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Asymptotics of ODE's flow on the torus through a

singleton condition and a perturbation result. Applications

Introduction

In this paper we study the large time asymptotics of the solution X(•, x) for x ∈ R d , to the ODE

   ∂X ∂t (t, x) = b(X(t, x)), t ∈ R X(0, x) = x, (1.1) 
where b is a C 1 -regular vector field defined in the torus

Y d := R d \ Z d (denoted by b ∈ C 1 (Y d ) d )
according to the Z d -periodicity (1.13). The solution X(•, x) is well-defined for any x ∈ Y d by virtue of (1.17). More precisely, we focus on the existence of the limit of X(t, x)/t as t → ∞ for x ∈ Y d . This question naturally arises in ergodic theory, since it involves the dynamic flow X induced by ODE (1.1), and the Borel measures µ on the torus Y d which are invariant for the flow X, i.e. It is known that the ergodic measures for the flow X are the extremal points of the convex set I b so that I b = conv(E b ).

∀ t ∈ R, ∀ ψ ∈ C 0 (Y d ),
(1.7) Also define for any vector field b ∈ C 1 (Y 2 ) d the two following non empty subsets of R d :

• The set of all the limit points of the sequences X(n, x)/n n≥1 for x ∈ Y d (denoted by ρ p (b) in [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF])

A b := x∈Y d n≥1 X(k, x) k : k ≥ n . (1.8) 
• The so-called Herman [START_REF] Herman | Existence et non existence de tores invariants par des difféomorphismes symplectiques[END_REF] rotation set

C b := Y 2 b(y) dµ(y) : µ ∈ I b = conv Y 2 b(y) dµ(y) : µ ∈ E b , (1.9) 
which is compact and convex.

An implicit consequence of [25, Theorem 2.4, Remark 2.5, Corollary 2.6] shows that

A b ⊂ C b = conv(A b ) and #A b = 1 ⇔ #C b = 1, (1.10) 
Note that by definition (1.8) the equivalence of (1.10) can be written for any ζ ∈ R d ,

C b = {ζ} ⇔ ∀ x ∈ Y d , lim n→∞ X(n, x) n = ζ ⇔ ∀ x ∈ Y d , lim t→∞ X(t, x) t = ζ.
(1.11)

In the sequel the "singleton condition" means that Herman's rotation set C b is a singleton {ζ}. Proposition 2.1 below provides an alternative proof of (1.11). Then, the "singleton approach" consists in establishing sufficient conditions on the vector field b to ensure the singleton condition. The aim of this paper is to exploit this approach either to get the asymptotics of the flow X under suitable vector fields b, or in the less favorable cases to determine Herman's rotation set C b as a closed line segment of R d . First of all, revisiting Liouville's theorem for invariant probability measures (see, e.g., [13, Theorem 1, Section 2.2]) as a divergence-curl lemma (see Proposition 2.2) we obtain (see Proposition 2.4) a rather surprising null asymptotics of the flow X associated with a nonlinear current field of type b = F (•, ∇v), where F (x, ξ) is a vector-valued function in C 1 (Y d ; C 1 (R d )) d which is strictly monotonic with respect to variable ξ, and v is a scalar potential in C 2 (Y d ).

Actually, except the one-dimensional case where b is parallel to a fixed direction so that the flow can be computed explicitly (see Example 4.1), there are very few examples of vector field b for which the asymptotics of the flow (1.1) is completely known in dimension d ≥ 2. There are at least two cases:

• If b is a non vanishing regular field in dimension two, Peirone [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF]Theorem 3.1] has proved that the asymptotics of the flow X(•, x) does exist at each point of x ∈ Y 2 . Moreover, the singleton condition is satisfied under the extra ergodic condition that for any x ∈ Y 2 , the flow X(•, x) is not periodic in Y 2 according to (1.18).

• In the two former situations the vector field b does not vanish. In order to extend these two results among others to a vanishing vector field b, a natural question is to know if the singleton condition is stable under a uniform non vanishing perturbation b n of b for n ∈ N. We provide a partial answer to this question with the main result Theorem 3.1 of the paper. Restricting ourselves to a perturbation b n = ρ n Φ, where (ρ n ) n∈N is a sequence of positive functions in C 1 (Y d ) converging uniformly in Y d to some regular function ρ ≤ ρ n and where Φ is a fixed vector field, we prove that if C bn = {ζ n } for any n ∈ N, then the sequence (ζ n ) n∈N converges to some ζ ∈ R d . Moreover, we get that the limit set C b is the singleton {ζ} if ρ is positive, and that C b is the closed line segment [0 R d , ζ] if ρ is only non negative. In Theorem 3.1 it is essential that the vector field Φ in b n = ρ n Φ is independent of n, otherwise the perturbation result does not hold in general (see Remark 3. • We show (see Corollary 3.2) that the asymptotics of the flow X(•, x) associated with b = ρ Φ does exist at any point x such that the orbit X(R, x) is far enough from the set {ρ = 0}.

• When the flow associated with the vector field Φ admits an invariant probability measure with a positive density σ ∈ C 1 (Y d ) with respect to Lebesgue's measure, we prove (see Corollary 3.3) the following alternative: It turns out that the singleton approach cannot be regarded exclusively as an ergodic approach. It may contain an ergodic condition as in Corollary 3.4. But it may be also independent of any ergodic condition as in Corollary 3.5. This does make this approach an original alternative to the classical ergodic approach. Finally, we apply the asymptotics of the flow (1.1) to the homogenization of the linear transport equation with an oscillating velocity

-C ρΦ = {0 R d } if the harmonic mean of ρ/σ is equal to 0, -C ρΦ is some closed line segment [0 R d , ζ] of R d if
∂u ε ∂t (t, x) + b x ε • ∇ x u ε (t, x) = 0 for (t, x) ∈ [0, ∞) × R d , (1.12)
where the vector field b belongs to C 1 (Y d ) d . Tartar [START_REF] Tartar | Nonlocal effects induced by homogenization[END_REF] and Amirat et al [START_REF] Amirat | Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux" (French) [Homogenization of a system of first-order hyperbolic equations and application to miscible flows in a porous medium[END_REF][START_REF] Amirat | Homogénéisation par décomposition en fréquences d'une équation de transport dans R n " (French) [Homogenization by decomposition into frequencies of a transport equation in R n ][END_REF][START_REF] Amirat | Homogenisation of parametrised families of hyperbolic problems[END_REF] showed that in general the homogenization of equation (1.12) leads to a nonlocal limit problem. Here, we focus on the cases where the homogenized equation remains a linear transport equation with some average velocity b of the vector field b. In this perspective, the following works may be quoted: First, assuming that b is divergence free and the flow associated with b is ergodic, Brenier [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF] proved the convergence of the solution u ε in any dimension. This result was extended by Golse [START_REF] Golse | Moyennisation des champs de vecteurs et EDP[END_REF]Theorem 8] (see also [START_REF] Golse | On perturbations of dynamical systems and the velocity averaging method for PDEs[END_REF]) for a more general velocity b(x, x/ε) with div y b(x, •) = 0, assuming the ergodicity of the flows associated with the vector fields b(x, •). Hou and Xin [START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF] performed the homogenization of (1.12) in dimension two with an oscillating initial condition u ε (0, x) = u 0 (x, x/ε), assuming that b is a non vanishing divergence free vector field in R 2 and that the flow (1.1) is ergodic. To this end, they used a two-scale convergence approach combined with Kolmogorov's theorem [START_REF] Kolmogorov | On dynamical systems with an integral invariant on the torus[END_REF] involving some rotation number. This two-scale approach based on the divergence free condition was extended by Jabin and Tzaveras [START_REF] Jabin | Kinetic decomposition for periodic homogenization problems[END_REF] using a kinetic decomposition in the two-scale procedure. Moreover, Tassa [START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] extended the two-dimensional homogenization result of [START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF], assuming that the flow X associated with b has an invariant probability measure with a positive regular density with respect to Lebesgue's measure. More generally, Peirone [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF] proved the convergence of the solution u ε to equation (1.12) in dimension two, under the sole assumption that b does not vanish in Y 2 . More recently, the first author proved in [START_REF] Briane | Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach[END_REF]Corollary 4.4] (see also [START_REF] Briane | Homogenization of linear transport equations. A new approach[END_REF] for an extension to the non periodic case) the homogenization of (1.12), replacing the classical ergodic condition by the rectification condition

∇Ψ b = ζ for some C 2 -diffeomorphism Ψ on Y d , and a non null constant vector ζ ∈ R d .
In the present case, extending the previous results in the case where the initial condition u ε (0, •) does not oscillate, we prove a new result (see Theorem 5.1) on the homogenization of the linear transport equation (1.12) in any dimension, only assuming the singleton condition (without therefore assuming that the velocity of transport equation (1.12) is divergence free). The results of Section 2 and Section 3 provide various and rather general situations where the singleton condition applies:

• the case of the nonlinear current field in Proposition 2.4, • some of the cases of Corollary 3. The paper is organized as follows. In Section 2 we revisit the singleton condition and the Liouville theorem, from which we deduce the asymptotics of the flow (1.1) when b is a current field. In Section 3 we establish the perturbation Theorem 3.1 which is the main result of the paper, and we derive various corollaries on the set C b and on the asymptotics of the flow X. Section 4 presents four examples which illustrate the results of Section 2 and Section 3. Section 5 is devoted to the homogenization of the transport equation (1.12) in connection with the asymptotics of the flow.

Notation

• (e 1 , . . . , e d ) denotes the canonical basis of R d , and 0 R d denotes the null vector of R d .

• | • | denotes the euclidian norm in R N . • Y d for d ≥ 1, denotes the d-dimensional torus R d /Z d , which is identified to the cube [0, 1) d in R d . • C k c (R d ) for k ∈ N ∪ {∞}, denotes the space of the real-valued functions in C k (R d ) with compact support. • C k (Y d ) for k ∈ N ∪ {∞}, denotes the space of the real-valued functions f ∈ C k (R d ) which are Z d -periodic, i.e. ∀ κ ∈ Z d , ∀ x ∈ R d , f (x + κ) = f (x).
(1.13) .

• L p (Y d ) for p ≥ 1,

Definitions and recalls

Let b : R d → R d be a vector-valued function in C 1 (Y d ) d . Consider the dynamical system    ∂X ∂t (t, x) = b(X(t, x)), t ∈ R X(0, x) = x ∈ R d .
(1.14)

The solution X(•, x) to (1.14) which is known to be unique (see, e.g., [START_REF] Hirsch | Differential equations, Dynamical Systems, and an Introduction to Chaos[END_REF]Section 17.4]) induces the dynamic flow X defined by

X : R × R d → R d (t, x) → X(t, x), (1.15) 
which satisfies the semi-group property

∀ s, t ∈ R, ∀ x ∈ R d , X(s + t, x) = X(s, X(t, x)). (1.16)
The flow X is actually well defined in the torus Y d , since

∀ t ∈ R, ∀ x ∈ R d , ∀ κ ∈ Z d , X(t, x + κ) = X(t, x) + κ.
(1.17)

Property (1.17) follows immediately from the uniqueness of the solution X(•, x) to (1.14) combined with the Z d -periodicity of b.

For any x ∈ Y d , the solution X(•, x) to (1.14) is said to be periodic in the torus Y d if there exist T > 0 and κ ∈ Z d such that ∀ t ∈ R, X(t + T, x) = X(t, x) + κ.

(1.18)

If κ = 0 R d the solution is said to be periodic in R d .
2 Some variants of classical ergodicity results

The singleton result

Equivalences (1.11) have been obtained in [START_REF] Misiurewicz | Rotation sets for maps of tori[END_REF] as a consequence of the so-called ergodic decomposition theorem. Here, we provide a simpler and more direct proof of (1.11), which is based on Proposition A.1 (in the Appendix) only involving the weak- * compactness of M p (Y d ).

Also note that the uniform convergence result below is mentioned in [19, Section 9] with no reference.

Proposition 2.1 Let b ∈ C 1 (Y d ) d .
Then, the following equivalence holds for any ζ ∈ R d ,

C b = {ζ} ⇔ ∀ x ∈ Y d , lim t→∞ X(t, x) t = ζ ⇔ X(t, •) t converges uniformly as t → ∞ to ζ on Y d . (2.1)
Proof of Proposition 2.1. First, assume that C b = {ζ}. Assume by contradiction that the second right hand-side of (2.1) does not hold. Then, there exists ε > 0 such that for any n ∈ N, there exist a number r n > n and a point y n ∈ Y d satisfying

X(r n , y n ) -y n r n -ζ = 1 r n rn 0 b(X(s, y n )) ds -ζ ≥ ε. (2.2) 
Now, let ν n for n ∈ N, be the probability measure on Y d defined by

Y d f (y) dν n (y) = 1 r n rn 0 f (X(s, y n )) ds for f ∈ C 0 (Y d ) d . (2.3) 
By virtue of Lemma A.2 there exists a subsequence (ν n k ) k∈N of (ν n ) n∈N which converges weakly * to some probability measure µ ∈ M p (Y d ) which is invariant for the flow X. Hence, passing to the limit as n k → ∞ both in (2.2) and (2.3) with f := b, we deduce from

C b = {ζ} that |ζ -ζ| = Y d b(y) dµ(y) -ζ ≥ ε > 0,
which yields a contradiction. It is clear that the second right-hand side of (2.1) implies the first one. Finally, let us assume that the first right-hand side of (2.1) holds true with ζ, and let us prove that C b = {ζ}. We thus have

∀ x ∈ Y d , lim t→∞ 1 t t 0 b(X(s, x)) ds = ζ.
Then, integrating over Y d the former equality with respect to any probability measure µ ∈ I b , then applying successively Lebesgue's dominated convergence theorem and Fubini's theorem, we get that

ζ = lim t→∞ Y d 1 t t 0 b(X(s, x)) ds dµ(x) = lim t→∞ 1 t t 0 Y d b(X(s, x)) dµ(x) ds = Y d b(x) dµ(x),
which shows that C b = {ζ}. This concludes the proof of (2.1).

Remark 2.1 Stability of the singleton condition by a diffeomorphism on the torus. A mapping Ψ ∈ C 1 (R d ) d is said to be a C 1 -diffeomorphism on Y d if Ψ satisfies the following conditions:

• det(∇Ψ(x)) = 0 for any x ∈ R d ,

• there exist a matrix A ∈ Z d×d with | det(A)| = 1, and a mapping

Ψ ∈ C 1 (Y d ) d such that ∀ x ∈ R d , Ψ(x) = Ax + Ψ (x). (2.4)
Note that the invertibility of A and the Z d -periodicity of Ψ in (2.4) imply that Ψ is a proper function (i.e., the inverse image by the function of any compact set in R d is a compact set). Hence, by virtue of Hadamard-Caccioppoli's theorem [START_REF] Caccioppoli | Sugli elementi uniti delle trasformazioni funzionali: un teorema di esistenza e unicit?ed alcune sue applicazioni[END_REF] (also called Hadamard-Lévy's theorem) the mapping Φ is actually a C 1 -diffeomorphism on R d . Also note that due to A -1 ∈ Z d×d , we have

∀ κ ∈ Z d , ∀ x ∈ Y d , Ψ(x + κ) -Ψ(x) = Aκ ∈ Z d Ψ -1 (x + κ) -Ψ -1 (x) = A -1 κ ∈ Z d ,
hence Ψ well defines an isomorphism on the torus. Now, let b be a vector field in C 1 (Y d ) d and let Ψ be a C 2 -diffeomorphism on Y d . Define the flow X obtained from Ψ by

X(t, x) := Ψ X(t, Ψ -1 (x)) for (t, x) ∈ R × Y d . (2.5) 
Using the chain rule it is easy to check that the mapping X is the flow associated with the vector

field b ∈ C 1 (Y d ) d defined by b(x) = ∇Ψ(Ψ -1 (x)) b(Ψ -1 (x)) for x ∈ Y d . (2.6) 
Combining (2.4) and (2.5) we clearly have

∀ x ∈ Y d , lim t→∞ X(t, x) t exists ⇔ lim t→∞ X(t, Ψ -1 (x)) t exists,
and in the case of existence of the limit for a given x ∈ Y d , we get the equality

lim t→∞ X(t, x) t = A lim t→∞ X(t, Ψ -1 (x)) t .
This combined with equivalence (2.1) implies that

#C b = 1 ⇔ #C b = 1, (2.7) 
and in this case we obtain the equality C b = A C b . Therefore, the singleton condition is stable by any C 2 -diffeomorphism on Y d .

In particular, such a diffeomorphism has been used by Tassa [START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] in dimension two, assuming that the first coordinate b 1 of b does not vanish in Y 2 and that there exists an invariant probability measure for the flow associated with b having a density σ ∈ C 1 (Y 2 ) with respect to Lebesgue's measure. In this case a variant [29, Theorem 2.3] of Kolmogorov's theorem [START_REF] Kolmogorov | On dynamical systems with an integral invariant on the torus[END_REF] (which holds under the weaker assumption that b is non vanishing) provides a diffeomorphism on Y 2 which rectifies the vector field b to a vector field b = a ξ with a positive function a ∈ C 1 (Y 2 ) and a fixed direction ξ ∈ R d . Under the additional ergodic assumption that the coordinates of ξ are rationally independent, the singleton condition is shown to be satisfied [START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF]Theorem 4.2]. Corollary 3.4 below provides a more general result in dimension two with a vanishing vector field b, without using a rectification of the field b.

A divergence-curl result

Liouville's theorem provides a criterium for a probability measure on a smooth compact manifold in R d (see, e.g., [13, Theorem 1, Section 2.2]) to be invariant for the flow. The next result revisits this theorem in M p (Y d ) in association with a divergence-curl result on the torus.

Proposition 2.2 Let b ∈ C 1 (Y d ) d and let µ ∈ M p (Y d ). Define the Borel measure μ on R d by R d ϕ(x) dμ(x) := Y d ϕ (y) dµ(y) where ϕ (•) := κ∈Z d ϕ(• + κ) for ϕ ∈ C 0 c (R d ).
(2.8)

Then, the three following assertions are equivalent:

(i) µ is invariant for the flow X, i.e. (1.2) holds, (ii) μ b is divergence free in R d , i.e. div (μ b) = 0 in D (R d ), (2.9) 
(iii) µ b is divergence free in Y d , i.e. ∀ ψ ∈ C 1 (Y d ), Y d b(y) • ∇ψ(y) dµ(y) = 0. (2.10) Proof of Proposition 2.2. Proof of (i) ⇒ (ii). Assume that µ is invariant for the flow, i.e. (1.2). Let ϕ ∈ C 1 c (R d ). Since by (1.17) we have for any t ∈ R and y ∈ R d , ϕ(X(t, •)) (y) = κ∈Z d ϕ(X(t, y + κ)) = κ∈Z d ϕ(X(t, y) + κ) = ϕ (X(t, y)), (2.11) 
it follows from (2.8) and the invariance of µ that

∀ t ∈ R, R d ϕ(X(t, x)) dμ(x) = Y d ϕ(X(t, •)) (y) dµ(y) = Y d ϕ (X(t, y)) dµ(y) = Y d ϕ (y) dµ(y) = R d ϕ(x) dμ(x).
Taking the derivative of the former expression with respect to t, we get that

∀ t ∈ R, R d b(X(t, x)) • ∇ϕ(X(t, x)) dμ(x) = 0, which at t = 0 yields ∀ ϕ ∈ C 1 c (R d ), R d b(x) • ∇ϕ(x) dμ(x) = 0, (2.12) 
namely the variational formulation of the distributional equation (2.9).

Proof of (ii) ⇒ (i). Conversely, assume that equation (2.9) holds true, and let us prove that µ is invariant for the flow X.

Let ϕ ∈ C 1 c (R d ) and define the function φ ∈ C 1 (R × R d ) by φ(t, x) := ϕ(X(t, x))
. By the semi-group property (1.16) we have for any s, t ∈ R and x ∈ R d ,

∂ ∂s φ(s + t, X(-s, x)) = ∂ ∂s φ(t, x) = 0 = ∂φ ∂s (s + t, X(-s, x)) -b(X(-s, x)) • ∇ x φ(s + t, X(-s, x)),
which at s = 0 gives the classical transport equation

∀ t ∈ R, ∀ x ∈ Y d , ∂φ ∂t (t, x) = b(x) • ∇ x φ(t, x). (2.13) Hence, since ϕ(X(t, •)) is in C 1 (R d
) and has a compact support independent of t when t lies in a compact set of R, we deduce from (2.13) and (2.9) that

∀ t ∈ R, d dt R d ϕ(X(t, x)) dμ(x) = R d b(x) • ∇ x ϕ(X(t, x)) dμ(x) = 0,
or equivalently,

∀ t ∈ R, R d ϕ(X(t, x)) dμ(x) = R d ϕ(x) dμ(x).
On the other hand, we have the following result.

Lemma 2.3 ([7], Lemma 3.5) For any smooth function ψ ∈ C ∞ (Y d ) defined in Y d , there exists a smooth function ϕ ∈ C ∞ c (R d ) with compact support in R d such that ψ = ϕ .
Hence, using relation (2.11) and definition (2.8) we get that for any

ψ ∈ C ∞ (Y ), ∀ t ∈ R, Y d ψ(X(t, y)) dµ(y) = Y d ϕ (X(t, y)) dµ(y) = R d [ϕ • X(t, •)] (y) dµ(y) = = R d ϕ(X(t, x)) dμ(x) = R d ϕ(x) dμ(x) = Y d ϕ (y) dµ(y) = Y d ψ(y) dµ(y),
which shows that µ is invariant for the flow X. We have just proved the equivalence between the invariance of µ for the flow and the distributional equation (2.9) satisfied by μ.

Proof of (ii) ⇔ (iii). The equivalence between (2.9), or equivalently (2.12), and (2.10) is a straightforward consequence of the following relation (which is deduced from

[b • ∇ϕ] = b • ∇ϕ and (2.8)) ∀ ϕ ∈ C 1 c (R d ), R d b(x) • ∇ϕ(x) dμ(x) = Y d b(y) • ∇ϕ (y) dµ(y),
combined with Lemma 2.3. This concludes the proof of Proposition 2.2.

Remark 2.2 Equation (2.10) can be considered as the divergence free of the vector-valued measure µ b in the torus Y d , while equation (2.9) is exactly the divergence free of the vectorvalued measure μ b in the space R d . Equation (2.10) is also equivalent to

∀ (∇ψ) ∈ C 0 (Y d ) d , Y d b(y) • ∇ψ(y) dµ(y) = Y d b(y) dµ(y) • Y d ∇ψ(y) dy , (2.14) since ∇ψ ∈ C 0 (Y d ) d ⇔ x → ψ(x) -x • Y d ∇ψ(y) dy ∈ C 1 (Y d ).
So, condition (2.14) may be regarded as a divergence-curl result involving the divergence free vector field µ b with the invariant probability measure µ and the gradient field ∇ψ with Lebesgue's measure.

The case of a nonlinear current field

As a direct consequence of Proposition 2.1 and Proposition 2.2, the following result gives the asymptotics of the ODE's flow (1.14) when b is a (non necessarily divergence free) nonlinear current field.

Proposition 2.4 Let v ∈ C 2 (R d ) be a function such that ∇v ∈ C 1 (R d ) d and # x ∈ Y d : ∇v(x) = ∇v < ∞, (2.15 
)

and let F (x, ξ) ∈ C 1 (Y d ; C 1 (R d )) d be a vector-valued function satisfying ∀ x ∈ Y d , F (x, ∇v) = 0 R d ∀ (x, ξ, η) ∈ Y d × R d × R d , ξ = η, F (x, ξ) -F (x, η) • (ξ -η) > 0.
(2.16)

Then, the vector field b ∈ C 1 (Y d ) d defined by b(x) := F (x, ∇v(x)) for x ∈ Y d , (2.17 
)

satisfies C b = {0 R d }. (2.18)
Proof of Proposition 2.4. Let µ be an invariant probability measure on Y d for the flow X associated with the vector field b (2.17). By virtue of the divergence-curl result (2.10) we have

Y d b(x) • ∇v(x) dµ(x) = Y d F (x, ∇v(x)) • ∇v(x) dµ(x) = Y d F (x, ∇v(x)) dµ(x) • ∇v.
This combined with F (•, ∇v) = 0 R d and the monotonicity (2.16) yields

Y d F (x, ∇v(x)) -F (x, ∇v) • ∇v(x) -∇v ≥0 dµ(x) = 0, (2.19) 
which implies that

F (x, ∇v(x)) -F (x, ∇v) • ∇v(x) -∇v = 0 dµ(x)-a.e.
Hence, since F (x, •) is strictly monotonic in the sense of (2.16), we deduce that

∇v(x) = ∇v dµ(x)-a.e.
Therefore, due to (2.15) the measure µ is a convex combination of the Dirac masses

µ = x∈{∇v=∇v} c x δ x with c x ≥ 0 and x∈{∇v=∇v} c x = 1.
Finally, this combined with

F (•, ∇v) = 0 R d implies that Y d b(y) dµ(y) = x∈{∇v=∇v} c x F (x, ∇v(x)) = x∈{∇v=∇v} c x F (x, ∇v) = 0 R d ,
which leads us to (2.18).

Exemple 2.1 A class of functions F satisfying (2.16) is given by

F (x, ξ) = ∇ ξ f (x, ξ) for (x, ξ) ∈ Y d × R d , where f ∈ C 1 (Y d ; C 2 (R d ))
, and for any x ∈ Y d , the function f (x, •) is strictly convex in R d with ∇v as unique minimizer. For example, the vector field b is the linear current field

b(x) = A(x)∇v(x) = ∇ ξ f (x, ∇v(x)) for x ∈ Y d ,
when f is the non negative quadratic functional defined by 

f (x, ξ) := 1 2 A(x) ξ • ξ for (x, ξ) ∈ Y d × R d ,
Y d A(y)∇v(y) • ∇v(y) ≥0 dµ(y) = Y d b(y) • ∇v(y) dµ(y) = Y d b(y) dµ(y) • ∇v = 0,
which implies that A∇v •∇v = 0 µ-a.e. in Y d . However, since the matrix-valued A is symmetric and non negative, from the Cauchy-Schwarz inequality we deduce that A∇v = 0 µ-a.e. in Y d , and thus

Y d b(y) dµ(y) = Y d A(y)∇v(y) dµ(y) = 0 R d .
Therefore, we obtain the desired equality (2.18).

3 Some new results involving the singleton condition

A perturbation result

The main result of the paper is the following.

Theorem 3.1 Let b ∈ C 1 (Y d ) d be such that b = ρ Φ, where ρ is a non negative not null function in C 1 (Y d ) and Φ is a non vanishing vector field in C 1 (Y d ) d . Assume that there exists a sequence (ρ n ) n∈N ∈ C 1 (Y d ) N such that (i) for any n ∈ N, ρ ≤ ρ n > 0 in Y d , and (ρ n ) n∈N converges uniformly to ρ on Y d , (ii) for any n ∈ N, C bn = {ζ n } for some ζ n ∈ R d , where b n := ρ n Φ.
Then, the sequence (ζ n ) n∈N converges to some ζ ∈ R d . Moreover, we have the following alternative:

• If ρ is positive in Y d , then C b = {ζ} with ζ = 0 R d . • If ρ vanishes in Y d , then C b = [0 R d , ζ]. Moreover, we have {0 R d , ζ} ⊂ A b .
Remark 3.1 In dimension two and in the second alternative of Theorem 3.1, it is not surprising to obtain for the rotation set C b a closed line segment with one end at 0 R 2 . Indeed, Franks and Misiurewicz [14, Theorem 1.2] proved that the rotation set of any two-dimensional continuous flow is always a closed line segment of a line passing through 0 R 2 . Moreover, this segment has one end at 0 R 2 , when it also has an irrational slope. However, our perturbation result provides such a closed line segment in any dimension and for any non zero slope.

Proof of Theorem 3.1. First of all, assume that C b = {0 R d }, namely there exists a probability measure µ ∈ I b satisfying

Y d b(x) dµ(x) = 0.

This implies that

Y d ρ(x) dµ(x) = Y d |b(x)| |Φ(x)| dµ(x) > 0. (3.1)
For every n ∈ N, define the probability measure µ n on Y d by

dµ n (x) := C n ρ(x) ρ n (x) dµ(x), where C n := Y d ρ(y) ρ n (y) dµ(y) -1 ∈ (0, ∞) (3.2)
due to ρ n > 0 and (3.1). Since µ ∈ I b , it follows from equality (2.10) that

∀ ϕ ∈ C 1 (Y d ), Y d ρ n (x) Φ(x) • ∇ϕ(x) dµ n (x) = C n Y d ρ(x) Φ(x) • ∇ϕ(x) dµ(x) = 0, hence by the equivalence (i)-(iii) of Proposition 2.2, µ n ∈ I bn . Then, from assumption C bn = {ζ n } we deduce that ζ n = Y d b n (x) dµ n (x) = C n Y d ρ n (x) Φ(x) ρ(x) ρ n (x) dµ(x) = C n Y d b(x) dµ(x).
Moreover, by Lebesgue's theorem and (3.1) we have

lim n→∞ C n = c µ := {ρ>0} dµ(x) -1 ∈ [1, ∞). (3.3) 
Therefore, the sequence (ζ n ) n∈N converges to some ζ ∈ R d which is independent of µ and satisfies the equality • On the contrary, assume that there exists α ∈ Y d such that ρ(α) = 0. Since the Dirac distribution δ α at α is invariant for the flow associated with b, we have 

ζ = c µ Y d b(x) dµ(x), for any µ ∈ I b with Y d b(x) dµ(x) = 0. (3.4) • If ρ is positive in Y d ,
0 R d = Y d b(x) dδ α (x) ∈ C b . If the sequence (ζ n ) n∈N converges to 0 R d , then we have C b = {0 R d }. Indeed, if C b = {0 R d },
∀ ϕ ∈ C 1 (Y d ), Y d b n k (x) • ∇ϕ(x) dµ n k (x) = 0, (3.5) 
we get that 

∀ ϕ ∈ C 1 (Y d ), Y d b(x) • ∇ϕ(x) dμ(x) = 0, (3.6 
0 R d = ζ = lim k→∞ ζ n k = lim k→∞ Y d b n k (x) dµ n k (x) = Y d b(x) dμ(x) ∈ C b \ {0 R d }. (3.7) 
Therefore, we may apply the first step of the proof with µ = μ. Hence, the whole sequence

(ζ n ) n∈N converges to ζ = ζ ∈ C b \ {0 R d }.
Moreover, by (3.3) equality (3.4) also reads as

Y d b(x) dµ(x) = 1 c µ ζ ∈ [0 R d , ζ], for any µ ∈ I b with Y d b(x) dµ(x) = 0 R d . (3.8) 
This combined with 0 

R d ∈ C b , ζ ∈ C b \ {0 R d } and the convexity of C b implies that C b = [0 R d , ζ]. Now, let us prove that {0 R d , ζ} ⊂ A b . On the one hand, since since X(•, α) = α, we have lim t → ∞ X(t, α) t = 0 R d , hence 0 R d ∈ A b .
k→∞ ζ n k = lim k→∞ Y d b n k (x) dµ n k (x) = Y d b(x) dμ(x) = 0 R d .
Therefore, the whole sequence (ζ n ) n∈N converges to 0 R d . The proof of Theorem 3.1 is now complete. 

lim t → ∞ X(t, x) t = g(x) ∈ A b ⊂ C b for µ-a.e. x ∈ Y d .
(Also see Proposition A.1 in the Appendix to get that g(x) ∈ C b ). Hence, by virtue of Theorem 3.1 we have

lim t → ∞ X(t, x) t = ∆(x) ζ for µ-a.e. x ∈ Y d , (3.10) 
where ∆ :

Y d → [0, 1] is a measurable function such that ∆(x) = 0 if ρ(x) = 0.
Applying successively convergence (3.10), Lebesgue's theorem, Fubini's theorem and the invariance of the measure µ, we get that

Y d ∆(x) dµ(x) ζ = lim t → ∞ Y d X(t, x) t dµ(x) = lim t → ∞ Y d 1 t t 0 b(X(s, x)) ds dµ(x) = lim t → ∞ 1 t t 0 Y d b(X(s, x)) dµ(x) ds = Y d b(x) dµ(x),
or equivalently, On the contrary, the assertion (3.11) of Corollary 3.1 does not hold in general when condition ρ > 0 is enlarged to condition ρ ≥ 0. Indeed, in the setting of Theorem 3.1 the two-dimensional Example 4.2 provides a sequence of fields (b n = ρ n Φ) n≥1 which converges uniformly in Y 2 to some field b = ρ Φ, so that C b is not reduced to a singleton while C bn is a singleton for any n ≥ 1. Therefore, in this case the set

ρ ∈ C 1 (Y d ) : ρ > 0 and # C ρ Φ = 1 = ρ ∈ C 1 (Y d ) : ρ > 0 and # A ρ Φ = 1 is a closed subset of ρ ∈ C 1 (Y d ) : ρ > 0 . ( 3 
r ∈ C 1 (Y d ) : r ≥ 0 and # C rΦ = 1 = r ∈ C 1 (Y d ) : r ≥ 0 and # A rφ = 1 is not closed in r ∈ C 1 (Y d ) : r ≥ 0 .

Applications to the asymptotics of the ODE's flow

The first result provides the asymptotics of the flow X(•, x) at any point x whose orbit does not meet the set {ρ = 0} in Y d . 

F x := π X(R, x) Y d , (3.12) 
i.e. the closure in Y d of the projection on Y d of the orbit X(R, x) of x. Then, we have Let us prove that the support of such an invariant probability measure µ is contained in the closed set F x . By Lemma A.2 µ is a limit point for the weak- * of some sequence

∀ x ∈ Y d , F x ∩ {ρ = 0} = Ø ⇒ lim t → ∞ X(t, x) t = ζ. ( 3 
(ν n ) ∈N in M p (Y d ) given by Y d f (y) dν n (y) = 1 r n rn 0 f (X(s, x)) ds for f ∈ C 0 (Y d ). Let f ∈ C 0 (Y d ) which is zero in F x .
Then, since π(X(s, x)) ∈ F x for any s ∈ R, we have

Y d f (y) dν n (y) = 0.
Passing to the limit in the previous equality we get that for any

f ∈ C 0 (Y d ) which is zero in F x , Y d f (y) dµ(y) = 0, which means that the support of µ is contained in F x .
Now, let a be a limit point of X(t, x)/t as t → ∞. Then, we have

a = Y d b(y) dµ(y) with Supp(µ) ⊂ F x ⊂ {ρ > 0}.
Hence, the constant c µ of (3.3) is equal to 1, so that by (3.4) we get that

Y d b(y) dµ(y) = ζ.
Therefore, any limit point a is equal to the constant ζ obtained in Theorem 3.1, which implies that

lim t → ∞ X(t, x) t = ζ.
The desired implication (3.13) is thus established.

The following result provides some condition on the direction Φ of the vector field b = ρ Φ, which allows us to specify the result of Theorem 3.1 when the function ρ vanishes. N and b n = ρ n Φ satisfying the assumptions of Theorem 3.1. Also assume that there exists a positive function σ ∈ C 1 (Y d ) such that σ Φ is divergence free in R d , and that ρ vanishes in Y d . We have the following alternative involving the harmonic mean ρ/σ of ρ/σ:

Corollary 3.3 Consider a vector field b = ρ Φ ∈ C 1 (Y d ) d , a sequence (ρ n ) n∈N ∈ C 1 (Y d )
• If ρ/σ = 0, then the flow X associated with b satisfies the asymptotics

∀ x ∈ Y d , lim t → ∞ X(t, x) t = 0 R d . (3.14) 
• If ρ/σ > 0, then we have 

C b = [0 R d , ζ] with ζ := ρ/σ Y d Φ ( 
∀ ψ ∈ C 1 (Y d ), Y d b n (x) • ∇ψ(x) dµ n (x) = C n Y d Φ(x) • ∇ψ(x) σ(x) dx = 0,
which again by Proposition 2.2 implies that µ n ∈ I bn . This combined with the singleton assumption C bn = {ζ n } yields ) and vanishes at some point x 0 ∈ Y 2 , then the harmonic mean ρ/σ is 0. Indeed, since ρ is non negative, x 0 is a critical point of ρ. Hence, we get that for any x close to x 0 ,

ζ n = Y d b n (x) dµ n (x) = C n Y d Φ(x) σ(x) dx. ( 3 
ρ(x) = 1 2 ∇ 2 ρ(x 0 ) (x -x 0 ) • (x -x 0 ) + o(|x -x 0 | 2 ) and thus σ(x) ρ(x) ≥ C |x -x 0 | 2 .
which implies that σ/ρ / ∈ L 1 (Y 2 ) and ρ/σ = 0. Therefore, the null asymptotics

(3.14) holds. Otherwise, if # x ∈ Y 2 : ρ(x) = 0 ∈ (0, ∞),
and if for any x 0 ∈ Y 2 with ρ(x 0 ) = 0 we have for any x close to x 0 , ρ(x) ≥ c 0 |x -x 0 | α 0 , for some α 0 ∈ (1/2, 1) and c 0 > 0, (note that the former condition remains compatible with ρ ∈ C 1 (Y 2 )), then ρ/σ > 0. Indeed, we are led by a translation to x 0 = 0 R 2 , and passing to polar coordinates we deduce that any r 0 ∈ (0, 1/2),

{x∈Y 2 :|x|<r 0 } dx |x| α 0 = 2π r 0 0 dr r 2α 0 -1 < ∞.
Therefore, we get the full closed line segment (3.15) for the limit set C b .

In Example 4.2 below we will provide a two-dimensional example of such an enlarged limit set C b obtained from a sequence of singleton sets (C bn ) n∈N where b n = ρ n Φ has a fixed direction Φ. These results also apply to Corollary 3.4 replacing 1/σ by a.

The next result uses both Theorem 3.1, Corollary 3.3 and the two-dimensional ergodic approach of [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF].

Corollary 3.4 Let b be a two-dimensional vector field in C 1 (Y 2 ) 2 such that b = ρ Φ, with ρ a non zero non negative function in C 1 (Y 2 ), and

Φ = a R ⊥ ∇u in Y 2 , (3.18)
where a is a positive function in C 1 (Y 2 ), ∇u is a non vanishing gradient field in C 1 (Y 2 ) 2 and R ⊥ is the -π/2 rotation matrix of R 2×2 . Also assume that

∀ κ ∈ Z 2 \ {0 R 2 }, Y 2 ∇u(y) dy • κ = 0. (3.19)
We have the following cases:

• If ρ is positive in Y 2 ,
then the flow X associated with b satisfies the asymptotics

∀ x ∈ Y 2 , lim t → ∞ X(t, x) t = aρ Y 2 R ⊥ ∇u(y) dy. (3.20) 
• If ρ vanishes in Y 2 and aρ = 0, then the flow X satisfies the null asymptotics

∀ x ∈ Y 2 , lim t → ∞ X(t, x) t = 0 R 2 . (3.21)
• If ρ vanishes in Y 2 and aρ > 0, then the set C b is given by

C b = [0 R 2 , ζ] with ζ := aρ Y 2 R ⊥ ∇u(y) dy = 0 R 2 . (3.22) 
Proof of Corollary 3.4. Consider the sequence (σ n ) n∈N defined by

σ n := C n aρ n where C n = aρ n := Y 2 dy (aρ n )(y) -1 , (3.23) 
where (ρ n ) n∈N is a sequence in C 1 (Y 2 ) N satisfying the condition (i) of Theorem 3.1. First, note that by definition (3.23) the vector field b n := ρ n Φ satisfies

σ n b n = C n a Φ = C n R ⊥ ∇u (3.24) 
(recall that C n is a positive constant) so that b n is orthogonal to ∇u. Hence, the function u is invariant by the flow X n associated with b n , i.e.

∀ x ∈ Y 2 , ∀ t ∈ R, u(X n (t, x)) = u(x). (3.25)
This combined with the irrationality (or ergodicity) condition (3.19) implies that the flow X n has no periodic solution in Y 2 according to (1.18). Otherwise, there exists x ∈ Y 2 , T > 0, and κ ∈ Z 2 such that X n (T, x) = x + κ, hence it follows that

u(x) = u(X n (T, x)) = u(x + κ). (3.26)
Moreover, since ∇u is Z 2 -periodic, the function

z -→ u(z) - Y 2 ∇u(y) dy • z is Z 2 -periodic.
This combined with (3.26) yields

Y 2 ∇u(y) dy • κ = 0.
Hence, from the incommensurability condition of (3.19) we deduce that κ = 0 R 2 . The flow

X n (•, x) is thus T -periodic, namely X n (R, x
) is a closed orbit. However, by virtue of the preliminary remark of the proof of [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF]Theorem 3.1] this leads us to a contradiction since b n = ρ n Φ is non vanishing. Therefore, the flow X n associated with b n has no periodic solution in Y 2 . Then, using the second step of the proof of [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF]Theorem 3.1] we get the existence of a vector

ζ n ∈ R 2 such that ∀ x ∈ Y 2 , lim t → ∞ X n (t, x) t = ζ n , (3.27) 
or equivalently by (2.1), C bn = {ζ n }, namely the condition (ii) of Theorem 3.1 holds. Moreover, due to (3.24) σ n b n is divergence free in R 2 , or equivalently, in the torus sense (2.10)

∀ ψ ∈ C 1 (Y d ), Y d b n (x) • ∇ψ(x) σ n (x) dx = 0.
Hence, by virtue of Proposition 2.2 σ n (x) dx is an invariant probability measure for the flow X n , which combined with (3.24) implies that

Y 2 σ n (y) b n (y) dy = C n Y 2 R ⊥ ∇u(y) dy ∈ C bn = {ζ n }. (3.28) 
Let us conclude: 

• If ρ is positive in Y 2 ,
Φ • ∇v ≥ c in R 2 . (3.29)
This inequality means that the equipotential {v = 0} (or any equipotential of v) is transverse to each orbit Y (R, x), x ∈ R 2 , of the flow Y associated with Φ. In other words, the equipotential {v = 0} can be regarded as a Siegel's curve [27, Lemma 3] for the flow Y in R 2 rather than in the torus Y 2 . Assuming that b is non vanishing and that the flow X associated with b has no periodic trajectory in Y 2 according to (1.18) (which is an ergodic type condition) and using a Siegel's curve in the torus, Peirone [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF]Theorem 3.1] has proved that the asymptotics of the flow X(•, x) does exist for any x ∈ Y 2 and is independent of x, or equivalently by (2.1), that C b is a singleton. Therefore, condition (3.18) and the ergodic condition (3.19) play the same role for the vector field Φ than Peirone's conditions for the vector field b through a similar Siegel's curve approach. However, working with the non vanishing vector field Φ rather than b allows us to obtain some new asymptotics when the vector field b = ρ Φ does vanish with the non negative function ρ. Now, let us check that condition (3.29) implies condition (3.18) under some (minor) additional assumptions. To this end, we will follow the same procedure as [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF]Theorem 2.15] derived for a gradient field. Since we have for any x ∈ Y 2 ,

∀ t ∈ R, ∂ ∂t v(Y (t, x)) = (Φ • ∇v)(Y (t, x)) ≥ c > 0, the mapping t → v(Y (t, x)) is a C 1 -diffeomorphism on R, hence there exists a unique τ (x) ∈ R such that v Y (τ (x), x) = 0,
namely the trajectory Y (•, x) reaches the equipotential {v = 0} at time τ (x). The uniqueness of τ combined with the semi-group property of the flow Y easily implies that

∀ x ∈ Y 2 , ∀ t ∈ R, τ (Y (t, x)) = τ (x) -t. (3.30)
Moreover, by the implicit functions theorem and the C 1 (R × R 2 ) regularity of the flow Y , the function τ belongs to C 1 (R 2 ). Then, define the positive function

σ 0 ∈ C 1 (R 2 ) by σ 0 (x) := exp τ (x) 0 (div Φ)(Y (s, x)) ds for x ∈ R 2 . ( 3 

.31)

From now, assume that div (Φ) ∈ C 1 (R 2 ). Then, the function σ 0 belongs to C 1 (R 2 ). By using (3.30) and the semi-group property of the flow Y , then making the change of variable r = s + t, we get that

∀ x ∈ Y 2 , ∀ t ∈ R, σ 0 (Y (t, x)) = exp τ (x) t (div Φ)(Y (r, x)) dr .
Next, taking the derivative of the previous equality at t = 0, we obtain that

∇σ 0 • Φ + σ 0 div (Φ) = div (σ 0 Φ) = 0 in R 2 ,
or equivalently, there exists a function

u 0 ∈ C 1 (R 2 ) such that Φ = 1 σ 0 R ⊥ ∇u 0 in R 2 .
This is nearly the desired condition (3.18) except that the function σ 0 is not necessarily Z 2periodic. However, also assuming that the function σ 0 is bounded from below and above by positive constants, the averaging procedure of [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF]Theorem 2.17] allows us to build a positive

periodic function σ ∈ L ∞ (Y 2 ) satisfying div(σ Φ) = 0 in R 2 ,
which is equivalent to condition (3.18) with a := 1/σ. But the regularity of σ is not ensured. Finally, to get the regularity σ ∈ C 1 (Y 2 ), it is enough to assume in addition that σ 0 and ∇σ 0 are uniformly continuous in R 2 (see [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF]Remark 2.19]).

In contrast with Corollary 3.4 the following result uses both Theorem 3.1 and the non-ergodic approach of [START_REF] Briane | Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach[END_REF] in any dimension, and provides an alternative approach to the two-dimensional Corollary 3.4.

Corollary 3.5 For d ≥ 2 and n ∈ N * , let U n = (u n 1 , u 2 , . . . , u d ) be a sequence of vector fields in C 2 (Y d ) d with ∇U n ∈ C 1 (Y d ) d×d , and let a be a positive function in C 1 (Y d ) such that          det(∇U n ) > 0 in Y d ρ n := 1 a det(∇U n ) converges uniformly in Y d to some ρ ∈ C 1 (Y d ) ρ ≤ ρ n in Y d . (3.32) 
Then, the sequence of vector fields (b n ) n∈N defined by

b n = ρ n Φ, where Φ := a R ⊥ ∇u 2 if d = 2 a (∇u 2 × • • • × ∇u d ) if d > 2 (3.33)
converges uniformly in Y d to the vector field b = ρ Φ. Moreover, we have: 

• If ρ is positive in Y d ,
∀ x ∈ Y d , lim t → ∞ X(t, x) t =          aρ Y 2 R ⊥ ∇u 2 (y) dy if d = 2 aρ Y d (∇u 2 × • • • × ∇u d )(y) dy if d > 2, (3.34) 
where aρ is the harmonic mean of ρ.

• If ρ vanishes in Y d and aρ = 0, then the flow X associated with b satisfies the asymptotics

∀ x ∈ Y d , lim t → ∞ X(t, x) t = 0 R d . (3.35) 
• If ρ vanishes in Y d and aρ > 0, then we get the set

C b = [0 R d , ζ] with ζ :=          aρ Y 2 R ⊥ ∇u 2 (y) dy = 0 R 2 if d = 2 aρ Y d (∇u 2 × • • • × ∇u d )(y) dy = 0 R d if d > 2.
(3.36)

Proof of Corollary 3.5. We have

b n • ∇u n 1 = aρ n ∇u n 1 • R ⊥ ∇u 2 if d = 2 aρ n ∇u n 1 • (∇u 2 × • • • × ∇u d ) if d > 2 = aρ n det(∇U n ) = 1 in Y d , (3.37) 
and

1 aρ n b n = R ⊥ ∇u 2 if d = 2 ∇u 2 × • • • × ∇u d if d > 2
is divergence free in R d . Hence, from [START_REF] Briane | Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach[END_REF]Corollary 4.1] we deduce that C bn is the singleton {ζ n } with

ζ n := Y d (aρ n ) -1 (y) b n (y) dy Y d (aρ n ) -1 (y) dy =          = aρ n Y 2 R ⊥ ∇u 2 (y) dy if d = 2 = aρ n Y d (∇u 2 × • • • × ∇u d )(y) dy if d > 2, (3.38) 
where aρ n is the harmonic mean of aρ n . Let us conclude: 

• If ρ > 0 in Y d , then the sequence (aρ n ) -1 converges uniformly to (aρ) -1 in Y d .
Y 2 det(∇U n )(y) >0 dy =          Y 2 ∇u n 1 (y) • R ⊥ ∇u 2 (y) dy > 0 if d = 2 Y d ∇u n 1 (y) • (∇u 2 × • • • × ∇u d )(y) > 0 if d > 2.
Hence, from the quasi-affinity of the determinant (see, e.g., [

), namely:

det Y 2 ∇U n (y) dy = Y 2 det(∇U n )(y) dy > 0, we deduce that          Y 2 ∇u n 1 • Y 2 R ⊥ ∇u 2 = Y 2 ∇u n 1 • R ⊥ ∇u 2 > 0 if d = 2 Y d ∇u n 1 • Y d ∇u 2 × • • • × Y d ∇u d = Y d ∇u n 1 • (∇u 2 × • • • × ∇u d ) > 0 if d > 2.
Therefore, again using the quasi-affinity of the determinant (multiplying the second equality by any constant vector of R d to get a determinant) we get that

         Y 2 R ⊥ ∇u 2 (y) dy = 0 R 2 if d = 2 Y d (∇u 2 × • • • × ∇u d )(y) dy = Y d ∇u 2 (y) dy × • • • × Y d ∇u d (y) dy = 0 if d > 2, which implies that ζ = 0 R d in (3.36).
Remark 3.7 In Corollary 3.4 and in the two-dimensional case of Corollary 3.5, the vector field b n has the the same form b n = ρ n a R ⊥ ∇u. In Corollary 3.4 the function ρ n is arbitrary, while ∇u satisfies the ergodic condition (3.19). On the contrary, in the two dimensional case of Corollary 3.5 ρ n does depend on the functions a and ∇u by (3.32), while ∇u is arbitrary. Therefore, these results provide two quite different approaches on the asymptotics of the flow: an ergodic one using [START_REF] Peirone | Convergence of solutions of linear transport equations[END_REF] and a non-ergodic one using [START_REF] Briane | Isotropic realizability of fields and reconstruction of invariant measures under positivity properties. Asymptotics of the flow by a nonergodic approach[END_REF].

Examples

The following counter-example shows that Theorem 3.1 does not extend to a vector-valued perturbation. where a is a non negative function in C 1 (Y 2 ), a n := a + 1/n, and (γ n ) n∈N is a positive sequence in R \ Q which converges to 0. In this case, the flows associated with the vector fields b and b n can be computed explicitly.

On the one hand, by the ergodic case of [29, Section 3.1] with the irrational rotation number γ n , the flow X n associated with the field b n satisfies the asymptotics

∀ x ∈ Y 2 , lim t→∞ X n (t, x) t = a n (e 1 + γ n e 2 ),
where a n is the harmonic mean of a n , or equivalently by (2.1),

C bn = {ζ n } with ζ n := a n (e 1 + γ n e 2 ). (4.1) 
On the other hand, by the non-ergodic case of [29, Section 3.1] with the rational rotation number 0 and its extension when a vanishes in Y 2 , the flow X associated with the field b satisfies the asymptotics

∀ x ∈ Y 2 , lim t→∞ X(t, x) t = a(• e 1 + x) e 1 if a(• e 1 + x) is positive in Y 2 0 if a(• e 1 + x) vanishes in Y 2 ,
where a(• e 1 + x) is the harmonic mean defined by

a(• e 1 + x) := Y 1 dt a(t e 1 + x) -1 for x ∈ Y 2 ,
or equivalently, the set A b (1.8) is given by

A b = a(• e 1 + x) e 1 : x ∈ Y 2 . Moreover, the function x → a(• e 1 + x) is continuous on the compact set Y 2 . It is clear at any point x ∈ Y 2 such that a(• e 1 + x) is positive. Otherwise, if a(• e 1 + x) ∈ C 1 (Y 1 ) vanishes in Y 1 ,
by Fatou's lemma we get that for any sequence (x n ) n∈N converging to x,

∞ = 1 a(• e 1 + x) ≤ lim inf n→∞ 1 a(• e 1 + x n ) = lim n→∞ 1 a(• e 1 + x n ) = ∞.
Hence, the set A b is actually a closed line segment of R 2 , which by (1.10) implies that

C b = conv(A b ) = A b = a(• e 1 + x) e 1 : x ∈ Y 2 . (4.2)
In particular, when a vanishes in Y 2 , we get that

C b = [0 R 2 , ζ] with ζ := max x∈Y 2 a(• e 1 + x) e 1 .
Therefore, taking into account (4.1), contrary to the second case of Theorem 3.1 we may have

a e 1 = lim n→∞ ζ n = ζ = max x∈Y 2 a(• e 1 + x) e 1 .
For example, take a(x) := sin 2 (πx 1 ) + sin 2 (πx 2 ) for x = (x 1 , x 2 ) ∈ R 2 .

Then, it follows that

1 a = Y 1 Y 1 dx 2 sin 2 (πx 1 ) + sin 2 (πx 2 ) dx 1 > Y 1 dx 1 sin 2 (πx 1 ) + 1 (for any x 1 ∈ Y 1 and x 2 = 1 2 ) = min x∈Y 2 Y 1 dt sin 2 (πt + πx 1 ) + sin 2 (πx 2 ) = min x∈Y 2 1 a(• e 1 + x) ,
which implies that a < max

x∈Y 2 a(• e 1 + x).
Therefore, Theorem 3.1 does not extend in general to the case where the direction Φ of the field b n = ρ n Φ also depends on n.

Finally, note that the inclusion {0 R 2 , ζ} ⊂ A b of the second case of Theorem 3.1 is not in general an equality, since in the particular case (4.2)

A b is the closed line segment [0 R 2 , ζ].
The second example shows that the singleton condition is not in general asymptotically preserved under the assumptions of Theorem 3.1. The third example illustrates Corollary 3.5.

Exemple 4.3 Let U n = (u n 1 , u 2 , . . . , u d ) ∈ C 2 (Y d ) d , d ≥ 2
and n ≥ 1, be such that ∇U n is Z d -periodic, the functions u 2 , . . . , u d only depend on the variables x = (x 2 , . . . , x d ),

u n 1 (x) := x 1 0 dt f n (t, x ) and ∆(x ) := det ∂u i ∂x j (x ) 2≤i,j≤d > 0 for x ∈ Y d , where (f n ) n∈N is a positive sequence in C 1 (Y d ) N which converges uniformly to f ≤ f n in Y d .
Expanding the determinant with respect to its first column we have

∀ x ∈ Y d , det(∇U n )(x) = ∆(x ) f n (x) > 0 and ρ n (x) := 1 det(∇U n )(x) → ρ(x) := f (x) ∆(x ) ≤ ρ n (x)
uniformly in Y d , so that condition 

(x) =          f (x) ∆(x ) R ⊥ ∇u 2 (x) if d = 2 f (x) ∆(x ) (∇u 2 × • • • × ∇u d )(x) if d > 2, for x ∈ Y d .
Moreover, due to the 1-periodicity of ∇ x u n 1 with respect to the variable x 1 , we have

∀ x ∈ R d-1 , 1 0 ∇ x 1 f n (t, x ) dt = 0,
which implies the existence of a positive constant c n such that

∀ x ∈ R d-1 , 1 0 dt f n (t, x ) = c n . (4.3)
Hence, from inequality f ≤ f n and Fatou's lemma we deduce that

∀ x ∈ R d-1 , lim sup n→∞ c n ≤ 1 0 dt f (t, x ) ≤ lim inf n→∞ 1 0 dt f n (t, x ) = lim inf n→∞ c n , which implies that ∀ x ∈ R d-1 , 1 0 dt f (t, x ) = lim n→∞ c n . (4.4)
Then, we have the following alternative: 

• If f is positive in Y d ,
∀ x ∈ Y d , lim t → ∞ X(t, x) t =          ρ Y 2 R ⊥ ∇u 2 (y) dy if d = 2 ρ Y d (∇u 2 × • • • × ∇u d )(y) dy if d > 2,
where

ρ = Y d ∆(x ) f (x) dx -1
.

• If f vanishes at some point

x 0 ∈ Y d , then since f (•, x 0 ) is in C 1 (Y 1
) and vanishes at t = (x 0 ) 1 , we have by (4.4)

∀ x ∈ R d-1 , lim n→∞ c n = lim n→∞ 1 0 dt f n (t, x ) = 1 0 dt f (t, x 0 ) = ∞. (4.5)
Assume by contradiction that f > 0. Then, using successively Lebesgue's theorem with inequality f ≤ f n , Fubini's theorem and equality (4.3), we get that

∞ > Y d dx f (x) = lim n→∞ Y d dx f n (x) = lim n→∞ Y d-1 dx 1 0 dt f n (t, x ) = lim n→∞ c n ,
which contradicts (4.5). Hence, we deduce that f = 0, and due to the positivity of ∆ we get that

ρ = Y d ∆(x ) f (x) dx -1 = 0.
Therefore, by virtue of the second case of Corollary 3.5 we obtain the null asymptotics (3.35).

Note that the third case of Corollary 3.5 cannot arise when the functions u 2 , . . . , u d are independent of the variable x 1 .

The fourth example deals with the case of an electric field. It is based on the divergencecurl Proposition 2.2, and illustrates the framework of Theorem 3.1. We cannot characterize precisely the set C b except in the two-dimensional ergodic case. However, the two-dimensional case and the three-dimensional case are shown to be quite different. 

(σDU ) = 0 R d in R d y → U (y) -y is Z d -periodic, (4.6) 
where DU = (∇U ) T and the vector-valued operator Div consists in the divergence of the columns of σDU . The variational formulation of (4.6) reads as In (4.7) " : " denotes the scalar product in R d×d defined by

DU ∈ C 1 (Y d ) d and ∀ Ψ ∈ C 1 (Y d ) d , Y d σ ( 
M : N := tr(M T N ) for M, N ∈ R d×d .
The so-called homogenized matrix (see, e.g., [5, Chapter I, Section 2.3]) associated with the conductivity σ is defined by

A * := Y d σ(y) DU (y) dy, (4.8) 
which is known to be symmetric positive definite. Also define the associated electric field 

b λ := ∇u λ = ∇(U λ) = DU λ for λ ∈ R d \ {0 R d }. ( 4 
A * λ = Y 2 b λ (y) σ(y) dy ∈ C b λ . (4.12)
On the other hand, let µ ∈ I b λ be an invariant probability measure for the flow X λ associated with b λ . By the divergence-curl relation (2.14) and (4.6) we have

Y 2 |b λ (y)| 2 µ(dy) = Y 2 b λ (y) • ∇u λ dµ(y) = Y 2 b λ (y) dµ(y) • λ. (4.13) 
Due to inequality (4.10) the gradient field b λ = DU λ does not vanish in Y 2 . Hence, since µ is a probability measure, we deduce that µ({b λ = 0}) > 0, which implies that the first term of (4.13) is positive. Therefore, we get that

0 R 2 = Y 2 b λ (y) dµ(y) ∈ C b λ .
This combined with (4.12) yields

{A * λ} ⊂ C b λ ⊂ R 2 \ {0 R 2 }. (4.14) 
We may improve the former result under the extra ergodic condition 

∀ κ ∈ Z 2 \ {0 R 2 }, (A * λ) • κ = 0. ( 4 
λ ∈ C 1 (Y 2 ) 2 , such that σ b λ = R ⊥ ∇v λ in Y 2 .
Moreover, since by (4.12) More precisely, the conductivity of [START_REF] Briane | Change of sign of the corrector's determinant for homogenization in three-dimensional conductivity[END_REF] rescaled by its Y 3 -average value denoted by σ γ (recall that σ γ (x) dx has to be a probability measure) takes two values: σ γ = 1 in a cubic symmetric lattice of interlocking rings which do not intersect, and σ γ = γ 1 elsewhere in R 3 . The conductivity σ γ is thus not regular. However, enlarging each ring with a width d γ 1, we can build a new conductivity σ ∈ C 3 (Y 3 ) (also depending on γ) whose values pass from 1 on the boundary of each ring to γ on the boundary of the corresponding enlarged ring. Then, it is easy to check that for γ and d γ small enough, the matrix-valued fonction DU defined by (4.6) with the regular conductivity σ has a determinant which also changes sign. Thus, by a continuity continuity argument we get that

Y 2 ∇v λ (y) dy = -R ⊥ Y 2 σ(y) b λ (y) dy = -R ⊥ A * λ, condition (4 
∀ x ∈ Y 2 , lim t → ∞ X λ (t, x) t = 1/σ Y 2 R ⊥ ∇v(y) dy = A * λ,
∃ y 0 ∈ Y 3 , det(DU )(y 0 ) = 0, (4.17) 
which implies that there exists λ ∈ R 3 \ {0 R 3 } such that DU (y 0 )λ = 0 R 3 . Hence, the gradient field b λ defined by (4.9) vanishes at point y 0 . Therefore, in contrast with the two-dimensional result (4.12) we obtain the more complete result Result (4.18) corresponds to the second case of Theorem 3.1. In contrast with the result (4.14) of the two-dimensional case, we obtain that

A * λ = Y 3 b λ (y) σ(y) dy ∈ C b λ \ {0 R 3 } and [0 R 3 , A * λ] ⊂ C b λ , (4.18 
[0 R 3 , A * λ] ⊂ C b λ . (4.19)

Homogenization of linear transport equations

The following theorem is an extension of various homogenization results [START_REF] Brenier | Remarks on some linear hyperbolic equations with oscillatory coefficients[END_REF][START_REF] Golse | Moyennisation des champs de vecteurs et EDP[END_REF][START_REF] Golse | On perturbations of dynamical systems and the velocity averaging method for PDEs[END_REF][START_REF] Hou | Homogenization of linear transport equations with oscillatory vector fields[END_REF][START_REF] Tassa | Homogenization of two-dimensional linear flows with integral invariance[END_REF] (and the references therein) of linear transport equations with an oscillating velocity, which are based on the classical ergodic approach. Here, in a regular and periodic framework the ergodic approach is replaced by the singleton approach of Section 2.1, whose a very particular case has been first obtained in [START_REF] Briane | Isotropic realizability of a strain field for the two-dimensional incompressible elasticity system[END_REF]Corollary 4.4]. 

   ∂u ε ∂t -b(x/ε) • ∇u ε = 0 in (0, ∞) × R d u ε (0, x) = u 0 (x) for x ∈ R d .
(5.1)

Assume that there exists a vector This combined with the boundedness of b and Lebesgue's theorem implies that the pointwise convergence (5.5) of X ε holds actually in L p loc ([0, ∞) × R d ) for any p ∈ [1, ∞). Therefore, by the expression (5.4) with u 0 ∈ C 1 (R d ), u ε (t, x) converges strongly in L p loc ([0, ∞) × R d ) for any p ∈ [1, ∞), to the function u 0 (x + t ζ), which concludes the proof.

ζ ∈ R d such that ∀ x ∈ Y d , lim t→∞ X(t, x) t = ζ, (5.2 

A Derivation of invariant probability measures

Let T t for t ∈ R, be the mapping from C 0 (Y d ) into itself defined by (T t f )(x) := f X(t, x) for f ∈ C 0 (Y d ) and x ∈ Y d .

(A.1)

When a flow preserves the set of the continuous functions on a compact metric space, the existence of an invariant probability measure for the flow is a classical statement which can be derived thanks to a weak compactness argument applied to sequences of probability measures defined from the Birkhoff time averages in (1.5) (see, e.g., [13, Theorem 1, Section 1.8] in the discrete time case). The following result adapts this statement restricting it to the limit points of the Birkhoff time averages for a given fixed function, adding possible variations of the spatial parameter x in the averages. Then, there exists a subsequence (ν n k ) k∈N of (ν n ) n∈N which converges weakly * to some probability measure µ ∈ M p (Y d ) which is invariant for the flow X.

Let a be a limit point of the sequence (u n ) n∈N (A.2), namely

a = lim n→∞ 1 t θ(n) t θ(n) 0 g(X(t, x θ(n) )) dt,
for some strictly increasing sequence (θ(n)) n∈N of integer numbers. Set r n := t θ(n) , y n := x θ(n) , and consider the associated sequence (ν n ) n∈N of probability measures on Y d given by (A.4). By Lemma A.2 we can extract a subsequence (ν n k ) k∈N which converges weakly * to some invariant probability measure µ ∈ I b for the flow X. We thus have Hence, we get that

∀ f ∈ C 0 (Y d ), lim
∀ t ∈ R, ∀ f ∈ C 0 (Y d ), Y d (T t f )(y) dµ(y) = Y d f (y) dµ(y),
which implies that µ is invariant for the flow X.

  t, y) dµ(y) = Y d ψ(y) dµ(y). (1.2) A strengthened variant of the famous Birkhoff ergodic theorem [13, Theorem 2, Section 1.8] claims that if the flow is uniquely ergodic, i.e. there exists a unique probability measure µ on Y d which is invariant for the flow, then any function f ∈ C 0 (Y d ) satisfies ∀ x ∈ Y d , lim actually holds true. In the particular case where f = b, limit (1.3) yields ∀ x ∈ Y d , lim t→∞ X(t, x) t = Y d b(y) dµ(y). (1.4) The unique ergodicity condition is a rather restrictive condition on the flow (1.1). Alternatively, define the set I b := µ ∈ M p (Y d ) : µ invariant for the flow X , (1.5) where M p (Y d ) is the set of probability measures on Y d , and the subset of I b E b := µ ∈ I b : µ ergodic for the flow X . (1.6)

  Under the global rectification condition ∇Ψ b = ζ in Y d , where Ψ is a C 2 -diffeomorphism on the torus Y d and ζ is a non zero constant vector in R d , the set C b is the singleton ( Y d ∇Ψ) -1 ζ in any dimension (see [8, Corollary 4.1] and Remark 2.1).

  3 and Example 4.1). Moreover, the two-dimensional Example 4.2 shows that the sequence of singletons (C bn ) n∈N may be actually enlarged to the limit closed line segment C b = [0 R d , ζ] with ζ = 0. From the perturbation result we first deduce (see Corollary 3.1) that for a fixed vector field Φ ∈ C 1 (Y d ) d , the set of the positive functions ρ ∈ C 1 (Y d ) with #C ρΦ = 1 is closed for the uniform convergence in C 1 (Y d ) d . This result does not extend to the larger set composed of the non negative functions ρ as shown in Remark 3.4. Then, we prove various corollaries of Theorem 3.1 in terms of the asymptotics of the ODE's flow (1.1):

  3 and Corollary 3.4, • Corollary 3.5 illustrated by Example 4.3, • Example 4.2 when α ≥ 1, • the two-dimensional conductivity case of Example 4.4 under the ergodic condition (4.15).

  denotes the space of the real-valued functions in L p loc (R d ) which are Z d -periodic. • M (R d ), resp. M (Y d ), denotes the space of the Radon measures on R d , resp. Y d , and M p (Y d ) denotes the space of the probability measures on Y d . • The notation I b in (1.5) will be used throughout the paper. • D (R d ) denotes the space of the distributions on R d . • Let a be a non negative function in L 1 (Y d ), the arithmetic mean a and the harmonic mean a of a are defined by a := Y d a(y) dy and a :=

  then (3.1) and c µ = 1 hold for any µ ∈ I b . This combined with (3.4) implies that C b \ {0 R d } = {ζ}. Therefore, due to the convexity of C b we obtain that C b = {ζ}.

  then the first step of the proof implies (3.3) and (3.4) for some µ ∈ I b with ζ = lim n ζ n = 0 R d , which yields a contradiction. Now, assume that the sequence (ζ n ) n∈N does not converge to 0 R d , and consider a subsequence (ζ n k ) k∈N which converges to some ζ = 0 R d . Up to extract a new subsequence, we may assume that the sequence (µ n k ) k∈N converges weakly * to some probability measure μ on Y d . Passing to the limit in the divergence-curl relation (2.10) satisfied by µ n k ∈ I bn k :

  ) so that μ ∈ I b again by the equivalence (i)-(iii) of Proposition 2.2. Moreover, by the uniform convergence of the sequence (b n ) n∈N to b we have

  On the other hand, by equality (3.9) in Lemma 3.1 below (based on the above proved formulas (3.3) and (3.8)), we get immediately that ζ ∈ A b . Finally, it remains to deal with the case C b = {0 R d }. We have just to prove that the sequence (ζ n ) n∈N converges to 0. Repeating the argument between (3.5) and (3.7) for any subsequence (ζ n k ) k∈N which converges to ζ ∈ R d and any subsequence (µ n k ) k∈N which converges weakly * to μ in M p (Y d ), we get that μ ∈ I b and ζ = lim

Remark 3 . 2 . 9 )

 329 In the setting of Theorem 3.1, Example 4.2 below provides a two-dimensional case of vector field b = ρ Φ with a vanishing function ρ, in which C b is a closed line segment of R 2 not reduced to a singleton, and thus #A b ≥ 2. Lemma 3.1 Let b be a vector field satisfying the assumptions of Theorem 3.1 with a vanishing function ρ. Then, for any µ ∈ I b with Y d b(x) dµ(x) = 0, we have lim t → ∞ X(t, x) t = ζ for µ-a.e. x ∈ {ρ > 0}. (3Proof of Lemma 3.1. Let µ ∈ I b with Y d b(x) dµ(x) = 0. By Birkhoff's theorem, there exists a measurable function x → g(x) such that by (1.8) and (1.10)

1 -Remark 3 . 3 Corollary 3 . 1

 13331 {ρ>0} b(x) dµ(x) = {ρ>0} ∆(x) dµ(x) ζ. Moreover, since Y d b(x) dµ(x) = 0, from the formulas (3.3) and (3.8) in the proof of Theorem 3.1 we deduce thatY d b(x) dµ(x) = {ρ>0} b(x) dµ(x) = β µ ζ, where β µ := ∆(x)) dµ(x) = 0.Since the function ∆ takes values in [0, 1], the former equality implies that ∆ = 1 for µ-a.e. in {ρ > 0}, which combined with (3.10) yields the desired limit (3.9). Theorem 3.1 cannot be extended to the more general case where the direction Φ of b n also depends on n, as shown in Example 4.1 below. More precisely, the independence of Φ with respect to n is crucial for the proof of Theorem 3.1 to build in (3.2) the invariant probability measure µ n ∈ I bn from a given invariant probability measure µ ∈ I b . Let Φ be a non vanishing vector field in C 1 (Y d ) d . Then, we have for the uniform convergence topology in C 0 (Y d ),

. 11 ). 1 . 3 . 4

 11134 Proof of Corollary 3.1. The equality of the sets in(3.11) follows directly from (1.10). Moreover, the fact that the first set is closed is a straightforward consequence of the first case of Theorem 3Remark Example 1 of[START_REF] Llibre | Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity[END_REF] provides a two-dimensional case where the field b * = Φ * , i.e. ρ * = 1, is such that #A Φ * = 2. Therefore, by(3.11) there exists an open ball B * centered at ρ * = 1 such that #A ρ Φ * > 1 for any ρ ∈ B * .

Corollary 3 . 2

 32 Assume that the conditions of Theorem 3.1 hold with a vanishing function ρ. Denote by π the canonical projection from R d on the torus Y d , and define for x ∈ R d ,

. 13 )

 13 Proof of Corollary 3.2. Let x ∈ Y d be such that F x ∩ {ρ = 0} = Ø. First, by virtue of Proposition A.1 with g = b i and x n = x, any limit point derived from the asymptotics X(t, x)/t as t → ∞, is of the form Y d b(y) dµ(y) for some µ ∈ I b .

16 )

 16 y) σ(y) dy. (3.15) Proof of Corollary 3.3. Since σ Φ is divergence free in R d and σ is Z d -periodic, by virtue of Proposition 2.2 the probability measure on Y d : σ(x)/σ dx, where σ > 0 is the arithmetic mean of σ, is an invariant probability measure for the flow associated with the vector field Φ, i.e. σ(x)/σ dx ∈ I Φ . For every n ∈ N, define the probability measure µ n on Y d by dµ n (x) := C n ρ n (x) σ(x) dx where C n := Due to σ(x)/σ dx ∈ I Φ we have by Proposition 2.2

2 RRemark 3 . 6

 236 then from equality (3.28) and the uniform convergence of ρ n to ρ > 0 we deduce that lim n→∞ ζ n = ζ := C Y ⊥ ∇u(y) dy, where C := lim n→∞ C n = aρ. Therefore, by the first result of Theorem 3.1 we get that C b = {ζ}, or equivalently by (2.1), asymptotics (3.20) is satisfied. • Otherwise, ρ vanishes in Y 2 . Moreover, by (3.18) the vector field a -1 Φ is clearly divergence free in R 2 . Therefore, by virtue of Corollary 3.3 with σ = a -1 , we deduce the null asymptotics (3.21) if aρ = 0, and the set C b (3.22) if aρ > 0. The fact that ζ = 0 R 2 in (3.22) follows immediately from the ergodic condition (3.19). The proof is now complete. The condition (3.18) on the direction Φ of the field b = ρ Φ may seem to be quite restrictive at the first glance. Actually, we can deduce (3.18) from the existence of a function v ∈ C 2 (Y 2 ) and a constant c > 0 satisfying the inequality

  then the flow X associated with b satisfies the asymptotics

Exemple 4 . 1

 41 Consider the fields b and b n defined by b(x) = a(x) e 1 and b n (x) = a n (x) (e 1 + γ n e 2 ), for x ∈ Y 2 and n ∈ N,

Exemple 4 . 2

 42 Let ∇u ∈ C 1 (Y 2 ) 2 be satisfying the ergodic condition(3.19), let (ρ n ) n∈N be the sequence of positive functions in C 1 (Y 2 ) defined byρ n (x) := sin 2 (πx 1 ) + sin 2 (πx 2 ) + 1/n α for x ∈ Y 2 , with α ∈ (1/2, 1).and let (b n ) n∈N be the sequence of vector fields defined by b n = ρ n R ⊥ ∇u. Since the function(t → t α ) is uniformly continuous in [0, ∞), the sequence (ρ n ) n∈N converges uniformly in Y d to the function ρ(x) := sin 2 (πx 1 ) + sin 2 (πx 2 ) α for x = (x 1 , x 2 ) ∈ Y 2 ,which belongs to C 1 (Y 2 ) due to α > 1/2, and vanishes at the sole point (0, 0) in the torus Y 2 . Moreover, we have for any x close to (0, 0), 2α , for some c > 1, so that ρ > 0 due to α < 1 (see Remark 3.5). Therefore, by the asymptotics (3.22) of Corollary 3.4 and condition(3.19) we get thatC b = [0, ζ] with ζ := Y 2 dx sin 2 (πx 1 ) + sin 2 (πx 2 ) α -1 Y d R ⊥ ∇u(y) dy = 0.Note that, if α ≥ 1, then ρ = 0. Therefore, by Corollary 3.4 we get that C b = {0 R 2 }, and the flow X satisfies the null asymptotics (3.21).

( 3 .

 3 32) is fulfilled with a = 1. Define the vector field b n in C 1 (Y d ) d by (3.33). Therefore, the sequence (b n ) n∈N converges uniformly in Y d to the function b given by b

  then by virtue of the first case of Corollary 3.5 we obtain the asymptotics of the flow associated with b

Exemple 4 . 4

 44 Let σ ∈ C 3 (Y d ) be a positive function with Y d σ(y) dy = 1. Consider the vectorvalued function U ∈ C 2 (R d ) d (see, e.g., [16, Theorem 8.13]) unique solution (up to an additive constant vector) to the conductivity problem Div

  y)DU (y) : DΨ(y) dy = 0. (4.7)

. 15 )

 15 means that the gradient field ∇v λ satisfies the ergodic condition(3.19). Hence, the vector field b λ = 1/σ R ⊥ ∇v λ satisfies the first result of Corollary 3.4 with u := v λ , a := 1/σ and ρ := 1. Therefore, the flow X λ associated with b λ satisfies asymptotics (3.20) which reads as

or equivalently by ( 2 . 1 ). 16 )d = 3 :

 21163 , we obtain thatC b λ = {A * λ}. (4Case Contrary to the two-dimensional case with the positivity (4.10), by virtue of [10, Theorem 4.1] there exists a positive conductivity σ γ ∈ L ∞ (Y 3 ) such that the vector-valued function U γ solution to the equation (4.6) with σ γ has a determinant which changes sign.

) 3 b

 3 since the Dirac mass δ y 0 belongs to I b δ and Y λ (y) dδ y 0 (dy) = b λ (y 0 ) = 0 R 3 .

Theorem 5 . 1

 51 Let b be a vector field in C 1 (Y d ) d and let u 0 ∈ C 1 (R d ). Consider the transport equation with the oscillating velocity b(x/ε):

3 ) 4 )

 34 )where X is the flow (1.15) associated with the vector field b. Then, the solution u ε to transport equation(5.1) converges strongly in L p loc ([0, ∞) × R d ) for any p ∈ [1, ∞), to u 0 (x + t ζ)which is solution to the transport equation (5.1) with the constant velocity ζ in place of b(x/ε).Proof of Theorem 5.1. Let X be the flow associated to the vector field b. By ε-rescaling the flow X, let us define the flow X ε associated with the oscillating vector field b(x/ε) by∀ (t, x) ∈ (0, ∞) × Y d , X ε (t, x) := εTaking into account the regularity conditions the characteristics method induced by the flow X ε implies that the solution u ε to (5.1) is given by∀ (t, x) ∈ [0, ∞) × Y d , u ε (t, x) = u 0 (X ε (t, x)) = u 0 x + εOn the other hand, let (ε n ) n∈N be a positive sequence converging to 0. Let (t, x) ∈ (0, ∞) × Y d , set t n := t/ε n and x n := x/ε n . Then, by virtue of Proposition A.1 the limit points of the sequencev n := ε n s, x n )) dsbelong to t C b . However, by (5.2) combined with equivalence (2.1) we have C b = {ζ}. Hence, for any positive sequence (ε n ) n∈N converging to 0, the whole sequence (v n ) n∈N converges to t ζ, which combined with (5.3) implies that∀ (t, x) ∈ (0, ∞) × Y d , lim ε→0 X ε (t, x) = x + t ζ.(5.5)Moreover, making the change of variable r = ε s in (5.3) we have∀ (t, x) ∈ [0, ∞) × Y d , X ε (t, x) = x +

Proposition A. 1 . 3 )

 13 Let b ∈ C 1 (Y d ) d . There exists an invariant probability measure on Y d for the flow X (1.15) associated with b. Moreover, let g∈ C 0 (Y d ), let (x n ) n∈N ∈ (R d ) N ,and let (t n ) n∈N ∈ R N be such that lim n t n = ∞. Then, for any limit point a of the sequence(u n ) n∈N ∈ R N s, x n )) ds, n ∈ N, (A.2)there exists a probability measure µ ∈ M p (Y d ) (depending a priori on (x n ) n∈N and g) which is invariant for the flow X and which satisfies a = Y d g(y) dµ(y).(AProof of Proposition A.1. We will use the following result which is proved below.Lemma A.2 Let (y n ) n∈N ∈ (R d ) N , let (r n ) n∈N ∈ R N be such that lim n r n = ∞,and let ν n , n ∈ N, be the probability measure defined by Y d f (y) dν n (y) = 1 r n rn 0 f (X(s, y n )) ds for f ∈ C 0 (Y d ). (A.4)

r n k rn k 0 fτ k τ k 0 f

 00 k→∞ Y d f (y) dν n k (y) = Y d f (y) dµ(y),which implies in particular thata = lim k→∞ 1 t θ(n k ) t θ(n k ) 0 g(X(s, x θ(n k ) )) ds = lim k→∞ Y d g(y) dν n k (y) = Y d g(y) dµ(y).Proof of Lemma A.2. Since Y d is a compact metrizable space, there exists a subsequence(ν n k ) k∈N of (ν n ) n∈N which converges weakly * to some probability measure µ ∈ M p (Y d ), namely for any f ∈ C 0 (Y d ), Y d f (y) dν n k (y) = 1 (X(s, y n k )) ds -→ k→∞ Y d f (y) dµ(y). (A.5)Let us prove that µ is invariant for the flow X. For the sake of simplicity denoteτ k := r n k , z k := y n k and µ k := ν n k . Let t ∈ R and f ∈ C 0 (Y d ).By the semi-group property of the flow (1.16) we haveY d (T t f )(y) dµ k (y) = 1 (X(s + t, z k )) ds.By the change of variable r = s + t, it follows thatY d (T t f )(y) dµ k (yr, z k )) drSince f is bounded and t ∈ R is fixed, we deduce from (A.5) thatlim k→∞ Y d (T t f )(y) dµ k (y) = Y d f (y) dµ(y).However, by the definition of µ we also have lim k→∞ Y d (T t f )(y) dµ k (y) = Y d (T t f )(y) dµ(y).

  for any non negative symmetric matrix-valued function A ∈ C 1 (Y d ) d×d . Note that in this case, the finite set condition of (2.15) and the strict convexity of f can be replaced by the unique condition ∇v = 0 R d , or equivalently, v is Z d -periodic.Indeed, let µ ∈ I b be an invariant probability measure for the flow X. Similarly as (2.19), by the divergence-curl relation (2.10) we have

  which implies that the sequence (C n ) n∈N tends to 0. Hence, by (3.17) the sequence (ζ n ) n∈N converges to ζ = 0 R d . Therefore, by the second case of Theorem 3.1 we have C b = {0 R d }, or equivalently by (2.1), the null asymptotics (3.14) holds.

	Y d	σ(y) ρ(y)	dy ≤ lim inf n→∞	Y d	σ(y) ρ n (y)	dy ,
	• If ρ/σ > 0, then from the convergence of ρ n to ρ, the inequality ρ n ≥ ρ and Lebesgue's
	theorem we deduce that							
	lim n→∞ Y d	σ(y) ρ n (y)	dy =	Y d	σ(y) ρ(y)	dy =	1 ρ/σ	< ∞,
	which by (3.16), (3.17) implies that					
	ζ = lim					

.17)

• If ρ/σ = 0, then by Fatou's lemma we get that

∞ = n→∞ ζ n = ρ/σ Y d Φ(y) σ(y) dy.

Therefore, again by the second case of Theorem 3.1 we obtain the set C b (3.15). Remark 3.5 In the two-dimensional case of Corollary 3.3, if ρ is in C 2 (Y 2

  Therefore, by the first case of Theorem 3.1 combined with (3.38) we get that C b = {ζ}, or equivalently by (2.1), asymptotics (3.34) holds. • Otherwise, ρ vanishes in Y 2 . Moreover, by (3.33) the vector field a -1 Φ is clearly divergence free in R 2 . Therefore, by virtue of Corollary 3.3 with σ = a -1 , we deduce the null asymptotics (3.35) if aρ = 0, and the set C b (3.36) if aρ > 0. It remains to prove that ζ = 0 R d in (3.36). By the definition of U n and (3.32) we have

  Alessandrini and Nesi[START_REF] Alessandrini | Univalent σ-harmonic mappings[END_REF] Theorems 1,[START_REF] Amirat | Homogénéisation d'équations hyperboliques du premier ordre et application aux écoulements miscibles en milieu poreux" (French) [Homogenization of a system of first-order hyperbolic equations and application to miscible flows in a porous medium[END_REF] have proved thatU is a C 1 -diffeomorphism of R 2 with det(DU ) > 0 in Y 2 . (4.10) Let λ ∈ R 2 \ {0 R 2 }.As a consequence (see [1, Proposition 2]) the gradient field b λ defined by (4.9) does not vanish in Y 2 . Hence, the set of invariant probability measures I b λ for the flow associated with b λ does not contain any Dirac measure. which by virtue of the equivalence (i)-(iii) of Proposition 2.2 implies that σ(x) dx is an invariant probability measure with positive density. Therefore, by definition (4.8) we can only conclude that (recall that A * is positive definite and λ is non zero)

	Moreover, by (4.7) and (4.9) we have		
	∀ ψ ∈ C 1 (Y 2 ),	b λ (y) • ∇ψ(y) σ(y) dy =	σ(y)∇u λ (y) • ∇ψ(y) dy = 0,	(4.11)
	Y 2	Y 2		

.9)

Case d = 2:

  .15) Indeed, since by (4.11) σ b λ is divergence free, by a classical duality argument there exists a potential v λ with ∇v