 2996 4 143 3 50 0 2

increasing the number of BRAMs used. This is the
case for gSum and gSumIf.

• Rollback and delay mechanisms should ideally be
implemented using shift-registers, which are either
mapped to SRLs or to FFs (the final decision is up
to Vivado P&R tool). However, Vivado HLS may
fail at inferring precise reuse distances. In such a
case, we model our delay lines using circular buffers
with modulo indexing. This can lead the tool to
infer BRAM primitives even for very short delay
lines, as it is the case for our Ex-Simple example.

• Other components of the misspeculation mecha-
nism, such as FSM and rollback mechanisms of
scalars. These take a small part of the overhead.

Overall, the area overhead is small compared to
the theoretical maximum speedup with no speculation,
which is equal to the II of the fully static design because
we reduce II to 1 in all benchmarks.

C. Effective Throughput

Table II summarizes the impact on performance as-
suming fixed misspeculation rates. The penalty of mis-
speculation is STALL + FILL cycles. The speedup is
computed as Baseline-II

Effective-II ×
SLP-fmax

LP-fmax
.

The benefit of SLP is most visible for the CPU
and Newton-Raphson benchmarks where the relative
area cost of SLP is low. SLP has relatively low area
overhead for these benchmarks, because they satisfy the
characteristics discussed in Section III-E, making them
ideal targets for SLP. Other benchmarks are not ideal
targets due to the datapath being too simple (Histogram,
gSum, gSumIf) or having a large portion of the datapath
only used in case of misspeculation (getTanh(double)).
These benchmarks require low misspeculation rates for
SLP to be effective.

VI. DISCUSSION AND RELATED WORK

Table III provides a qualitative comparison of related
work on the topic of speculative execution for HLS.

Our work on speculative pipelining has some con-
nections with earlier work on automatic syntheses of
pipelined instruction set processor architectures [19],
[20]. These approaches operate from a high-level de-
scription of the target architecture specified in a Domain
Specific Language. Our work is much more general as it
operates from a general-purpose language and requires
much less user intervention.

Holtmann and Ernst [10] were the first to discuss
speculative loop pipelining in the context of HLS. They
identified the need for rollback registers and proposed
a scheduling algorithm, but did not evaluate the area
overhead of their approach, nor address memory access
aliasing. This severely limits the applicability of their
work. Gupta et al. [8] and Lapotre et al. [9] devel-
oped techniques to perform control-flow speculation—
branch prediction and speculative code motion—in HLS.
However, they do not speculate over multiple loop
iterations as we do. Alle et al. [6] and Dai et al. [7]
proposed mechanisms to allow pipelining of loops with
dynamic memory dependences. Our work unifies both
control-speculation and memory-speculation using a sin-
gle framework.

Speculative Dataflow Circuits (SDC) [14] apply spec-
ulation in the context of dataflow execution. They add
mechanisms into dataflow circuits to allow nodes to
execute with speculated data, and to rollback when
necessary. They use LSQs to support memory accesses
during speculative execution. Our work has similar goals,
but we focus on loops and target mostly static designs
in contrast to fully dynamic designs in their work. Our
code transformations expose optimization opportunities
to the HLS tools by decoupling the control logic from the
datapaths. This allows the HLS tools to perform static
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TABLE II
EFFECTIVE INITIATION INTERVALS AND SPEEDUPS FOR SPECULATIVE DESIGNS ASSUMING DIFFERENT MISSPECULATION RATES.

Benchmark
Pipeline/FSM Effective II given Speedup given Normalized

Parameters Misspec. Rate Misspec. Rate Area Cost
∆ STALL FILL 1% 10% 30% 1% 10% 30% LUT FF DSP

Ex-Simple 3 2 1 1.0 1.3 1.9 2.87 2.21 1.51 2.82 3.01 1.00
Ex-Rollback 5 4 1 1.0 1.5 2.5 5.04 3.36 2,02 2.21 3.25 1.00

Ex-Array 6 5 1 1.1 1.6 2.8 5.41 3.58 2.05 2.07 2.14 1.00
CPU 5 0 4 1.0 1.4 2.2 5.59 4.15 2.64 1.45 1.53 1.00

Newton-Raphson 8 0 8 1.1 1.8 3.4 5.74 3.45 1.82 1.60 2.50 1.00
Histogram 12 0 8 1.1 1.8 3.4 5.17 3.10 1.64 3.16 3.87 1.00

gSum 7 4 1 1.1 1.5 2.5 3.71 2.59 1.56 2.81 2.03 2.82
gSumIf 7 4 1 1.1 1.5 2.5 3.67 2.57 1.54 2.70 2.00 3.38

getTanh(double) 32 26 4 1.3 4.0 10.0 16.92 5.50 2.20 0.72 2.24 16.67

TABLE III
COMPARISON BETWEEN PREVIOUSLY PROPOSED APPROACHES ON SPECULATIVE EXECUTION FOR HLS.

previous work loop
pipelining

control flow
speculation

memory access
disambiguisation

resource
sharing source-level

Holtmann and Ernst [10] yes yes no yes no
Gupta et al. [8] no yes no yes no

Lapotre et al. [9] no yes no yes no
Alle et al. [6] yes no partial yes yes
Dai et al. [7] yes no yes (LSQ) yes no

Josipovic et al. [14] yes yes yes (LSQ) no no
Our Approach yes yes yes (LSQ) yes yes

pipelining that has many benefits over fully dynamic
circuits, including resource sharing.

In addition, our designs are expressed completely at
the source level, unlike some of these works that use
external HDL components. This gives an important prac-
tical advantage to developers by allowing testing/verifi-
cation to be performed at the source level.

Dynamic and Static Scheduling (DSS) [18] is closely
related to our work, although their approach does not
perform speculation. The main idea is to separately
schedule different parts of the code that do not benefit
from dynamic scheduling, and only perform dataflow
execution among these statically scheduled components.
Their work targets programs that have patterns similar
to ours (branch into fast and slow paths) and further
optimize area by reducing the II for a path that is
taken infrequently. When the condition is simple, their
approach achieves small II, since the correct path to take
can be determined almost immediately. In contrast, our
approach starts the next iteration without waiting for the
evaluation of the condition to finish, achieving better II
on programs that have long conditions, such as Newton-
Raphson or CPU in our benchmarks.

Table IV compares the area cost of our work with
the most recent related work [14], [18]. Note that we
took the published values for the other work, but the

experiment setups are not exactly the same. We target
the same FPGA as DSS [18].

SLP achieves similar or better performance with re-
spect to DSS in the benchmarks we used. This is partly
because they assumed that the slower path is always
taken when scheduling, which gives the most compact
design but higher II. Our approach speculates the oppo-
site: the fast path is always taken, which minimizes II
but uses more area. For these benchmarks, we believe
that the DSS approach gives similar results to our
work if they assume that the fast path is always taken.
However, this is only true for these benchmarks that
have inexpensive conditions. Our work is fundamentally
different in that we speculate, and thus is able to achieve
shorter II when the condition is complex.

Our approach gives similar area and performance to
SDC for the Newton-Raphson benchmark. Since both
designs achieve II=1, there is little room for resource
sharing, and hence the differences are mostly in the
control logic. We did not include other benchmarks used
in their work because they all speculate on the exit
condition of a loop. Although our approach handles such
programs—our approach also executes invalid iterations
at the end of the loop, which are not committed—we
focus on programs with data-dependent branches in the
loop body for our evaluation.
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TABLE IV
COMPARISON WITH DYNAMIC AND STATIC SCHEDULING (DSS) [18], AND SPECULATIVE DATAFLOW CIRCUITS (SDC) [14].

Benchmark II Fmax LUTs FFs DSPs
SDC SLP SDC SLP SDC SLP SDC SLP SDC SLP

Newton-Raphson 1 1 181.8 153 1181 802 603 956 9 9
Benchmark DSS SLP DSS SLP DSS SLP DSS SLP DSS SLP
Histogram 1 1 111.4 133 990 2198 809 1869 3 3

gSum 5 1 84.9 108 4514 6707 3960 5715 23 79
gSumIf 5 1 85 107 5222 11202 5188 8746 37 152

getTanh(double) 1 1 111.4 110 2579 2540 2797 2996 50 50

In our opinion, the main benefit of SLP with respect to
dataflow based approaches [13], [14] is that it builds on a
classical HLS framework (centralized control through a
single FSM, static pipelining). This makes its integration
in existing HLS tools much easier than for dynamic
dataflow based approaches, which follow a radically
different execution model.

VII. CONCLUSION

In this work, we propose a complete flow to support
speculative loop pipelining in the context of High Level
Synthesis. Our approach supports both control-flow and
memory access speculation and is implemented as a
source-to-source transformation. Experimental results
show that speculation can bring significant performance
improvement for several important HLS kernels, while
allowing seamless integration within existing tools.
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[13] L. Josipović, R. Ghosal, and P. Ienne, “Dynamically scheduled
high-level synthesis,” in Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
ser. FPGA ’18, 2018, p. 127–136.
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