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b s t r a c t

his work evaluates the potential of a Sargassum biomass for the biosorption of Sm(III) and Pr(III) using
ynthetic solutions. Under selected experimental conditions (excess of sorbent), the biosorption kinetics
ere fast: 30–40 min were sufficient for the complete recovery of the metals. The kinetic profiles were
odeled using the pseudo-second order rate equation. The second objective of this study was to evaluate

he possibility to separate these metals. Biosorption isotherms and uptake kinetics for the two metals (in
inary component solutions) were almost overlapped. The biomass did not show significant selectivity
or any of these two metals, in batch reactor.
hysicochemical modeling
amarium
raseodymium
electivity
. Introduction

The recovery of heavy metals removal from dilute aqueous
ystems has required the development of new technologies for
heir concentration and separation [1,2]. Biosorption is a promis-
ng biotechnological alternative to conventional physicochemical
rocesses such as: chemical precipitation, electrochemical sepa-
ation, membrane separation, reverse osmosis, ion-exchange or
dsorption resins [3–6]. Conventional methods involve either cap-
tal or high operational costs. They can also be associated to
roduction of secondary residues that may cause environmental
azards or complexity in treatment or valorization [6,7]. The ini-
ial incentives for biosorption development in industrial process
re the low cost of biosorbents, their high efficiency for metal
emoval (especially in low-concentration solutions), the biosor-
ent regeneration (and the potential metal recovery), the fast
inetics of adsorption and desorption, and the non-generation of
econdary residues (or at least their limited environmental impact)
8].

Biosorption is a term that describes metal removal by passive
inding in living and dead biomass from aqueous solutions in a

echanism that is not controlled by metabolic steps. The metal

inkage is based on the chemical properties of the cellular enve-
ope without requiring biologic activity [9–11]. The process occurs
hrough interactions between metal species and actives sites (car-

∗ Corresponding author.
E-mail addresses: rcebinho@iq.unesp.br, rcebinho@yahoo.com.br (R.C. Oliveira),

ric.Guibal@mines-ales.fr (E. Guibal).
boxyl, amino, sulfate, etc.) present on the cell wall [12]. Dead
biomass is generally preferred since it limits the toxicity effects
of heavy metals (which may accumulate at the surface of cell walls
and/or in the cytoplasm) and the necessity to provide nutrients
[2,13,14]. Alternatively, other biomaterials can be used for these
purposes as biopolymers, activated sludge, agriculture wastes, etc.
[15].

The mechanisms involved in metal accumulation on biosorp-
tion sites are numerous and their interpretation is made difficult
the complexity of the biologic systems (presence of various reac-
tive groups, interactions between the compounds, etc.). However,
in most cases, metal binding proceeds through electrostatic interac-
tion, surface complexation, ion-exchange, and precipitation, which
can occur individually or combined [5,16].

Sargassum sp. biomass used in this work belongs to Phaeophyta
group (brown seaweed). This alga is very abundant on the coasts
of Brazil, Cuba, Australia, USA, and Asian Southeast [17]. Generally
the cellular walls of Phaeophyta are constituted of a fibrillar skeleton
and an amorphous matrix. The outer layer is an amorphous matrix
that is linked to the fibrillar skeleton (mainly cellulose) via hydro-
gen bonding. The amorphous matrix is predominately formed by
alginate, besides little amounts of fucoidan have been identified
[18]. The alginate contributes to cellular wall resistance and flexibil-
ity [18,19]. Alginate carboxyl groups are the most abundant acidic
groups (involved in metal binding): they represent approximately

70% of the titrated sites. The biosorption uptake is directly asso-
ciated to the presence of carboxyl groups in the alginate polymer.
The second functional group of the brown seaweed is constituted
of sulfonic acid, present in the fucoidan: these groups may also con-
tribute to biosorption [18]. Numerous studies have recently focused
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n the use of Sargassum biomass for the binding of several metals
ncluding Ni(II) [20], Cu(II) [21,22], and Zn(II) [23].

The group of rare earth metals (REs) comprises scandium,
ttrium, and lanthanide series. The RE application fields are exten-
ive, as a consequence of their peculiar spectroscopic and magnetic
roperties [23]. REs are of major interest for the development of
everal disciplines: coordination chemistry, organometallic com-
ounds, luminescent compounds, catalysis, solid state chemistry,
nalytical and environmental chemistry, industrial applications,
iology, and medicine. These metals are essential for man-
facturing products such as lasers, superconductors, cracking
atalysts for petroleum, miniaturized equipments, fluorescents
amps, satellites, phosphorus, ultraviolet radiation absorbers, per-

anent magnets, and electronic information storages [24,25].
Although REs are very abundant in the Nature, they present high

arket values due to expensive and complex processes for their
eparation and purification from mixtures because of their chem-
cal similarities. These processes involve several steps of solvent
xtraction and/or ion-exchange resins, both with high costs [12,17].
he RE chemical similarities result from their electronic configura-
ions: the trivalent state is the more stable thermodynamically in
queous solution. Each lanthanide element has in its electronic con-
guration an inner shell with electrons in the 4fn orbital shielded
y an outer shell composed of electrons in orbitals 5s2, 5p6, 5d1–10,
nd 6s2. The differences among lanthanides elements are caused by
lectrostatic effect associated with the increase of shielded nuclear
harge through electrons partial supply of 4f orbital (which results
n lanthanide contraction of atomic and ionic radius along lan-
hanide series). This contraction is responsible for low differences
n lanthanide chemical properties that allow metals separation by
ractionating methods [23]. Only a few countries and multinational
orporations have the complete technology for separation process
f RE at industrial scale. For this reason despite their abundance,
hese metals have a considerable strategic value [25].

RE trivalent ions (Pearson hard acids: alkaline ions, alkaline
arth ions, high oxidation state ions, species with low electronega-
ivity and small size) tend to readily react with oxygen, sulfur, and
hosphorus atoms (Pearson hard bases: electron donors, with high
lectronegativity and low polarizability), such as those found in the
arboxyl groups of the cell wall of algae. Thereby it is important to
stablish the affinity differences among selected elements to pro-
ose a process for lanthanide separation and purification through
iosorption [13,26].

This study is structured in three parts: (a) acid–base
haracterization of the biomass (potentiometric titration), (b) char-
cterization of the biosorption kinetics (for single and binary
olutions), and (c) determination of biosorption isotherms (for sin-
le and binary solutions). The final objective is to conclude on
he efficiency of Sargassum sp. biomass to recover and separate
amarium (Sm(III)) from praseodymium (Pr(III)) in dilute solutions.
revious investigation of REs biosorption on Sargassum biomass
ave shown that pH 5 is a good compromise for the sorption of these
etals ions [10], based on metal speciation, and the deprotonation

f the carboxylic groups present at the surface of the biosorbent.
hough very slight variations can be observed around this target
H value for the different metal ions, selecting this pH facilitates
he comparison of sorption behavior.

. Materials and methods

.1. Biomass pretreatment
Sargassum sp. biomass was collected on the coast of Rio Grande do Norte, Brazil.
he biomass was grounded in a blender and the particles greater than 0.50 mm were
elected. The biomass was washed three times for 1 h with demineralized water.
he biomass was protonated with two washings in 0.020 mol L−1 HCl solutions for
h. The biosorbent was washed with demineralized water to remove the excess of
3O+, until reaching a pH close to 5.0. Finally, the biomass was dried overnight at
50 ◦C. The slightly acidic washing contributes to stabilize the biomass and prevent
further leaching of organic compounds. In addition, this stabilization contributes to
reduce pH variation that may occur during metal sorption. Strong pH variations may
cause difficulties in the comparison of experimental results when different amounts
of sorbent (which may interact with the solution through proton binding or proton
release) are used. The conditions for acidic pre-treatment are soft enough to prevent
a degradation of the biosorbent.

2.2. Rare earth solutions

RE stock solutions were prepared from Sm(III) and Pr(III,IV) oxides (both Aldrich
Chemical Company 99.9%). The metal oxides were burned off at 900 ◦C for 3 h.
They were subsequently dissolved in small amounts of concentrated HCl under
heating before being diluted with demineralized water until final concentration of
∼5.0 g L−1. For these solutions, the RE concentrations were standardized by tripli-
cate analysis using the complexometric titration with a standard solution of EDTA.
The titration was carried out in buffer solution of acetate/acetic acid at pH 6.0 ± 0.2
using xylenol orange as the titration indicator (prepared in ethanol/water solution).

For metal biosorption experiments, the solutions used were prepared from dilu-
tions of stock solutions and pH adjustment to 5.0 ± 0.1 with diluted HCl or NaOH
solutions. The metal concentrations in both initial and withdrawn samples were
determined by an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-
AES JY 2000, Jobin-Yvon, Longjumeau, France). The ICP calibration was done utilizing
RE standard solutions with three different concentrations and emission lines at
359.260 and 414.311 nm for Sm(III) and Pr(III), respectively.

2.3. Batch experiments

The biosorption experiments in batch systems were carried out in flasks contain-
ing 0.100 ± 0.020 g of biomass and 50 mL of RE solution for kinetics and isotherm,
and 0.220 ± 0.040 g of biomass and 100 mL of RE solution for acid–base characteri-
zation. The flasks were maintained under agitation at 150 rpm and temperature of
20 ◦C (kinetics and isotherms) or 30 ◦C (acid–base characterization). All batch exper-
iments were performed at least in triplicates. The calculation of the biosorption
uptake (q) is given by the mass balance equation, Eq. (1).

q = (C0 − CF )
M

V (1)

where V (L) is the volume of metal solution in contact with the sorbent; C0 and
CF (both in mmol L−1) are the initial and final concentrations of the metal in the
solution, respectively; and M (g) is the dry mass of the biosorbent.

2.4. Acid–base characterization of the biomass

The biomass was analyzed before and after metal biosorption. The pretreated
biomass was protonated with HCl 0.10 mol L−1 (sorbent dosage, SD: 20.0 g L−1), at
150 rpm and 20 ◦C for 1 h. The biomass was then filtered, washed with small vol-
umes of demineralized water, and dried at 50 ◦C. The biosorption took place for 3 h.
The initial metal concentrations of the RE solutions were 464 and 448 mg L−1 for
Sm(III) and Pr(III), respectively. After being loaded with target metals the biomass
was filtered, washed with small volumes of distilled water, and dried at 50 ◦C.

For each titration 0.200 ± 0.020 g of protonated or loaded biomass was dis-
persed in flasks with 100 mL of 1.0 mmol L−1 NaCl solution. Titration was carried
out by addition of successive increments of standardized NaOH to the flask while
the suspension was stirred under argon atmosphere. After each addition, the sys-
tem was allowed to equilibrate until stable pH. The pH measurements were recorded
using a Corning 430 pH meter. Potentiometric titrations were performed at least in
triplicates.

Each endpoint of the potentiometric titration curves pH = f (NaOH) corresponds
to a binding site in which protons are removed from the acidic functional groups to
react with the hydroxyl ions added in solution. Thus, the acid dissociation constant
of each functional group can be determined by the pKa obtained from equivalent
points through the determination of inflexion points. These points are determined
plotting the first derivative curves of average pH titration data in function of the
midpoint of successive amounts of NaOH added per mass of biomass (mmol g−1).
Each maximum peak of the curve dpH/dV = f (NaOH) corresponds to an inflexion
point of the potentiometric titration curves. This procedure is used for evaluating
the number of acidic groups present at the surface of the biomass [27].

The number of strong acid groups is determined from the first peak of the deriva-
tive curves while the total number of acid groups is determined from the final peak.
The number of weak acid groups is then calculated by difference. The occupation of
binding sites by metal ions after biosorption is calculated taking into account the
total numbers of acid groups in the titration of biomass with and without metal
binding.
2.5. Biosorption kinetics

For uptake kinetics (in mono-component solutions) the initial metal concen-
trations were 82 mg L−1 and 99 mg L−1 for Sm(III) and Pr(III), respectively. For
uptake kinetics in binary component solutions, the initial metal concentrations



Table 1
Acid–base properties of protonated Sargassum sp. before and after Sm(III) and Pr(III) biosorption.

Material Strong acid groups
(mmol g−1)

Total amount of acid
groups (mmol g−1)

Weak acid groups
(mmol g−1)

Occupancy of binding
sites (%)
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Protonated biomass 0.15 1.77
Sm(III) – loaded biomass 0.07 1.26
Pr(III) – loaded biomass 0.07 1.18

ere 48 mg L−1 and 49 mg L−1 (total metal concentration: 97 mg L−1) for Sm(III) and
r(III), respectively. Samples were collected at distinct contact times (between 0 and
80 min) and filtered for the analysis of residual metal concentrations.

The biosorption kinetics of Sargassum sp. was evaluated by the pseudo-second-
rder rate equation reported on Eq. (2). The different parameters of the model were
alculated by the linear regression using Eq. (3).

dq

dt
= k2(qEQ − qt )

2 (2)

t

qt
= 1

k2q2
EQ

+ 1
qEQ

t = 1
v0

+ 1
qEQ

t (3)

here qt and qEQ (both in mmol g−1) are the biosorption uptake at time t (min) and at
quilibrium, respectively; k2 (g mmol−1 min−1) is the constant of the pseudo-second
rder rate equation; and v0 (mmol g−1 min−1) is the initial adsorption velocity.

The profile of the total metal biosorption uptake was performed by the sum of
he samarium and praseodymium individual biosorption uptake, i.e. qSm + qPr. The
onstant of pseudo-second order rate equation was obtained from this profile using
gain Eq. (3). This corresponds to the cumulative constant of pseudo second-order
ate equation (k2,CUM). The experimental value of k2,CUM was compared with those
btained from the semi-empirical equation (4) (for comparison with experimental
esults).

2,CUM = 1
(1/k2,Sm) + (1/k2,Pr)

(4)

here k2,Sm and k2,Sm are the individual constants of pseudo-second order rate
quation for Sm(III) and Pr(III), respectively.

.6. Biosorption isotherms

Biosorption isotherms were established by mixing for hours a given amount of
iomass with a volume of solution containing different initial metal concentrations.
or Sm(III) and Pr(III) single-component solutions the initial metal concentrations
aried between 0 and 1500 mg L−1; while for Sm(III) and Pr(III) sorption in binary
omponent solutions, they varied between 0 and 750 mg L−1 for each metal (total
etal concentration between 0 and 1500 mg L−1). The biosorption of single solutions
as analyzed with the model of Langmuir (using Eq. (5)). The parameters describing

his model were calculated by linear regression following Eq. (6).

= qMAXbCEQ

1 + bCEQ
(5)

CEQ

q
= 1

bqMAX
+ 1

qMAX
CEQ (6)

here q and qMAX (both mmol g−1) are the biosorption uptake and the maximum
iosorption uptake at saturation of the monolayer, respectively; b (L g−1) is a con-
tant that represents the affinity between the metal and the biomass in the Langmuir
odel; and CEQ (g L−1) is the equilibrium metal concentration.

The biosorption isotherms of the binary solutions were analyzed with the Lang-
uir multi-component competitive model shown in Eqs. (7) and (8), for Sm(III) and

r(III), respectively.

Sm = qMAX,SmbSmCEQ,Sm

1 + bSmCEQ,Sm + bPrCEQ,Pr
(7)

Pr = qMAX,PrbPrCEQ,Pr

1 + bSmCEQ,Sm + bPrCEQ,Pr
, (8)

Theoretically, the qMAX and b parameter applied in Eqs. (7) and (8) are described
y the values found in the single-component solutions (Eqs. (5) and (6)). However
he biosorption on binary component solutions can implicate a change in the affinity
or each component, which can be obtained by the mathematical arrangement of
qs. (7) and (8); and their linear regressions, according to Eqs. (9) and (10) [28].

EQ,Sm

(
qMAX,Sm

qSm
− 1

)
= 1

b
+ bPr

b
CEQ,Pr (9)
Sm Sm

EQ,Pr

(
qMAX,Pr

qPr
− 1

)
= 1

bPr
+ bSm

bPr
CEQ,Sm (10)

MAX,i values correspond to the values obtained from single solutions. Eqs. (9) and
10) were called approximations for Sm(III) and Pr(III), respectively.
1.62 –
1.19 29
1.11 33

The profile of total metal biosorption uptake (sum of Sm(III) and Pr(III) individ-
ual sorption capacities) was also plotted as a function of total metal concentration.
Eqs. (5) and (6) were used to determine the qMAX and b parameters for individual and
total biosorption uptakes by simple mathematical adjustment, ignoring the physic-
ochemical effects of competition. This approach was called Langmuir uncompetitive
model. These results were used to compare the cumulative affinity constant of Lang-
muir (bCUM) and the affinity coefficient calculated by the semi-empirical equation
(11).

bCUM = 1
(1/b′

Sm) + (1/b′
Pr)

(11)

where b′
Sm and b′

Pr are the affinity constants of Langmuir for Sm(III) and Pr(III),
respectively, obtained by the direct application of Eq. (6) for binary component
solutions.

The theoretical model, the mathematically modified Langmuir multi-
component competitive models, and the Langmuir uncompetitive model were
compared by the root mean square error (RMSE) described by Eq. (12).

RMSE =

√∑n

i=1
[qi,MODEL − qi,EXP]2

n
× 100%, (12)

where qi,MODEL and qi,EXP are the modeling and experimental data of the biosorption
uptake; for i data; n being the total number of experimental data.

3. Results and discussion

3.1. Acid–base characterization of the biomass

The potentiometric titrations of the biomass (after protonation)
with and without metal loading are reported in Fig. 1. A signifi-
cant dispersion of data is observed when repeated; however, this
dispersion is less marked than the dispersion observed with non-
protonated (i.e., raw) biomass (not shown). The acid treatment
contributes to remove some leachable materials (organic com-
pounds, carbonate-based materials) that could influence acid–base
properties. These materials being unequally distributed in the
material this may explain the greater spread of data for raw mate-
rial (compared to treated biomass).

The first derivative plots of average titration curves are shown
in Fig. 2. The dispersion of data introduced a number of secondary
peaks that make difficult the identification of the inflexion points
for strong acid groups and total acid groups. Table 1 summarizes
the characteristics of the protonated Sargassum sp. biomass before
and after metal biosorption.

The strong acid groups counted for only 0.15 mmol g−1 on
protonated biomass, and decreased to 0.07 mmol g−1 after the
biosorption of either Sm(III) or Pr(III). These groups of lowest pKa

have been identified as the sulfonate groups of the fucoidan (actu-
ally ester sulfate groups), which are present on the cell wall of
brown seaweeds [28]. Weak acid groups are mainly constituted
by carboxylate groups from alginate compounds, which repre-
sent more than 90% of total acid groups (i.e., 1.62 mmol g−1). This
value remains in the same order of magnitude compared with
other brown algae cited in the literature: 1.95 mmol g−1 for Sargas-
sum fluitans and 2.20 mmol g−1 for Cystoseira baccata [29,30]. After
metal biosorption the titration identified 1.19 and 1.11 mmol g−1 of

weak acid groups for Sm(III) and Pr(III), respectively. Thereby only
around 30% of the acid groups were involved in metal binding. The
differences observed after metal biosorption were not very marked
between Sm(III) and Pr(III); therefore the biomass appears to have
comparable efficiency for the biosorption of these two REs.
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metals (Table 3) [32]. Though some differences were observed for
NaOH / mmol g  biomass

ig. 1. Potentiometric titration curves of protonated Sargassum sp.: (a) without
etal, (b) after biosorption of Sm(III), and (c) after biosorption of Pr(III).

.2. Biosorption kinetics

Fig. 3 shows the biosorption kinetics in single solutions for
m(III) and Pr(III) modeled by the pseudo-second order rate equa-
ion. The kinetics parameters obtained are reported in Table 2.
hese parameters were compared to others obtained under
he same experimental conditions by Oliveira and Garcia Jr.

31] for the biosorption of La(III), Nd(III), Eu(III), and Gd(III)
Table 2).

Table 2 shows that the modeling fitted well experimental data
R2 > 0.98). Fig. 3 is characterized by a sharp increase the metal
NaOH / mmol g  biomass

Fig. 2. First derivative curves of average pH titrations of protonated Sargassum sp.:
(a) without metal, (b) after biosorption of Sm(III), and (c) after biosorption of Pr(III).

uptake q for the first 30–40 min of contact. The comparison of
results obtained for the six RE metals (Table 2) does not show a clear
trend for the evolution of the kinetic characteristics for the differ-
ent metal ions. More specifically, it was not possible correlating this
evolution with the chemical characteristics (such as metal molecu-
lar weight or effective ionic radii in RE cations III) of these different
k2 and v0 values obtained, these differences are not statistically
differentiable because of the high similarity among the kinetic pro-
files and a little number of data collected. For instance, the k2 and
v0 results for Pr(III) were greater than other metals; however, the



Table 2
Physicochemical parameters and correlation coefficients from biosorption kinetics for Sm(III), Pr(III), La(III), Nd(III), Eu(III), and Gd(III) single solutions by Sargassum sp.
described by the pseudo-second-order kinetic model.

Metal qEQ (mmol g−1) k2 (g mmol−1 min−1) v0 (mmol g−1 min−1) R2 Reference

Sm(III) 0.34 ± 0.01 0.40 ± 0.04 0.048 ± 0.006 0.988 This work
Pr(III) 0.29 ± 0.01 0.78 ± 0.07 0.065 ± 0.007 0.998 This work
La(III) 0.37 0.31 0.042 0.996 [28]
Nd(III) 0.37 0.31 0.043 0.997 [28]
Eu(III) 0.31 0.56 0.056 1.000 [28]
Gd(III) 0.35 0.42 0.050 0.999 [28]
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Fig. 3. Biosorption kinetics for Sm(III) and Pr(III) single solutions by Sargassum sp.
described by the pseudo-second-order kinetics model. Symbols: (–�–) Sm(III) and
(–�–) Pr(III).

Table 3
Molecular weight and effective ionic radii in the rare earth compared [32].

Element Atomic number Molecular weight Effective ionic radii III (Å)

CNa = 6 CNa = 8 CNa = 12

La 57 138.91 1.045 1.180 1.320
Pr 59 140.91 0.997 1.140 1.290
Nd 60 144.24 0.983 1.120 1.276
Sm 62 150.36 0.958 1.090 1.260
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Eu 63 151.96 0.947 1.070 1.252
Gd 64 157.25 0.938 1.060 1.246

a CN is the coordination number of the rare earth cations (III).

mbedded experimental errors are too high for allowing a more
ccurate analysis.

Fig. 4 shows the biosorption kinetics in binary component
olutions for Sm(III) and Pr(III) (experimental points) and their
odeling (curves) using the pseudo-second order rate equation.

he kinetic parameters obtained are reported in Table 4: the
seudo-second order rate equation also presented relevant corre-

2
ation coefficients (R > 0.98) for the binary component solutions.
he model fitted well experimental data (Fig. 4) but some discrep-
ncies appeared for contact times greater than 60 min. Both metals
resented similar behavior in binary solutions, as shown in Table 4
nd Fig. 4, where the curves for Pr(III) and Sm(III) are almost over-

able 4
hysicochemical parameters and correlation coefficients from biosorption kinetics for Sm
econd-order kinetic model.

Metal qEQ (mmol g−1) k2 (g mmol−

Sm(III) 0.18 ± 0.01 0.72 ± 0.01
Pr(III) 0.18 ± 0.01 0.69 ± 0.02
Sm(III) + Pr(III) 0.36 ± 0.01 0.36 ± 0.01
Fig. 4. Biosorption kinetics for Sm(III) and Pr(III) binary solution by Sargassum sp.
described by the pseudo-second-order kinetics model. Symbols: (–�–) Sm(III), (–�–)
Pr(III), and (-·-�-·-) Sm(III) + Pr(III).

lapped. The biosorbent does not mark a clear preference for any of
the two metals during uptake kinetics.

The parameter k2,CUM for the total metal biosorption uptake
(cumulative uptake kinetics: Sm(III) + Pr(III)), was calculated using
Eq. (4). The value found was 0.35 ± 0.01 g mmol−1 min−1, which is
consistent with the experimental value (i.e., 0.36 g mmol−1 min−1,
Table 4). This means that under selected experimental conditions,
the semi-empirical relation can be used to predict the k2,CUM from
the k2 individual values.

3.3. Biosorption isotherms

Fig. 5 shows the biosorption isotherms in single solutions for
Sm(III) and Pr(III). Experimental data are modeled using the Lang-
muir equation. Table 5 records the parameters of the model for
Sm(III) and Pr(III). Table 5 also reports the parameters of the Lang-
muir equation for the sorption isotherms obtained with the same
biomass for the recovery of La(III), Nd(III), Eu(III), and Gd(III) [31].

Langmuir equation fitted well sorption isotherms for both
Sm(III) and Pr(III), as shown by the correlation coefficients

(R2 > 0.99). Additionally, it is noteworthy that the shape of the
biosorption isotherms (Fig. 5) approaches the profile of irreversible
isotherms: the initial slope is very steep and the equilibrium
plateau is reached at low residual concentration. This can be

(III) and Pr(III) binary solution by Sargassum sp. biomass described by the pseudo-

1 min−1) v0 (mmol g−1 min−1) R2

0.022 ± 0.001 0.992
0.023 ± 0.001 0.987
0.046 ± 0.002 0.988
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Fig. 5. Biosorption isotherms for Sm(III) and Pr(III) single solutions by Sargassum
sp. described by the Langmuir adsorption model. Symbols: (–�–) Sm(III) and (–�–)
Pr(III).

Table 5
Physicochemical parameters and correlation coefficients from biosorption
isotherms for Sm(III), Pr(III), La(III), Nd(III), Eu(III), and Gd(III) single solutions by
Sargassum sp. described by the Langmuir adsorption model.

Metal qMAX (mmol g−1) b (L g−1) R2 Reference

Sm(III) 0.65 ± 0.01 354.9 ± 39.8 0.992 This work
Pr(III) 0.71 ± 0.02 345.1 ± 42.3 0.990 This work

c
b
o
(
a
g
3
e
b
g
b
i
c
c
g
e
h
c
e

Table 6
Rare earth biosorption by Sargassum sp. biomass and biosorption parameters for the
Langmuir adsorption model reported in some studies.

Metal Biomass qMAX (mmol g−1) Reference

Eu Sargassum polycystum 0.8–0.9 [27]

La Sargassum fluitans 0.53–0.73 [17]
Sargassum polycystum 0.8–0.9 [26]
Sargassum sp. 0.54a [35]
Sargassum sp. 0.44a [36]

Nd Sargassum sp. 0.53a [17]
Sargassum sp. 0.41a [36]

T
P

La(III) 0.66 837.3 1.000 [31]
Nd(III) 0.70 192.5 0.999 [31]
Eu(III) 0.63 678.3 1.000 [31]
Gd(III) 0.67 183.1 1.000 [31]

orrelated to the great affinity of Sm(III) and Pr(III) for the biosor-
ent. The values of maximum biosorption uptake (saturation
f the monolayer) were of 0.65 for Sm(III) and 0.71 for Pr(III)
Table 5). Comparing these sorption capacities to the carboxylic
cid content (i.e., 1.62 mmol g−1, Table 1), the molar ratio carboxylic
roup/metal varied between 2.3 and 2.5, below the theoretical
:1 molar ratio expected for respecting the stoichiometry of ion
xchange between the trivalent cations and the protons on car-
oxylic acid groups. This probably means that other functional
roups may be involved in the binding of RE: RE trivalent cations
ind to carboxylic groups of alginate-based compounds through an

on exchange mechanism while other components of the cell wall
ould contribute to complementary sorption (including fucoidan
ompounds). The diversity of functional groups present in microor-

anisms (compared to pure biopolymers such as alginate) may
xplain some discrepancies in the stoichiometric ratios. Rare earths
ave affinity for a number of reactive groups (the strength being
ontrolled by Pearson’s rules, hard & soft acid & base theory). For
xample, in the case of the yeast Candida utilis, it was possible cor-

able 7
arameters and correlation coefficients related to mathematically modified and uncompe

Langmuir model Condition bSm (L g−1) b

Mathematically
modified

Sm(III) approximation 478.5 ± 41.0 37
Pr(III) approximation 380.1 ± 18.4 32

Uncompetitive
Linear regression 684.0 ± 67.7 1
Cumulative data –

a For Sm(III).
b For Pr(III)
c Extrapolated value from modeled curve.
Yb Sargassum polycystum 0.7–0.9 [26]

aCalculated from original results that were in other dimensional units.

relating the affinity of the biosorbent for a series of REs to the
phosphorus content of the cell wall [33]. The chemical modifica-
tion of the surface, the extraction of target compounds directly
influenced metal biosorption.

The Langmuir parameters (for single-component solutions) for
Sm(III) and Pr(III) can be compared to the values obtained with
other REs (Table 5) [31]. The maximum biosorption uptake (qMAX)
systematically varied between 0.63 and 0.71 mmol g−1; the present
study is thus consistent with the sorption capacities of Sargassum
sp. for other REs. These values are also consistent with other studies
regarding RE biosorption by different Sargassum species (Table 6).
In the case of Pr(III) biosorption on Pseudomonas aeruginosa, the
sorption capacity reached up to 0.94 mmol Pr g−1 [34]: this is
slightly higher than the sorption capacities found in this study.
Actually, in this case the sorption proceeds through a dual mech-
anism involving ion exchange reaction on the functional groups
present at the surface of the biosorbent and the biologically medi-
ated transfer of the RE into the cytoplasmic compartment. The
Langmuir affinity coefficient (i.e., b) varies between 183.1 L g−1

and 837.3 L g−1; this means that the affinity of this biosorbent sig-
nificantly depends on the RE. The affinity coefficient follows the
sequence: Gd < Nd < Pr < Sm < Eu < La. Previous section on uptake
kinetics showed that it was not possible correlating the kinetic
parameter with the characteristics of the RE. A similar conclusion
can be reached considering the affinity coefficient: the ranking of
affinity coefficient cannot be connected to the properties of the REs
such as the ionic radius, etc. (Table 3) [32].

Despite the differences in the values of the affinity coefficient,
the isotherm profiles appear quite comparable and probably not
statistically differentiable. For this reason it seems that the sepa-
ration of the REs will be difficult. In order to verify this hypothesis
sorption isotherms were performed in binary component solutions
(Fig. 6). This figure shows experimental data together with curve
modeling using the theoretical, mathematically modified, and

uncompetitive Langmuir equations for Sm(III), Pr(III) (alone and in
binary component solutions). The results for theoretical Langmuir
model (Eqs. (7) and (8)) are shown in Table 5 for single compo-
nent solutions. The Langmuir affinity parameters (b) obtained in

titive Langmuir models in the Sm(III) + Pr(III) binary solution.

Pr (L g−1) R2 bSm+Pr (L g−1) R2

2.9 ± 13.3 0.991 – –
5.7 ± 44.2 0.974 – –

379 ± 187.0 0.945a/0.950b 410.4 ± 0.4 0.991
– – 447.6 ± 50.8c –
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Fig. 6. Biosorption isotherms for Sm(III) and Pr(III) binary solution by Sargassum sp.
described by the Langmuir model: (a) curves plotted for the theoretical model; (b)
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Table 8
Root mean square error of the theoretical, mathematically modified, and uncom-
petitive Langmuir models for the biosorption uptake in the Sm(III) + Pr(III) binary
solution.

Langmuir model RMSE (%)

Sm(III) Pr(III) Sm(III) + Pr(III)

Theoretical 6.02 4.60 8.25
Mathematically modified 4.22 4.18 7.89

a b
urves plotted for the mathematically modified model; and (c) curves plotted for the
ncompetitive model. Symbols: (–�–) Sm(III), (–�–) Pr(III), (-·-�-·-) Sm(III) + Pr(III)
rom cumulative data of biosorption uptake, and (-··-�-··-) Sm(III) + Pr(III) from
arameters obtained of linear regression.

he mathematically modified Langmuir model for Sm(III) and Pr(III)
pproximations (Eqs. (9) and (10)) and for uncompetitive Langmuir
odel (Eqs. (5) and (6)) are summarized in Table 7. The compari-
on among the curves for these models was performed by the root
ean square error (RMSE) in Table 8.
Fig. 6 shows that the individual and total metal biosorption

sotherm profiles, for binary component solutions, display a rel-
tively close behavior in the curve shape compared with the single
Uncompetitive 4.24 5.07 9.70 /8.36

a From curve modeled with the parameters obtained of linear regression.
b From curve modeled with the cumulative data of biosorption uptake.

solutions. Furthermore, the total metal uptake shows similar value
(about 0.70 mmol g−1) that indicates the complete saturation of the
active sites. The experiments on single solutions showed that the
biomass has greater affinity (b) for Sm(III) and greater maximum
biosorption uptake (qMAX) for Pr(III) (Table 5). For the theoretical
model, Fig. 6(a) shows that contrary to the results expected from
single-component solutions the maximum biosorption uptake was
greater for Sm(III) than for Pr(III).

The mathematically modified Langmuir model (Fig. 6(b)) shows
good correlation (R2 > 0.97) with experimental data for both Sm(III)
and Pr(III) (Table 7). These values indicate that the modified model
can be applied for the biosorption of REs and they suggest a bet-
ter affinity of Sm(III) than Pr(III) for binding sites. Indeed, the b
parameter values reported in Table 7 for Sm(III) are greater than
for Pr(III), consistently with data obtained with single-component
solutions (Table 5). Though slightly different, the values of the affin-
ity coefficient (i.e., b) in binary solutions are of the same order of
magnitude than the values obtained with single-component solu-
tions. This is contrary to the expected trends corresponding to the
theoretical model (where the qMAX for Pr(III) should be greater than
for Sm(III), Table 5). This difference can be explained by: (a) the
greater biomass affinity for Sm(III), which, in turn, limits Pr(III)
maximum biosorption, and/or (b) the displacement of Pr(III) by
Sm(III).

Fig. 6(c) shows the uncompetitive Langmuir model. This model
does not fit well experimental data in the monometallic biosorp-
tion profiles (R2 < 0.95) (Table 7). Moreover, the parameter b for
these profiles was very high at saturation for each metal. The
affinity coefficient is smaller (about 0.35–0.40 mmol L−1) than
those in single component solutions (0.65 mmol L−1 for Sm(III)
and 0.71 mmol L−1 for Pr(III)). The parameter b for the total metal
biosorption was suitable (R2 > 0.99) when estimated by the linear
regression from the entire experimental range (Table 7). Compar-
atively the same parameter estimated from the cumulative data
of the individual Sm(III) and Pr(III) biosorption uptakes showed
similar value (Table 7). Both results are in agreement with the
cumulative affinity constant of Langmuir (bCUM) calculated by the
semi-empirical equation (11) (where b′

Sm and b′
Pr are related to

the individual Sm(III) and Pr(III) biosorption uptakes, respectively,
Table 7), which corresponds to 457.2 L g−1. As for biosorption kinet-
ics, the semi-empirical relation can be used to predict the bCUM
from the b individual values (under selected experimental condi-
tions).

Based on Fig. 6, the best model for simulating experimental
data was the mathematically modified Langmuir model. Indeed the
analysis of the models through the RMSE reveals that the mathe-
matically modified model presents lower deviations than the other
models. This means that in binary component solutions a slight
competition occurs between the metals, with affinities which are

different from those observed in single-component solutions.

Considering the results obtained in kinetics and sorption
isotherms from both single-component and binary solutions it
appears that Sm(III) and Pr(III) are equivalently adsorbed without
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ig. 7. 3-D schematic projections of the biosorption isotherms for Sm(III) and
r(III) binary solution by Sargassum sp. Symbols: (–�–) samarium and (–�–)
raseodymium. Note: the graphic was plotted with the average values of equilib-
ium concentration and biosorption uptake.

ignificant difference; this makes difficult the separation of these
Es. This can be more easily visualized in the 3-D projection of
inary biosorption isotherms shown in Fig. 7. The isotherms for
m(III) and Pr(III) are very close and the slight differences observed
t high metal concentrations do not appear to be relevant and sig-
ificant for an effective separation of these metals. Additionally,
he weak efficiency in metal separation is confirmed by the equi-
ibrium molar ratio (on the biomass), given by qSm/qPr: the value

as systematically close to 1 (i.e., 1.02 ± 0.10).
The two metals can be seen as equivalently adsorbable on the

iomass and probably the biosorbent will not bring enough selec-
ivity for an efficient separation of Sm(III) from Pr(III), at least on
he basis of equilibrium distribution of metals ions, at least in the
atch mode.

. Conclusions

Sargassum biomass can be efficiently used for the binding
f Sm(III) and Pr(III). The main reactive functions are probably
he carboxylic groups present in alginate, the main component
f macroalgae cell wall. The carboxylic groups (pKa close to
–3.5) being deprotonated at pH 5, the adsorption probably pro-
eeds through electrostatic attraction followed by ion-exchange
with the protons from carboxylic groups). The biosorption uptake
pproaches 0.70 mmol g−1; the molar ratio R-COOH/RE is close to
.3. The pseudo-second-order equation fitted well uptake kinet-

cs that were very similar for Sm(III) and for Pr(III) in both single
nd binary solutions. The biosorption isotherms can be described
y the Langmuir equation: the steep initial slope indicates a strong
ffinity of the biomass for the metals. The biosorption isotherms in
ono-component and binary solutions were very close for Sm(III)

nd Pr(III). The biomass cannot be used for a pre-concentrative
eparation of these metal ions. Experiments in fixed-bed dynamic
ystems (to be discussed in future work) would be necessary to
onfirm this conclusion, since they can enhance the separation
ffect.
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