
HAL Id: hal-02949278
https://hal.science/hal-02949278v1

Submitted on 25 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Localized Topological Simplification of Scalar Data
Jonas Lukasczyk, Christoph Garth, Ross Maciejewski, Julien Tierny

To cite this version:
Jonas Lukasczyk, Christoph Garth, Ross Maciejewski, Julien Tierny. Localized Topological Simplifica-
tion of Scalar Data. IEEE Transactions on Visualization and Computer Graphics, 2020. �hal-02949278�

https://hal.science/hal-02949278v1
https://hal.archives-ouvertes.fr

Localized Topological Simplification of Scalar Data

Jonas Lukasczyk, Christoph Garth, Ross Maciejewski, and Julien Tierny

removing 20k of 21k maxima
in a 5123 scalar field

takes 7s with LTS

and 165s with a
state-of-the-art approach

Fig. 1. Illustration of the impact of localized topological simplification (LTS) on the resulting topology-based feature characterization of
individual vortices (colored regions) in a computational fluid dynamics simulation [25]. The simulation models the injection of a jet into a
medium at rest (5123 voxels) where individual vortices are characterized as regions around vorticity magnitude maxima. By selecting
maxima that need to be removed via different persistence thresholds for different parts of the domain, it is possible to suppress noise,
and to combine multiple small vortices into larger regions; allowing users to explore different merging thresholds. In this example, even
for the aggressive removal of 20k out of 21k maxima, LTS only needs to process 1% of the scalar field. Moreover, due to the algorithm’s
localized nature, LTS can utilize shared-memory parallelism to outperform previous approaches by an order of magnitude. In this
example, exploring a different selection of maxima with the simplification algorithm available in the Topology ToolKit [55] takes roughly
165s, whereas LTS only requires 7s. This significant speedup enables a higher level of interactivity for data visualization and analysis,
which is essential if simplification parameters and their effect are not known a priori.

Abstract— This paper describes a localized algorithm for the topological simplification of scalar data, an essential pre-processing step
of topological data analysis (TDA). Given a scalar field f and a selection of extrema to preserve, the proposed localized topological
simplification (LTS) derives a function g that is close to f and only exhibits the selected set of extrema. Specifically, sub- and superlevel
set components associated with undesired extrema are first locally flattened and then correctly embedded into the global scalar field,
such that these regions are guaranteed—from a combinatorial perspective—to no longer contain any undesired extrema. In contrast
to previous global approaches, LTS only and independently processes regions of the domain that actually need to be simplified,
which already results in a noticeable speedup. Moreover, due to the localized nature of the algorithm, LTS can utilize shared-memory
parallelism to simplify regions simultaneously with a high parallel efficiency (70%). Hence, LTS significantly improves interactivity for the
exploration of simplification parameters and their effect on subsequent topological analysis. For such exploration tasks, LTS brings
the overall execution time of a plethora of TDA pipelines from minutes down to seconds, with an average observed speedup over
state-of-the-art techniques of up to ×36. Furthermore, in the special case where preserved extrema are selected based on topological
persistence, an adapted version of LTS partially computes the persistence diagram and simultaneously simplifies features below a
predefined persistence threshold. The effectiveness of LTS, its parallel efficiency, and its resulting benefits for TDA are demonstrated
on several simulated and acquired datasets from different application domains, including physics, chemistry, and biomedical imaging.

Index Terms—Topological data analysis, scalar data, simplification, feature extraction.

• Jonas Lukasczyk and Ross Maciejewski are with Arizona State University.
E-mail: jl@jluk.de and rmacieje@asu.edu.

• Christoph Garth is with Technische Universität Kaiserslautern.
E-mail: garth@cs.uni-kl.de.

• Julien Tierny is with Sorbonne Université and CNRS.
E-mail: julien.tierny@sorbonne-universite.fr.

1 INTRODUCTION

In many applications, datasets produced by acquisition or simulation
currently reach unprecedented levels in terms of size and complex-
ity. This motivates the design of advanced analysis tools capable of
extracting the relevant information from such datasets, and support-
ing its interpretation through interactive visualization and analysis.
This is the purpose of Topological Data Analysis (TDA) [19], which
provides a family of generic, robust, and efficient techniques for the
extraction of the inherent structural information in the data. It has
been successfully applied over the last two decades in a number of
visualization and analysis tasks [37]. Popular applications include as-

ar
X

iv
:2

00
9.

00
08

3v
1

 [
cs

.D
S]

 3
1

A
ug

 2
02

0

a) Microscopy Image b) Unsimplified c) Bridging d) Flattening

Fig. 2. Extraction of plant cell nuclei depicted in a microscopy image [49] (a) via sublevel set components of the color brightness scalar field that
has been simplified based on different strategies (b-d). Without any simplification (b), the extracted cells contain numerous false positives in the
form of undesired components that result from non-persistent extrema. Bridging (c) removes undesired extrema only in a topological sense, by
creating bridges from undesired extrema towards desired ones, which simply attaches undesired to desired components via noticeable line artifacts.
Flattening (d) completely removes components that are associated with undesired extrema while preserving the shape of desired components.

trophysics [50, 54], biological imaging [2, 9, 15], chemistry [7, 27, 44],
fluid dynamics [10, 38, 40], material sciences [35, 36, 41, 53], and turbu-
lent combustion [12, 32]. For scalar data, TDA introduces a number of
topological abstractions that capture various types of structural features,
such as the persistence diagram [20], the contour tree [14,29], the Reeb
graph [8, 45, 47], and the Morse-Smale complex [18, 33, 34, 48].

An important aspect of TDA is its ability to provide multi-scale
representations of the aforementioned abstractions, which enables users
to distinguish noise from features (Figs. 1 and 2). These representations
are a critical component in many applications to support multi-scale
analysis and visualization. In particular, several importance measures
have been introduced to estimate the relevance of the features of in-
terest represented by the critical points of the scalar field (Sec. 3.1).
Such measures include topological persistence [20] and geometrical
measures on level sets [15]. Moreover, as the notion of a feature of
interest greatly depends on the application, users often characterize
the importance of extrema with ad-hoc importance measures. For in-
stance, Carr et al. [15] showed that importance measures based on a
hyper-volume were often more effective for medical data than topo-
logical persistence, and Guenther et al. [27] demonstrated that critical
points corresponding to relevant chemical interactions can be isolated
by combined thresholding of multiple chemical quantitites. In general,
once an importance measure has been established, multi-scale repre-
sentations in TDA can be obtained either in (i) a post-processing step
(by iteratively simplifying the computed abstractions), or in (ii) a pre-
processing step (by simplifying the data before computing the topo-
logical abstractions). In the first case (i), a tailored algorithm based
on iterative cancellations must be derived for each specific topological
abstraction. In the second case (ii), the values of the original scalar
field have to be altered in a pre-processing step such that the result-
ing simplified scalar field only exhibits extrema deemed relevant by
some importance measure while still being close to the original scalar
field. Although the latter strategy requires a perturbation of the original
scalar field, it has the advantage of being generic (since any importance
measure can be used to classify critical points) and agnostic (since
the simplified scalar field can be used like any other scalar field as an
input for subsequent TDA). This strategy decouples the simplification
from the topological abstractions themselves, which enables software
frameworks—such as the Topology ToolKit (TTK) [55]—to mutual-
ize and modularize implementations of different algorithms. Specifi-
cally, all topological abstractions computed with TTK on the simplified
field—e.g. critical points [5], merge [28] and contour trees [29], Reeb
graphs [30], and Morse-Smale complexes [55]—benefit from the same
pre-simplification without being aware that the input field was actually
simplified. This is particularly useful in advanced analysis scenarios
comining multiple abstractions [27, 40]. Finally, the pre-simplification
of the scalar field does not prohibit further post-simplification of the
computed abstractions. For these reasons, this paper focuses on the
pre-simplification of scalar data.

In addition to the approaches introduced for the persistence-driven
topological simplification of scalar data [4, 6, 21], Tierny and Pascucci
proposed a generic algorithm that supports arbitrary importance mea-
sures [56]. These simplification algorithms can again be classified into
two strategies: bridging (a.k.a. carving) and flattening (a.k.a. flooding).
In short, bridging connects undesired contours to desired ones via small

bridges (technically, along separatrices), thus only removing them in a
topological sense (Fig. 2c). In contrast, flattening completely removes
contours induced by undesired extrema while preserving the shape
of desired contours (Fig. 2d). However, both strategies are limited to
the removal of extremum-saddle pairs, which notably excludes saddle-
saddle pair removal in 3D (Sec. 5.3). Additionally, the two strategies
have an impact on feature geometry as they alter the underlying scalar
field. In particular, bridging adds line artifacts between contours, and
flattening introduces flat-plateaus that also impact contained integral
lines. But most importantly, despite the acceptable asymptotic com-
plexity (linearithmic time) of both strategies, existing algorithms suffer
from performance issues due to their global and sequential nature.
Specifically, simplification can empirically account for up to 90% of
overall computation time in many TDA pipelines (Sec. 5.2).

This paper revisits the problem of topological simplification of scalar
data to address this performance issue. Given a scalar field f and a
selection of extrema to preserve, the proposed algorithm creates, based
on localized flattening, a function g that only exhibits the selected
set of extrema and has a small distance || f −g||∞ for data fitting pur-
poses. Moreover, the proposed localized topological simplification
(LTS) algorithm (Sec. 4) is output-sensitive as it only visits the regions
of the data where simplification is needed; resulting in an immediate
speedup over previous approaches. Due to its localized nature, it can
be parallelized, and we present—to our knowledge—the first parallel
approach to topological simplification of scalar data. We provide per-
formance benchmarks obtained with our OpenMP [17] implementation
that achieves a high parallel efficiency (70%). For the case where the
considered importance measure is topological persistence, we present a
variant of our framework adapted to persistence-driven simplification.
Given an input threshold ε , we show how to efficiently combine LTS
with a partial computation of the persistence diagram. For applications
where a relevant value of ε can be estimated a priori, this further im-
proves performance. Extensive experiments on synthetic and real-world
data on a commodity workstation report an observed speedup of ×36
compared to previous approaches. This significant improvement is
illustrated in various TDA scenarios (Sec. 5.2), where LTS brings the
overall analysis time from minutes down to seconds, hence enabling
interactive multi-scale exploration of the features present in the data.

Contributions

1) Localized Topological Simplification (LTS) (Sec. 4) In contrast to
state-of-the-art approaches, which visit the entire input domain, LTS
only processes the regions of the domain where the data actually needs
simplification. This makes LTS output sensitive, which is particularly
relevant for the problem of topological simplification, as noise fre-
quently corresponds to a small fraction of the input domain. In the
presented experiments (Sec. 5), this already yields an average speedup
over previous, global approaches between ×3 and ×5.

2) Parallel Topological Simplification (Sec. 4.4) LTS can be effi-
ciently parallelized due to its localized nature. The presented experi-
ments demonstrate that a shared-memory parallel implementation based
on OpenMP yields a high parallel efficiency on real-life datasets (70%).
On a commodity workstation, this results in an overall speedup of ×36
over previous, sequential approaches.

3) Parallel Persistence-Driven Simplification (Sec. 4.5) For the spe-
cial case where extrema are selected based on topological persistence,
an adapted version of LTS partially computes the persistence diagram
and simultaneously simplifies all features below a given persistence
threshold. For applications where persistence is a relevant criterion
and a threshold is known a priori, this specialized algorithm further
improves performances. This scenario is particularly relevant for batch
and in situ processing, where noise below a conservative threshold can
be removed prior to any analysis.

4) Reference Implementation (additional material) We provide a
reference C++ implementation of all presented algorithms that can be
used to replicate the experiments of Sec. 5 and to perform benchmarks.

2 RELATED WORK

As described before, topological abstractions can be simplified in a
post-process (i) with a tailored algorithm specific to each abstraction.
Such algorithms have been introduced for the contour tree [15], Reeb
graph [45], and Morse-Smale complex [34]. Our approach focuses on
the pre-simplification of data (ii)—i.e., prior to the computation of any
topological abstraction. Existing methods for data pre-simplification
can be classified in the following two categories.
Numerical methods simplify an input scalar field given some con-
straints on the extrema to preserve, by computing a numerically op-
timized solution. Such methods usually incorporate the extrema to
preserve as hard constraints, while optimizing a geometrical criterion,
such as smoothness. Bremer et al. [11] introduced the first technique in
this line of work in which a simplified Morse-Smale complex drives a
per-cell, iterative simplification of the data via Laplacian smoothing.
This method requires computing and simplifying the Morse-Smale
complex, which can be computationally expensive. Moreover, the
method can require many time-intensive Laplacian iterations to com-
plete. Weinkauf et al. [59] extend the work of Bremer et al. [11] by
utilizing bi-Laplacian optimization to additionally enforce the con-
tinuity of the gradient across the separatrices of the Morse-Smale
complex. In geometry processing, several techniques have been in-
troduced for the computation of smooth scalar fields given a small
number of critical points serving as constraints [26, 43]. For instance,
Patané et al. [46] introduce a technique combining least-squares ap-
proximation and Tikhonov regularization for the topology-driven sim-
plification of scalar fields. These approaches can also be extended to
3D scalar fields [31]and to some extent to vector fields [57, 60].

Although numerical methods can produce smooth outputs that re-
spect given topological constraints, they have two primary limitations.
First, the iterative nature of the employed solvers results in long compu-
tation times (typically minutes), which prohibits the interactive explo-
ration of different simplification parameters. Second, they are prone to
numerical instabilities that can result from an unsuitable triangulation

f

Fig. 3. Differences between removing undesired maxima (gray discs)
while preserving desired maxima (white disc) from an input scalar field f
via bridging (orange) and flattening (red). Bridging creates a monotone
path from an undesired maximum along separatrices towards a desired
maximum by elevating the value of the corresponding vertices (orange
chains). It modifies the global shape of level sets by joining the three
super-level set components (dark gray areas above dashed line) with a
connected path (see also Fig. 2). In contrast, flattening lowers all the
vertices of an undesired hill to the closest saddle. Hence, flattening
completely removes the contours induced by undesired maxima while
preserving the shape and topology of other contours. Here, only the
unmodified super-level set component in the middle would remain.

of the input domain or the numerical sensitivity of the geometrical
operators used in the optimization. Tierny and Pascucci [56] illustrate
that such instabilities frequently occur during Laplacian optimization
and result in the presence of additional spurious critical points that
prevent the solution from conforming strictly to the input constraints.
Combinatorial methods, in contrast, are designed to generate outputs
that are guaranteed by construction to conform to the input constraints.
This category of techniques can be seen as complementary to numerical
approaches, as combinatorial methods can be used to fix, in a post-
process, the possible artifacts generated by numerical methods. The
first approach for the combinatorial simplification of scalar data can be
attributed to Edelsbrunner et al. for their work on persistence-driven
simplification [21]. Given an input function f and its persistence dia-
gram [20] (Sec. 3.3), the authors first simplify the diagram by removing
all features below a persistence threshold ε . In addition to showing
that a scalar function g strictly admitting this simplified diagram ex-
ists, they also introduce an algorithm to compute such a function g
with a bounded error to the input (|| f −g||∞ ≤ ε). Their work can be
viewed as a generalization of prior works in terrain modeling, where
only minimum-saddle persistence pairs were simplified [1, 13, 52].
Attali et al. [4] introduced a simplification algorithm for the case of
filtrations of simplicial complexes. In the context of Discrete Morse the-
ory [23], Bauer et al. [6] showed that persistence-driven simplification
could be achieved with a combination of flattening and bridging that
results in a minimized error bound || f −g||∞. Although these methods
were initially introduced for two-dimensional domains, they apply read-
ily for domains of higher dimensions. However, these methods—as
well as our approach—do not support the removal of saddle-saddle
pairs in 3D (see Sec. 6 for further discussion).

Despite the guaranteed correctness of their outputs, these combi-
natorial methods suffer from several limitations. First, they all use
bridging, which introduces undesirable visual line artifacts in the out-
put, where the bridged integral lines connect simplified features and
therefore often stand out (Fig. 3, orange). This is particularly detrimen-
tal if the simplification is used as a pre-process to data segmentation.
As shown in Fig. 2c, this can result in the identification of large re-
gions that include the canceled features through a thin connection. In
contrast, flattening-based methods completely remove undesired ex-
trema by flattening their corresponding regions to the value of their
paired saddle (Fig. 3, red). Therefore, flattening is better suited for data
segmentation as simplified features are discarded from post-process
segmentations (Fig. 2d). Second, methods that manipulate filtrations [4]
or Discrete Morse functions [6] require an extra post-processing step to
convert their output into a piecewise linear scalar field (which is the tra-
ditional representation for scalar data). In particular, this step involves
the subdivision of the triangulation (one new vertex per d-simplex, with
d ≥ 1). This can increase the size of the triangulation up to an order
of magnitude, which may not be acceptable in certain applications.
Third, these approaches focus on the special case where the critical
points to cancel are identified according to topological persistence. As
discussed previously, many applications come with their own impor-
tance measures. To address this, Tierny and Pascucci [56] introduced a
flattening-based approach, directly producing a piecewise linear scalar
field on its output, and which supports the cancellation of an arbitrary
selection of extrema. However, their technique follows a white-list
approach that removes undesired extrema by globally constraining the
sub- and superlevel set components of the desired extrema. This results
in an intrinsically sequential algorithm, processing the data globally.
In contrast, LTS follows a black-list approach by only simplifying
the regions that correspond to undesired extrema. Moreover, the LTS
approach can be efficiently parallelized, which results in a significant
performance gain that enables interactive topological simplification.

3 TECHNICAL BACKGROUND

This section details the technical background of the proposed method-
ology. We refer the reader to reference text books [19] for a compre-
hensive introduction to topological data analysis.

3.1 Critical Points of Piecewise Linear Scalar Fields

The input of the proposed methodology is a piecewise-linear (PL) scalar
field f : M→ R, where real-valued data is given at the vertices of a
PL d-manifold M, and values inside higher dimensional simplices
are linearly interpolated via barycentric coordinates. In this work, we
additionally require that every PL scalar field is also injective on the
vertices of M, which can be enforced for any input scalar field with a
symbolic perturbation inspired by Simulation of Simplicity [22]. This
can be achieved by sorting the list of vertices V in increasing f order,
and enforcing that two consecutive values are strictly monotonically
increasing (by the addition of an arbitrarily small constant, see Sec. 4.1).

The topological features of f can be tracked with the notion of the
so-called sublevel set, noted f−1

−∞(w) = {p ∈M | f (p)< w}, which
is defined as the pre-image of the interval (−∞,w) by f . Symmetri-
cally, the superlevel set is defined as f−1

+∞(w) = {p ∈M | f (p)> w}.
In the smooth setting, the topology of these sets (in 3D their con-
nected components, cycles, and voids) can only change at specific
locations, named the critical points of f [42]. In the PL setting, Ban-
choff [5] introduced a local characterization of critical points based
on their star and link. The star St(v) of a vertex v ∈M is the set
of its co-faces: St(v) = {σ ∈M | v < σ}. The link Lk(v) of v con-
sists of the faces τ of the simplices σ ∈ St(v) with an empty inter-
section with v: Lk(v) = {τ ∈M | τ < σ , σ ∈ St(v), τ ∩ v = /0}. The
lower link Lk−(v) of v consists of the simplices of Lk(v) lower than
f (v): Lk−(v) = {σ ∈ Lk(v) | ∀u ∈ σ , f (u)< f (v)}. The upper link is
defined symmetrically: Lk+(v) = {σ ∈ Lk(v) | ∀u ∈ σ , f (u)> f (v)}.
The lower and upper links of a vertex v are illustrated in red and orange
in Fig. 4. A vertex v is regular (Fig. 4a) if and only if both Lk−(v) and
Lk+(v) are simply connected and not empty. For such vertices, the sub-
and superlevel sets do not change their topology as they span St(v).
Otherwise, v is called a critical point of f [5]. These can be classified
with regard to their index I(v), which is equal to 0 for local minima
(Lk−(v) = /0, Fig. 4b), to d for local maxima (Lk+(v) = /0, Fig. 4c), and
otherwise to i for i-saddles (0 < i < d, Fig. 4d). Saddles for which the
number of connected component of Lk−(v) or Lk+(v) is greater than
2 are called degenerate. All other saddles are simple. As discussed in
Sec. 4, the proposed algorithm handles degenerate saddles implicitly.

3.2 General Topological Simplification

Let C f be the set of critical points of f . Tierny and Pascucci [56]
introduce the notion of general topological simplification as follows:

Definition 1 (General Topological Simplification). Given a PL scalar
field f : M→ R, a general topological simplification of f is a PL
scalar field g : M→ R such that the critical points of g form a sub-set
of C f , i.e., Cg ⊆ C f with identical indices I and locations.

In other words, a general topological simplification g is a variant of a
scalar field f , from which critical points have been removed. In most
applications, it is also desirable that g remains close to the input f (with
a small distance || f −g||∞) for data fitting purposes.

Tierny and Pasucci [56] discuss the possible critical point removals.
Based on the analysis of the connectivity of the sublevel sets of f , they
show that the removal of a minimum m is necessarily accompanied
with the removal of a simple saddle s, where f−1

−∞ changes its number
of connected components. Symmetrically, the removal of a maximum
induces the removal of a simple saddle. Thus, they introduce an ap-
proach for topological simplification which is based on the constrained
construction of the sublevel sets of g, where the connectivity of g−1

−∞ is
globally controlled to enforce the preservation of minimum and maxi-
mum constraints, respectively noted C0

g and Cd
g . While this discussion

is mostly carried out for 2-dimensional domains, this approach to ex-
tremum removal readily applies to domains of higher dimensions and
has been implemented as a default simplification mechanism in the

“Topology ToolKit” open-source library [55]. Our methodology follows
a compatible workflow and drives the simplification by user specified
sets of extrema to maintain or remove.

+
+ +
v

+
+ +
v

a) Regular Point

+
+ +
v

+ +

+
+ +
v

+ +

b) Minimum

vv

c) Maximum

+
+

v
+

+
+

v
+

d) Saddle Point

Fig. 4. Vertex classification: if the lower and upper link of a vertex v (red
and orange) are both connected, then v is regular (a). It is a minimum or
maximum if it has no lower or upper link, respectively (b-c). If its lower or
upper link consists of multiple components, then v is called a saddle (d).

3.3 Topological Persistence
General topological simplifications are defined for arbitrary selections
of extrema. In practice, these are often selected based on application
dependent importance measures. Alternatively, topological persis-
tence [20] is often used as an established, general-purpose importance
measure. The intuition behind persistence consists of assessing the im-
portance of a critical point, based on the lifetime of its induced feature in
f−1
+∞(w) as one continuously decreases the isovalue w. As w decreases,

connected components of f−1
+∞(w) appear and merge at the maxima and

2-saddles of f , respectively (Fig. 5a). The Elder rule [19] stipulates that
if two connected components—created at the maxima m0 and m1 with
f (m0)< f (m1)—meet at a given 2-saddle s, then the youngest of the
two components (the one created last, at m0) dies in favor of the oldest
one (created at m1). In this case, a persistence pair 〈s,m0〉 is created
and its topological persistence p is given by p(〈s,m0〉) = f (m0)− f (s).
Each maximum m—with the exception of the global maximum—can
be unambiguously paired following this strategy and can consequently
be assigned a persistence value, noted p(m). By convention, the global
maximum is paired with the global minimum and therefore assigned a
persistence equal to the function range.

Persistence pairs are usually visualized with the persistence dia-
gram [19] (Fig. 5a, right), which embeds each pair 〈a,b〉 as a point
in the 2D plane at location

(
f (a), f (b)

)
. There, the persistence of

the pair can be readily visualized as the height of the point to the di-
agonal. In particular, features with a high persistence stand out by
being far away from the diagonal (dark colored pairs), while noisy fea-
tures are typically located in the vicinity of the diagonal (light colored
pairs). The population of persistence pairs is also often visualized with
the persistence curve (Sec. 5), which plots, for an increasing thresh-
old ε , the number of pairs more persistent than ε . As described above,
2-saddle/maximum pairs characterize the lifetime of the connected
components of f−1

+∞(w). The symmetric reasoning can be applied in
3D to characterize, with minimum/1-saddle pairs, the life time of its
voids, while the 1-saddle/2-saddle pairs characterize its independent
cycles. Then, given a threshold ε , the notion of persistence-driven
simplification is a special case of general simplification, such that
∀m ∈ C0

g : p(m)≥ ε and ∀m ∈ Cd
g : p(m)≥ ε .

4 LOCALIZED TOPOLOGICAL SIMPLIFICATION (LTS)

Given a PL scalar field f and a subset of its minima C0
f and maxima Cd

f ,
the proposed algorithm derives via localized flattening a function g that
has a small deviation || f −g||∞ and only exhibits the specified extrema:

C0
g = C0

f ⊆ C0
f and Cd

g = Cd
f ⊆ Cd

f . (1)

The following description focuses on the removal of maxima, which can
be imagined as the process of “flattening hills” in a terrain (Fig. 3, red).
Minima are processed symmetrically.

4.1 Order-Based Representation
The critical point characterization presented in Sec. 3.1 classifies the
vertices of M as regular or critical without any ambiguity as long
as every vertex has a distinct value from all its neighbors, i.e., if
there exists a non-ambiguous global vertex order. In this case, ev-
ery link can be binarily partitioned into lower and upper link compo-
nents (Fig. 4). Since this property does not hold for every PL scalar
field f : M→ R, the proposed algorithm first derives based on f an

(a) Persistence Pair Segmentation

f

(b) Parallel Superlevel Set Propagations

Time

(c) Persistence-Driven Propagations

f

Fig. 5. Critical point pairs and their corresponding domain segments (a) computed with superlevel set propagations (b) and persistence-driven
propagations (c). Each maximum (disc), its paired saddle (diamond), and its corresponding domain segment (background) are shown with the same
color. In the first step of LTS (b), superlevel set propagations determine—optionally in parallel—for each undesired maximum (dashed discs) its
corresponding saddle and domain segment (Secs. 4.2-4.4). In the special case of persistence-driven simplification (c), non-persistent maxima are
identified by initiating for all maxima superlevel set propagations that terminate as soon as they exceed a given persistence threshold (dashed lines).
Thus, maxima paired with a saddle (dashed discs) do not exceed the persistence threshold and can subsequently be simplified (Sec. 4.5).

intermediate scalar field f̂ that satisfies this condition via a specific
variant of Simulation of Simplicity [22]. Next, the algorithm simpli-
fies f̂ to ĝ based on the same extrema conditions as defined for f ,
and finally simplifies f to g in a post-processing step based on ĝ.
The overall process is summarized in the inset commutative diagram.

f : M→ R g : M→ R

f̂ : M→ N ĝ : M→ N

Let V be the list of ver-
tices of M, sorted by increas-
ing f values, where vertices
with the same scalar value are
disambiguated based on their

original position in memory. Then, f̂ : M→ N is the so-called or-
der field of f that maps each vertex v ∈M to its position f̂ (v) in V .
By construction, (i) f̂ is injective on the vertices of M, and (ii) the
critical points of f̂ are a superset of the critical points of f . The first
property (i) guarantees that now every vertex has a distinct value from
its neighbors, which can thus be classified without any ambiguity. The
second property (ii) is essential for topological simplification, which
basically boils down to reordering vertices such that the resulting new
order field ĝ respects Eq. 1. To this end, note that every critical point of
f is also a critical point of f̂ , but f̂ might also have additional critical
points that result form the disambiguation. These points, however,
will be implicitly removed by LTS (as they do not belong to the set
of extrema constraints C0

f̂
= C0

f and Cd
f̂
= Cd

f), which will yield a new
order field ĝ whose critical points respect Eq. 1.

Finally, f can be turned into g in a post-process by enforcing that the
numerical values of g are monotonically (and injectively) increasing
with ĝ. This post-process monotonicity enforcement results in the char-
acteristic hill flattening observed with flattening-based simplification.

4.2 Removal of an Individual Maximum
This section first details the proposed approach in a simple configuration
where only one maximum m must be removed, i.e.,

C0
ĝ = C0

f̂
= C0

f̂ and Cd
ĝ = Cd

f̂
= Cd

f̂ \{m}. (2)

To this end, the following procedure will iteratively transform the order
field f̂ to ĝ in four steps. Fig. 6 provides a running example, where the
task is to remove the maximum m, with initial value f̂ (m) = 22.
1) Superlevel Set Component Computation As discussed in Sec. 3,
when continuously decreasing an isovalue w, a connected component of
f̂−1
+∞(w) is created at the local maximum m of f̂ . As w further decreases,

this component eventually merges with another component at a saddle s.
Let Mm

s denote the connected component of f̂−1
+∞

(
f̂ (s)

)
containing m.

The vertex set Mm
s can be computed via a so-called superlevel set

propagation that initializes Mm
s with m, and then iteratively adds the

largest neighbor of Mm
s to Mm

s until a vertex v with a larger, unvisited
neighbor n is added, i.e., f̂ (n)> f̂ (v) and n /∈Mm

s . This implies that n
belongs to a distinct superlevel set component, and therefore v has to
be a saddle (noted s above). For convenience s is considered to be an
element of Mm

s in the remaining. Sublevel set propagations are defined
symmetrically. In Fig. 6a, vertices are added to M22

/0 (arrows, orange
triangles) until a vertex (10) with a higher unvisited neighbor (23) is
found. This vertex corresponds to the paired saddle s of m.

2) Localized Simplification To remove the maximum m while preserv-
ing all other maxima, the vertices of Mm

s need to be rearranged in a
new global order ĝ such that vertices outside Mm

s preserve their old
order (Eq. 3), s is the only maximum of ĝ restricted to Mm

s (Eq. 4), and
all minima of ĝ|Mm

s are vertices with neighbors outside Mm
s (Eq. 5):

∀u ∈M and ∀v ∈M\Mm
s : f̂ (u)< f̂ (v)→ ĝ(u)< ĝ(v) (3)

Cd
ĝ|Mm

s
= {s} (4)

∀v ∈ C0
ĝ|Mm

s
: ∃n ∈ Lk(v), n /∈Mm

s (5)

As detailed in Step 3, if ĝ satisfies Eqs. 3-5, then ĝ also satisfies Eq. 2.
A key insight is that enforcing these conditions on ĝ|Mm

s is itself a
special case of topological simplification, localized to vertex values
of Mm

s . To simplify notations, let l̂0 : Mm
s → N denote the local order

of vertices of Mm
s (values of opaque vertices in Fig. 6b) induced by

the initial global order field f̂ (vertex values in Fig. 6a).
This localized simplification problem can be solved by adapting

the iterative simplification algorithm of Tierny and Pasucci [56] to
this special setting. To summarize, their algorithm takes as input
constraints an explicit list of authorized extrema to preserve. Then,
the algorithm alternates passes to remove unauthorized maxima and
minima by respectively constraining the connectivity of the super-
and sublevel set components of the authorized extrema. However, a
maxima pass might introduce additional unauthorized minima that
need to be removed with an additional minima pass, and vice versa.
The authors show that iteratively alternating between minimum and
maximum passes is guaranteed to converge to a global output order that
only exhibits the authorized extrema.

However, in the localized setting, the notion of authorized extremum
does not readily apply as l0 does not necessarily exhibit other extrema
than m. Thus, LTS first introduces an authorized maximum at s by
setting its corresponding value to infinity, and then introduces an au-
thorized minimum at some vertex v ∈Mm

s different from s that admits
a neighbor outside Mm

s by setting its corresponding value to negative
infinity, i.e., l̂0(s)←↩+∞ and l̂0(v)←↩−∞ (Fig. 6b). During all itera-
tions, LTS always preserves s as the only authorized maximum, and
dynamically updates the set of authorized minima with the vertices
which are minima on Mm

s and admit neighbors outside Mm
s .

In the first iteration, the algorithm performs on Mm
s a superlevel

set propagation initiated at the only authorized maximum (arrows of
Fig. 6b). The inverse order in which vertices are added during this
propagation is guaranteed to yield only one maximum: s. Thus, this
inverse order becomes the new local order l1 on Mm

s (Fig. 6c).
Next, if unauthorized minima are present—i.e., minima that do not

admit neighbors outside Mm
s —the algorithm initiates symmetrically a

sublevel set propagation from all current authorized minima. In Fig. 6c,
such a propagation is initiated at the authorized minimum 00 to remove
the unauthorized minima 01 and 02. The order in which vertices are
added during this propagation is guaranteed to omit the unauthorized
minima, and therefore becomes the new local order l2 (Fig. 6d). Then,
LTS alternates between maxima and minima iterations until the last
computed local order l̂ only exhibits authorized extrema (Fig. 6e).

3) Local to Global Order At the end of the previous step, the last
computed local order l̂ is guaranteed to have only one maximum which
is located at s, and all its minima are located next to a vertex outside
Mm

s . At this point, it is necessary to update the global order f̂ to ĝ
by reordering the vertices of Mm

s in the global order such that s pre-
serves its old position, and all other vertices of Mm

s form a contiguous
segment, located immediately before s, and sorted by l̂. The position
of each vertex of M in the resulting new global order yields the new
order field ĝ that satisfies Eqs. 3-5, as detailed next.

Since s was originally a saddle there has to exist a neighbor
n ∈M\Mm

s of s with f̂ (s)< f̂ (n), so from Eq. 3 follows that
ĝ(s)< ĝ(n), which makes s no longer a maximum on M. Simi-
larly, every minimum v ∈ C0

ĝ|Mm
s

has a neighbor n ∈M\Mm
s where

ĝ(n)< ĝ(v)—this follows from the fact that Mm
s was computed by

a superlevel set propagation—which makes v no longer a minimum
on entire M. Hence, all extrema of ĝ|Mm

s are not extrema of ĝ|M,
and all extrema outside Mm

s are preserved. Note that Mm
s may have

contained minima that also got removed during the local simplification
(as illustrated in Fig. 6); a known artifact of flattening-based simplifica-
tion. If these minima are required to be preserved, their existence can
be enforced in an optional post-process that makes them smaller than
all their neighbors. It follows that ĝ satisfies Eq. 2 as required, so the
maximum m has truly been removed combinatorially.

4) Symbolic to Numerical Perturbation The previous process only
changes the order of vertices such that the maximum m of f̂ is no longer
classified as an extremum of ĝ, while preserving all other extrema. This
symbolic perturbation is sufficient for most TDA pipelines since the
criticality of vertices only depends on their order (Sec. 4.1). In certain
cases, however, it may be useful to reflect the new order in the original
numerical values by deriving a new scalar field g based on ĝ. To this
end, g is first initialized to f , and then every vertex of M is visited in
decreasing value of ĝ. If during this process a visited vertex v has a
higher g value than its predecessor v′ (i.e., g(v)> g(v′)), then its g value
is updated to be smaller than its predecessor (i.e., g(v)← g(v′)− ζ ,
with ζ arbitrarily small) which effectively flattens the hill Mm

s . This
also guarantees that g only deviates from f on Mm

s with at most the
height of the hill, i.e., || f −g||∞ ≤ f (m)− f (s).

4.3 Removal of Multiple Maxima
In principle, the strategy described in Sec. 4.2 can be used iteratively to
remove multiple maxima one by one. However, regions corresponding
to discarded maxima can form localized clusters, i.e., hill chains. Since
hills in these chains are nested, flattening each hill one after the other
with this strategy results in multiple passes over the same portions of
the data. To address this issue, it is necessary to slightly modify the
first three steps of the localized simplification process: Step 1 needs
to compute the combined region of every hill chain, Step 2 needs to
locally simplify each of these combined regions, and Step 3 needs to
integrate all local orders into the global order.

To this end, Step 1 has to initiate from each undesired maximum
mi ∈ Cd

f̂
\Cd

f̂
a superlevel set propagation Mmi

si (Sec. 4.2). When a
propagation reaches a saddle si, then the propagation stops if at least
one higher saddle neighbor has not been visited so far by any prop-
agation (Fig. 5b: light propagations), or otherwise—i.e., if now all
higher saddle neighbors have been visited by some propagation—the
current propagation merges with the other propagations that reached the
same saddle and then continues towards the next saddle (Fig. 5b: dark
propagations). In the latter case, this means at an algorithmic level that
the priority queues used for the propagations which stopped at si need
to be merged with that of the current propagation to guarantee the valid
extraction of the superlevel set component. As suggested by Gueunet
et al. [29] in the context of computing augmented contour trees, LTS
uses Fibonacci heaps [16, 24] to model the propagation priority queues
since they support constant time merge operations; guaranteeing an
overall linearithmic time complexity. At the end of Step 1, LTS extracts
one superlevel set component per hill chain (Fig. 5b), which can be
flattened at once in Step 2. The list of vertices of each hill chain can be
efficiently composed by maintaining a Union-Find data structure [16].

a) Computation of region M22
10

of undesired maximum 22

Initialize local order l̂0
based on global order f̂

b)
Super-level set propagation
that makes the previous saddle
the only maximum

Update to local order l̂1 and
start new propagation if
unauthorized minima exist

c)
Sub-level set propagation from
authorized minimum 00 that
removes all unauthorized minima

Update to local order l̂2 and
start new propagation if
unauthorized maxima exist

d)
Super-level set propagation from
authorized maximum 12 that
removes all unauthorized maxima

Update to local order l̂3 and
start new propagation if
unauthorized minima exist

e) Only authorized minima
and maxima present

Update global order ĝ
based on local order l̂3

f)
Simplified global order ĝ
where the undesired maximum
was combinatorially removed

03 02 01 00

04 17 16 15 14

23 10 18 12 19 13

09 11 20 21 22

08 07 06 05

03 02 01 00

04

23

09

08 07 06 05

07 06 05 04

+∞ 08 02 09 03

-∞ 10 11 12

03 02 01 00

04

23

09

08 07 06 05

06 05 04 03

12 11 01 07 02

00 10 09 08

03 02 01 00

04

23

09

08 07 06 05

07 06 03 04

12 11 02 08 05

00 01 10 09

03 02 01 00

04

23

09

08 07 06 05

10 09 08 03

12 11 02 07 04

00 01 06 05

03 02 01 00

04 20 19 18 13

23 22 21 12 17 14

09 10 11 16 15

08 07 06 05

Fig. 6. Illustration of the localized simplification process, where autho-
rized (solid) and unauthorized (dotted) maxima, minima, and saddles are
shown with orange, red, and gray nodes, respectively. Here, the algo-
rithm is tasked to update the global order f̂ by removing the maximum m
with index f̂ (m) = 22 (a). The core concept of LTS is that removing the
maximum m corresponds to reordering the vertices of its superlevel set
component Mm

s (orange triangles, the order is denoted by the arrows
between the vertices) in a new local order l̂ : Mm

s → N such that s is the
only maximum in Mm

s , and all minima in Mm
s have a neighbor outside

Mm
s . This can be enforced by iteratively removing unauthorized extrema

locally, via alternating superlevel and sublevel set propagations (b-d) until
only authorized extrema remain in Mm

s (e). Finally, the new local order l̂
is used to derive a new global order ĝ such that Mm

s no longer contains
any extrema (f). Note, removing a maximum m also removes minima
inside its corresponding superlevel set component Mm

s (e.g., vertices 12
and 13 (a)); a known artifact of flattening-based simplification. If desired,
their existence can be enforced in an optional post-process that lowers
their order until they are identified as minima again.

Next, Step 2 independently computes a local order for every hill
chain as described in Sec. 4.2, and then Step 3 iteratively integrates
every computed local order into the global vertex order as described be-
fore. Finally, the global procedure that computes an injective numerical
perturbation remains identical (Sec. 4.2).

4.4 Parallel Removal of Multiple Maxima
This subsection describes a shared-memory parallelization of LTS.
Step 1 can be trivially parallelized on a per discarded maximum basis.
However, propagations need to be synchronized at saddles, to discover
which propagation is the last one to reach a saddle s. This can be imple-
mented with an atomic counter that records the number of remaining
unvisited higher neighbors, which only reaches zero for the last prop-
agation visiting s. Step 2 can be trivially parallelized on a per region
basis. Step 3 can be parallelized by computing an order î : M→ N×N
operating along the initial order f̂ (disambiguating distinct regions) and
the local orders l̂:

î(v) =

(

f̂ (s) ,+∞
)

if v = s for some Mm
s ,(

f̂ (s) , l̂(v)
)

if v 6= s∧ v ∈Mm
s for some Mm

s , and(
f̂ (v) , 0

)
otherwise.

(6)

Sorting all vertices based on î with a parallel sorting algorithm—such as
GNU parallel sort [51]—yields the new global order ĝ. Finally, Step 4
cannot be parallelized in its current form as it requires a sequential pass
over all vertices. However, this step induces negligible computation
times in practice, which does not impair parallel performances.

4.5 Persistence-Driven Simplification
In the special case where all maxima below a given persistence thresh-
old ε need to be removed, an adapted version of LTS first detects all
non-persistent maxima during the superlevel set propagations of Step 1,
and then locally simplifies their corresponding regions as described
before. Specifically, Step 1 now has to initiate, from each maximum m,
a superlevel set propagation that now also tracks the scalar difference
between m and its last visited vertex. If this difference exceeds ε , then
the current propagation immediately terminates, since it must corre-
spond to a persistent maximum (Fig. 5c, dark orange and dark red).
All other propagations—i.e., propagations that merged with persistent
propagations (Fig. 5c, light red) or propagations that terminated at a
saddle with unvisited larger neighbors (Fig. 5c, light orange and light
gray)—must correspond to non-persistent maxima. As illustrated in
Fig. 5c, this procedure partially computes the persistence diagram by
only constructing critical point pairs with a persistence smaller than ε .

This process can be parallelized as described in Sec. 4.4, and the
remaining steps are identical to previous descriptions. In particular,
only the regions corresponding to non-persistent maxima are processed
by the local flattening procedure. At the end of this process, since
each region is flattened by a height equal to the function difference
between its highest maximum and its lowest saddle (Sec. 4.2), the
output function g guarantees that || f − g||∞ ≤ ε and that all maxima
less persistent than ε have indeed been removed.

5 RESULTS

This section presents experimental results of a C++ implementation of
LTS—in the form of a Topology ToolKit (TTK) [55] module—obtained
on a desktop computer with a Xeon CPU (2.6 GHz, 2x6 cores) and
with 64 GB of RAM. The presented datasets have been downloaded
from public repositories [39, 58], and the used TDA pipelines consist
of modules readily available in TTK.

5.1 Time Performance
As discussed in Sec. 4.2, LTS extends the baseline approach by Tierny
and Pascucci [56] to the local simplification of sub- and superlevel set
components. Thus, LTS admits the same asymptotic time complexity:
O
(
NI ×|V|log(|V|)

)
, where |V| is the number of vertices in M, and

NI represents the number of iterations of the algorithm (Sec. 4.2) with
NI = |V| in the worst case [56]. However, in comparison to the baseline
approach, LTS improves run times in three ways. First, since LTS is

Dataset |M| BL LTS (1 core) LTS (12 cores)
Time Time S.U. Time S.U. P.E.

Silicium 0.1×106 0.100 0.034 2.9 0.004 25.0 71 %
Cells 0.8×106 1.410 0.303 4.7 0.031 45.5 81 %
OceanVortices 1×106 1.321 0.437 3.0 0.049 27.0 74 %
Foot 17×106 20.505 6.673 3.1 0.785 26.1 71 %
Random 17×106 65.201 8.178 8.0 0.927 70.3 74 %
Turbulence 17×106 53.444 12.015 4.4 1.255 42.6 80 %
Backpack 98×106 174.599 67.572 2.6 7.454 23.4 76 %
Jet 134×106 167.879 52.121 3.2 6.366 26.4 68 %
Silicium 0.1×106 0.111 0.051 2.2 0.011 10.1 39 %
Cells 0.8×106 1.767 1.339 1.3 0.410 4.3 27 %
OceanVortices 1×106 1.118 1.562 0.7 1.193 0.9 11 %
Foot 17×106 19.498 11.171 1.7 2.037 9.6 46 %
Random 17×106 51.576 28.363 1.8 6.684 7.7 35 %
Turbulence 17×106 49.075 18.435 2.7 4.232 11.6 36 %
Backpack 98×106 169.415 94.319 1.8 28.655 5.9 27 %
Jet 134×106 165.160 57.871 2.9 7.748 21.3 62 %

Table 1. Performance comparison of the baseline approach [55,56] (BL)
versus the sequential and parallel execution of LTS for realistic extremum
selections (white lines: 1% of the function range) and a stress case
(gray lines: only global extrema are preserved). Timings are in seconds,
speedup (S.U.) is relative to the baseline approach, and parallel efficiency
(P.E.) is defined as parallel speedup divided by the number of cores.

Dataset |M| Diagram Dia. + BL Dia. + LTS Pers.-LTS
Time Time Time S.U. Time S.U.

Silicium 0.1×106 0.055 0.156 0.060 2.6 0.010 15.6
Cells 0.8×106 0.113 1.505 0.145 10.4 0.049 30.7
OceanVortices 1×106 0.208 1.530 0.258 5.9 0.132 11.6
Foot 17×106 2.355 23.391 3.207 7.3 1.080 21.7
Random 17×106 14.808 81.039 16.440 4.9 2.853 28.4
Turbulence 17×106 2.703 67.232 4.024 16.7 2.313 29.1
Backpack 98×106 24.397 253.386 32.061 7.9 9.364 27.1
Jet 134×106 149.327 316.305 155.827 2.0 7.558 41.9
Silicium 0.1×106 0.055 0.155 0.066 2.3 0.016 9.7
Cells 0.8×106 0.111 1.874 0.520 3.6 0.456 4.1
OceanVortices 1×106 0.219 1.337 1.472 0.9 1.224 1.1
Foot 17×106 2.363 21.576 4.433 4.9 2.596 8.3
Random 17×106 14.891 65.486 21.903 3.0 9.849 6.6
Turbulence 17×106 2.725 51.907 6.853 7.6 6.032 8.6
Backpack 98×106 24.018 228.711 52.906 4.3 19.511 11.7
Jet 134×106 148.811 322.559 156.641 2.1 11.083 29.1

Table 2. Performance comparison of persistence-driven simplification
(white lines: 1% of the function range, gray lines: only global extrema are
preserved) by computing the persistence diagram [29,55] (Dia, 12 cores)
followed either by the baseline (BL) approach [55,56] or LTS (12 cores),
or by alternatively computing the persistence-driven specialization of LTS
(Pers.-LTS, 12 cores). Speedup (S.U.) is relative to “Dia + BL”.

localized, computational intensive procedures are constraint onto (often
small) subsets of the domain. In the presented experiments, only up
to 2% of the domain is processed for realistic levels of simplification
(white lines in Tab. 1), and up to 70% for the most aggressive levels
(gray lines). Second, LTS relaxes the constraints on the extrema lo-
cated on the boundary of sub- and superlevel set components (Sec. 4.2),
which has the positive effect that the iterative process converges faster
to valid local orders. For a given dataset, the maximum number of iter-
ations, over all components to simplify, was rarely above 1 for realistic
simplification levels. For the most aggressive simplification levels (gray
lines in Tab. 1), only a few components require at most 6 iterations,
while the vast majority of components require only 1 iteration; resulting
in an average number of 1 iteration for all datasets across all simpli-
fication levels. The final speedup results from the parallel processing
of individual regions. These three effects combined—i.e., the parallel
simplification of local regions with faster convergence—significantly
improve run time performances. In particular, they make the main
parts of LTS output-sensitive where run time is now a function over the
number of extrema to remove.

Tab. 1 provides a detailed run time comparison between the baseline
approach [56] and LTS for various datasets. All timings are based on
the implementations available in TTK [55]. First, for realistic extremum
selections (with a persistence threshold of 1% of the function range),
LTS provides an average speedup in sequential of ×4 over the baseline
approach. As discussed above, this speedup can be explained by the
localized nature of LTS and its faster convergence. The most important
performance gains can be observed when running LTS in parallel, with

an overall average speedup of ×36 over the baseline approach (white
lines, Tab. 1). The average parallel efficiency for realistic simplifica-
tions (white lines, Tab. 1) is slightly over 74%, which illustrates the
good scaling of LTS in this setup. Second, when stressing LTS with
aggressive simplification levels (by only keeping the global minimum
and the global maximum, gray lines), performances decrease, further
illustrating the output sensitive aspect of LTS. The average speedup
in parallel over the baseline drops down to ×9, while the parallel effi-
ciency of LTS drops down to 35%. This can be explained by a work
load imbalance between the threads, since for aggressive thresholds,
some sub- and superlevel set components can become significantly
larger than others, and require more iterations than others.

Table 2 provides a detailed run time comparison about persistence-
driven simplification via the computation of the persistence dia-
gram [29] followed either by the baseline approach [56] or LTS (12
cores), or alternatively via the persistence-driven specialization of LTS
(12 cores, Sec. 4.5). When used in conjunction with a standard persis-
tence diagram computation (“Dia. + LTS”), LTS provides an average
speedup of ×7 overall for realistic levels (1% of the function range,
white lines). Since LTS only partially computes the persistence diagram,
the persistence-driven specialization of LTS (right column) achieves
significant performance gains, with an average speedup of ×26 over
the baseline approach. Again, for more aggressive simplification levels
(gray lines), performances start to deteriorate as regions which may not
need to be later simplified still need to be visited by the algorithm in
order to compute the partial diagram. Despite this, LTS still provides
an order of magnitude speedup on average.

The output-sensitive behavior of LTS is further illustrated in Fig. 7,
which plots the simplification time of the random dataset as a function
over the percentage of randomly selected extrema to remove. The run
time of the baseline approach [56] (gray curve) continuously decreases
from 60 to 50 seconds, which indicates that the increasing size of the
simplified regions is beneficial to this global approach. Conversely,
the run time of the sequential (orange curve) and parallel (red curve)
execution of LTS is progressively increasing, which indicates that small
regions are beneficial to the local approach.

5.2 Application to Interactive Exploration

The significant speedup of LTS enables the interactive exploration of
simplification parameters and their effect on TDA. Figures 8–11 present
different use cases of interactive exploration scenarios, where features
of acquired and simulated datasets are characterized based on level sets,
merge trees, and Morse-Smale complexes. The context of the analysis
and the details of the topological pipeline used after simplification is
reported in the caption of each figure.

Fig. 8 illustrates the interest of persistence-driven simplification,
which can be employed in batch mode to remove, in a pre-processing,
features below a conservative persistence level. While topological
simplification is nearly always needed to cope with noise, the relevant
amount of simplification is often not known a priori and therefore needs
to be adjusted interactively on a per dataset basis. Moreover, there may
be more than one relevant simplification level, and visualizing the en-
tire hierarchy is often of interest for analysts. This motivates efficient
algorithms capable of supporting interactive exploration sessions. In
the use cases presented in Figs. 10–11, the persistence diagram and its
persistence curve are computed in a pre-process. Next, the user inter-
actively explores different potentially interesting simplification levels,
typically reported by the persistence curve. After each modification of
the simplification level, the TDA pipeline under consideration is recom-
puted on the simplified data. For all of these scenarios, pre-simplifying
the data with the baseline approach [56] took longer than running the
rest of the TDA pipeline. For the larger datasets, this pre-simplification
is the main bottleneck, representing up to 90% of the computation. In
contrast, LTS provides for the simplification step alone speedups of an
order of magnitude, making it possible to update the analysis within
seconds while the state-of-the-art needs several minutes.

0 10 20 30 40 50 60 70 80 90

10
20
30
40
50
60

Baseline [56]
LTS-1
LTS-12

Percentage of Removed Extrema (%)

Si
m

pl
ifi

ca
tio

n
Ti

m
e

(s
)

Fig. 7. Computation time as a function of the percentage of extrema to
simplify, with a random selection of extrema on the random dataset (gray:
baseline [56], orange: sequential LTS, and red: LTS with 12 cores).

Fig. 8. Persistence-driven simplification of maxima not corresponding
to silicium atoms [39] (left, bright red spheres), prior to the extraction of
the correct lattice structure via the Morse-Smale complex (dark red: max-
ima, orange: 2-saddles, white curves: separatrices). Computing the
persistence diagram [29] and pre-simplifying the data with the baseline
approach [56] takes 0.15s, while LTS requires 0.02s.

Fig. 9. Extractions of bones in a CT scan of a human foot [39] (volume
rendering, left), where bones are identified as the regions that correspond
to the leaf-arcs of the merge tree. For a persistence simplification thresh-
old of 180, the bones of the 5 toes are precisely extracted (center), and
are further subdivided along the joints at smaller thresholds (150, right).
Pre-simplifying the data with the baseline approach [56] takes 19.6s, and
computing the merge tree segmentation [29] requires 1.8s. LTS requires
1.3s to pre-simplify the data, resulting in a pipeline-speedup of ×7.

#
Pa

ir
s

Persistence

Fig. 10. Extracted cells and their nuclei in a microscopy image [49] via the
Morse-Smale complex separatrices (black) and sublevel sets (red). With-
out simplification (top left), the analysis suffers from over-segmentation
with numerous false positives. The persistence curve (top right) exhibits
a clear plateau, indicating a stable simplification range separating noise
from features, where the appropriate persistence threshold still needs
to be adjusted interactively. False positives are still identified for the left
extremity of the plateau (bottom left), while a correct extraction is ob-
tained at the right extremity (bottom right). Pre-simplifying the data with
the baseline approach [56] takes 1.58s, whereas LTS only requires 0.18s.
Computing the Morse-Smale complex and the sublevel sets takes 0.94s.

#
M

ax
im

a-
Sa

dd
le

Pa
ir

s

Persistence

Fig. 11. Level set based feature extraction in the CT-scan of a backpack (top left). The initial level set counts hundreds of connected components
(640). The persistence curve exhibits several kinks, which challenges the identification of a clear simplification threshold, hence motivating interactive
exploration. For aggressive levels, only the denser objects (metal elements) are maintained in the level set (red objects, top right). For less aggressive
values (bottom, from right to left), less dense objects (bottles, cords, tools, boxes, etc.) progressively appear in the segmentation, in decreasing
order of the persistence of the corresponding topological feature. For the leftmost image, the front bottle (dashed black line) corresponds to a
low-persistence feature whose maximum has been selected geometrically. For each simplification, LTS computes within seconds (13.567s, leftmost
image) while state-of-the-art techniques [56] take minutes to simplify (179.175s), resulting in an overall pipeline-speedup of ×12.

5.3 Limitations

In contrast to the baseline approach by Tierny and Pascucci [56], LTS
uses a black-list strategy and processes only the regions which need sim-
plification. To keep track of these regions, heavier data structures need
to be maintained through the propagations (Fibonacci heaps/Union-
Find), but as demonstrated in Sec. 5.1, LTS still provides superior
performances, even in sequential. The parallel performance of LTS de-
pends significantly on the work load balance among the threads. Specifi-
cally, the number of tasks—i.e., propagations and local simplifications—
decreases over time, and at some point the algorithm processes less
tasks than available cores. Thus, parallel efficiency starts to degrade
when this time interval takes up larger fractions of the total computation
time. However, for the realistic simplification scenarios presented in
Sec. 5.1, the work load among threads is well balanced.

Since LTS is based on flattening (and as such modifies data values),
it introduces visual flat-plateau artifacts (Fig. 3). This can be problem-
atic if one wants to extract geometrical features within the simplified
regions, such as the intra-cellular features of Fig. 10. Such geometries
should be extracted based on the original data, where the simplified data
can be used as a mask for segmentation. Yet, these plateaus are needed
to guarantee the removal of undesired topological features in level-set
based segmentations (Fig. 2), and LTS can be combined with numerical
techniques to provide smoother results if needed. Outside of the sim-
plified areas, the integral lines are left unchanged, since simplification
is only applied locally. Thus, the separatrices of the Morse-Smale
complex outside of simplified regions are also not impacted (in Fig. 10,
the separatrices of the simplified complexes, bottom, are subsets of
separatrices of the unsimplified one, top left). Within the simplified
regions, however, the geometry of integral lines can change. Although
the Morse-Smale complex will indeed only detect the authorized crit-
ical points [55], the simplification may consequently have an impact
on how separatrices connect them, if they traverse simplified regions,
which requires more detailed investigation in future work.

LTS focuses on extremum-saddle pairs and does not support saddle-
saddle pair removal. However, from our experience, the extrema of a
scalar field are the topological objects that users investigate in priority
for feature extraction. Moreover, if extrema are not selected based
on persistence, the value of the remaining critical points may change

after simplification. This happens for instance if the only minimum to
preserve is initially located higher than the only maximum to preserve,
in which case the algorithm will change their values to satisfy the input
constraints. Finally, in our experiments we observed that computing
abstractions on the pre-simplified data seems to be equivalent to post-
simplifying the topological abstractions themselves—e.g., the merge
trees and Morse-Smale complexes of the simplified fields are identical
to the pruned abstractions of the original field—but this observation
needs to be further evaluated in future work.

6 CONCLUSION

This paper described a combinatorial approach for the localized topo-
logical simplification (LTS) of scalar data. Given a PL scalar field f
and a selection of extrema to preserve, LTS transforms f to a new PL
scalar field g via localized iterative flattening, such that g is close to f
and only exhibits the selected set of extrema. LTS significantly acceler-
ates an essential part of topological data analysis by reducing the time
spent on data pre-simplification by up to an order of magnitude in our
experiments (×36). In many instances, this brings the execution time
of TDA pipelines from minutes down to a few seconds, which enables
the interactive exploration of simplification parameters. Although LTS
scales well in the presented experiments, the tested implementation
is optimized for workstations. Next, the code needs to be optimized
for larger, shared-memory, high-performance machines. Extensions to
GPU computation will also be considered. For larger problems, one
can investigate distributed parallelism, for which the localized nature
of LTS is also expected to be beneficial. Another line of research is the
removal of saddle-saddle pairs, which has been reported to be NP-hard
in general [3], and thus heuristic approaches need to be investigated.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Homeland Security under Grant Award
2017-ST-061-QA0001 and 17STQAC00001-03-03, and the National Science Foundation
Program under Award No. 1350573. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the U.S. Department of Homeland Security. This
work was also partially supported by the European Commission grant ERC-2019-COG

“TORI” (ref. 863464), and the German research foundation (DFG) through the IRTG 2057.
Julien Tierny would like to dedicate this paper to his son Marvin.

REFERENCES

[1] P. K. Agarwal, L. Arge, and K. Yi. I/O-Efficient Batched Union-Find and
its Applications to Terrain Analysis. In N. Amenta and O. Cheong, eds.,
Symp. on Comp. Geom., 2006.

[2] K. Anderson, J. Anderson, S. Palande, and B. Wang. Topological Data
Analysis of Functional MRI Connectivity in Time and Space Domains. In
MICCAI Workshop on Connectomics in NeuroImaging, 2018.

[3] D. Attali, U. Bauer, O. Devillers, M. Glisse, and A. Lieutier. Homological
reconstruction and simplification in R3. In Symp. on Comp. Geom., 2013.

[4] D. Attali, M. Glisse, S. Hornus, F. Lazarus, and D. Morozov. Persistence-
Sensitive Simplification of Functions on Surfaces in Linear Time. 2009.

[5] T. F. Banchoff. Critical Points and Curvature for Embedded Polyhedral
Surfaces. The American Mathematical Monthly, 77(5):475–485, 1970.

[6] U. Bauer, C. Lange, and M. Wardetzky. Optimal Topological Simplifica-
tion of Discrete Functions on Surfaces. Disc. Compu. Geom., 2012.

[7] H. Bhatia, A. G. Gyulassy, V. Lordi, J. E. Pask, V. Pascucci, and P.-T.
Bremer. TopoMS: Comprehensive Topological Exploration for Molecular
and Condensed-Matter Systems. J. of Computational Chemistry, 2018.

[8] S. Biasotti, D. Giorgio, M. Spagnuolo, and B. Falcidieno. Reeb graphs for
shape analysis and applications. Theoretical Computer Science, 2008.

[9] A. Bock, H. Doraiswamy, A. Summers, and C. T. Silva. TopoAngler:
Interactive Topology-Based Extraction of Fishes. IEEE Transactions on
Visualization and Computer Graphics (Proc. of IEEE VIS), 2018.

[10] P.-T. Bremer, A. Gruber, J. Bennett, A. Gyulassy, H. Kolla, J. Chen, ,
and R. Grout. Identifying turbulent structures through topological seg-
mentation. Communications in Applied Mathematics and Computational
Science, 11:37–53, 2016.

[11] P.-T. Bremer, B. Hamann, H. Edelsbrunner, and V. Pascucci. A Topological
Hierarchy for Functions on Triangulated Surfaces. IEEE Transactions on
Visualization and Computer Graphics, 2004.

[12] P.-T. Bremer, G. Weber, J. Tierny, V. Pascucci, M. Day, and J. Bell. In-
teractive Exploration and Analysis of Large-Scale Simulations Using
Topology-Based Data Segmentation. IEEE Transactions on Visualization
and Computer Graphics, 2011.

[13] H. Carr. Topological Manipulation of Isosurfaces. Ph. D. Thesis, Univer-
sity of British Columbia, 2004.

[14] H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in All
Dimensions. Computational Geometry, 24(2):75 – 94, 2003.

[15] H. A. Carr, J. Snoeyink, and M. van de Panne. Simplifying Flexible
Isosurfaces Using Local Geometric Measures. In IEEE VIS, 2004.

[16] T. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2009.

[17] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-
memory programming. IEEE computational science and engineering,
5(1):46–55, 1998.

[18] L. De Floriani, U. Fugacci, F. Iuricich, and P. Magillo. Morse complexes
for shape segmentation and homological analysis: discrete models and
algorithms. Comp. Grap. For., 2015.

[19] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.
American Mathematical Soc., 2010.

[20] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological Persistence
and Simplification. Discrete & Computational Geometry, 28(4):511–533,
2002.

[21] H. Edelsbrunner, D. Morozov, and V. Pascucci. Persistence-Sensitive
Simplification Functions on 2-Manifolds. In Symp. on Comp. Geom.,
2006.

[22] H. Edelsbrunner and E. P. Mücke. Simulation of Simplicity: A Tech-
nique to Cope with Degenerate Cases in Geometric Algorithms. ACM
Transactions on Graphics (tog), 9(1):66–104, 1990.

[23] R. Forman. A User’s Guide to Discrete Morse Theory. Sém. Lothar.
Combin, 48:35pp, 2002.

[24] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms. Journal of the ACM (JACM),
34(3):596–615, 1987.

[25] C. Garth. Simulation of a Jet Flow. IEEE Dataport, 2020.
http://dx.doi.org/10.21227/qjxp-kc31.

[26] Y. I. Gingold and D. Zorin. Controlled-topology filtering. In R. R. Martin
and S. Hu, eds., Proc. of ACM SPM, 2006.

[27] D. Guenther, R. Alvarez-Boto, J. Contreras-Garcia, J.-P. Piquemal, and
J. Tierny. Characterizing Molecular Interactions in Chemical Systems.
IEEE Transactions on Visualization and Computer Graphics (Proc. of
IEEE VIS), 2014.

[28] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-Based Augmented
Merge Trees with Fibonacci Heaps. In IEEE Symposium on Large Data
Analysis and Visualization 2017, 2017.

[29] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-Based Augmented
Contour Trees with Fibonacci Heaps. IEEE Trans. Parallel Distrib. Syst.,
2019.

[30] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Augmented
Reeb Graphs with Dynamic ST-Trees. In Eurographics Symposium on
Parallel Graphics and Visualization, 2019.

[31] D. Günther, A. Jacobson, J. Reininghaus, H. Seidel, O. Sorkine-Hornung,
and T. Weinkauf. Fast and Memory-Efficient Topological Denoising of 2D
and 3D Scalar Fields. IEEE Transactions on Visualization and Computer
Graphics (Proc. of IEEE VIS), 2014.

[32] A. Gyulassy, P. Bremer, R. Grout, H. Kolla, J. Chen, and V. Pascucci.
Stability of Dissipation Elements: A case study in combustion. Computer
Graphics Forum, 2014.

[33] A. Gyulassy, P. Bremer, and V. Pascucci. Shared-Memory Parallel Com-
putation of Morse-Smale Complexes with Improved Accuracy. IEEE
Transactions on Visualization and Computer Graphics (Proc. of IEEE
VIS), 2018.

[34] A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci. A Practical Ap-
proach to Morse-Smale Complex Computation: Scalability and Generality.
IEEE Transactions on Visualization and Computer Graphics (Proc. of
IEEE VIS), 2008.

[35] A. Gyulassy, M. A. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann. Topologically Clean Distance Fields.
IEEE Transactions on Visualization and Computer Graphics (Proc. of
IEEE VIS), 2007.

[36] A. Gyulassy, A. Knoll, K. Lau, B. Wang, P. Bremer, M. Papka, L. A.
Curtiss, and V. Pascucci. Interstitial and Interlayer Ion Diffusion Geometry
Extraction in Graphitic Nanosphere Battery Materials. IEEE Transactions
on Visualization and Computer Graphics (Proc. of IEEE VIS), 2015.

[37] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A Survey of Topology-Based
Methods in Visualization. In Computer Graphics Forum, vol. 35, pp.
643–667. Wiley Online Library, 2016.

[38] J. Kasten, J. Reininghaus, I. Hotz, and H. Hege. Two-Dimensional Time-
Dependent Vortex Regions based on the Acceleration Magnitude. IEEE
Transactions on Visualization and Computer Graphics, 2011.

[39] P. Klacansky. Open Scientific Visualization Datasets.
https://klacansky.com/open-scivis-datasets/, 2020.

[40] D. Laney, A. Mascarenhas, P. Miller, V. Pascucci, et al. Understanding the
Structure of the Turbulent Mixing Layer in Hydrodynamic Instabilities.
IEEE Transactions on Visualization and Computer Graphics (Proc. of
IEEE VIS), 2006.

[41] J. Lukasczyk, G. Aldrich, M. Steptoe, G. Favelier, C. Gueunet, J. Tierny,
R. Maciejewski, B. Hamann, and H. Leitte. Viscous Fingering: A Topo-
logical Visual Analytic Approach. Applied Mechanics and Materials,
2017.

[42] J. W. Milnor, M. Spivak, R. Wells, and R. Wells. Morse Theory. Princeton
university press, 1963.

[43] X. Ni, M. Garland, and J. C. Hart. Fair morse functions for extracting the
topological structure of a surface mesh. ACM Trans. on Graph., 2004.

[44] M. Olejniczak, A. S. P. Gomes, and J. Tierny. A Topological Data Analysis
Perspective on Non-Covalent Interactions in Relativistic Calculations.
International Journal of Quantum Chemistry, 2019.

[45] V. Pascucci, G. Scorzelli, P. T. Bremer, and A. Mascarenhas. Robust
on-line computation of Reeb graphs: simplicity and speed. ACM Trans.
on Graph., 2007.

[46] G. Patanè and B. Falcidieno. Computing smooth approximations of scalar
functions with constraints. Comput. Graph., 2009.

[47] G. Reeb. Sur les points singuliers dune forme de Pfaff complètement
intégrable ou d’une fonction numérique. Comptes Rendus des séances de
l’Académie des sciences, 222(847-849):76, 1946.

[48] V. Robins, P. J. Wood, and A. P. Sheppard. Theory and Algorithms for
Constructing Discrete Morse Complexes from Grayscale Digital Images.
IEEE Trans. Pattern Anal. Mach. Intell., 2011.

[49] S. Shanti. Microscope Image of Allium Cepa. Cell Image Library (CIL),
2013. https://doi.org/doi:10.7295/W9CIL43552.

[50] N. Shivashankar, P. Pranav, V. Natarajan, R. van de Weygaert, E. P. Bos,
and S. Rieder. Felix: A Topology Based Framework for Visual Exploration
of Cosmic Filaments. IEEE Transactions on Visualization and Computer
Graphics, 2016.

http://dx.doi.org/10.21227/qjxp-kc31
https://klacansky.com/open-scivis-datasets/
https://doi.org/doi:10.7295/W9CIL43552

[51] J. Singler and B. Konsik. The GNU libstdc++ Parallel Mode: Software
Engineering Considerations. In Proceedings of the 1st international work-
shop on Multicore software engineering, pp. 15–22, 2008.

[52] P. Soille. Optimal Removal of Spurious Pits in Digital Elevation Models.
Water Resources Research, 2004.

[53] M. Soler, M. Petitfrere, G. Darche, M. Plainchault, B. Conche, and
J. Tierny. Ranking Viscous Finger Simulations to an Acquired Ground
Truth with Topology-Aware Matchings. In IEEE Symposium on Large
Data Analysis and Visualization, 2019.

[54] T. Sousbie. The Persistent Cosmic Web and its Filamentary Structure:
Theory and Implementations. Royal Astronomical Society, 2011.

[55] J. Tierny, G. Favelier, J. A. Levine, C. Gueunet, and M. Michaux. The
Topology ToolKit. IEEE Transactions on Visualization and Computer
Graphics (Proc. of IEEE VIS), 2017.
https://topology-tool-kit.github.io/.

[56] J. Tierny and V. Pascucci. Generalized Topological Simplification of Scalar
Fields on Surfaces. IEEE Transactions on Visualization and Computer
Graphics (Proc. of IEEE VIS), 2012.

[57] X. Tricoche, G. Scheuermann, and H. Hagen. Continuous Topology
Simplification of Planar Vector Fields. In Proceedings Visualization, 2001.
VIS’01., pp. 159–166. IEEE, 2001.

[58] TTK Contributers. TTK Data Repository, 2020.
https://github.com/topology-tool-kit/ttk-data/tree/dev.

[59] T. Weinkauf, Y. I. Gingold, and O. Sorkine. Topology-based Smoothing of
2D Scalar Fields with C1-Continuity. Computer Graphics Forum, 2010.

[60] E. Zhang, K. Mischaikow, and G. Turk. Vector Field Design on Surfaces.
ACM Transactions on Graphics (ToG), 25(4):1294–1326, 2006.

https://topology-tool-kit.github.io/
https://github.com/topology-tool-kit/ttk-data/tree/dev

	Introduction
	Related Work
	Technical Background
	Critical Points of Piecewise Linear Scalar Fields
	General Topological Simplification
	Topological Persistence

	Localized Topological Simplification (LTS)
	Order-Based Representation
	Removal of an Individual Maximum
	Removal of Multiple Maxima
	Parallel Removal of Multiple Maxima
	Persistence-Driven Simplification

	Results
	Time Performance
	Application to Interactive Exploration
	Limitations

	Conclusion

