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FROM FIRM TO GLOBAL-LEVEL POLLUTION CONTROL: THE CASE OF

TRANSBOUNDARY POLLUTION

RAOUF BOUCEKKINEa, GIORGIO FABBRIb, SALVATORE FEDERICOc, AND FAUSTO GOZZId

Abstract. We study the joint determination of optimal investment and optimal depollution

in a spatiotemporal framework where pollution is transboundary. Pollution is controlled at a

global level. The regulator internalizes that: (i) production generates pollution, which is bad

for the wellbeing of population, and that (ii) pollution flows across space driven by a diffusion

process. We solve analytically for the optimal investment and depollution spatiotemporal paths

and characterize the optimal long-term spatial distribution when relevant. We finally explore

numerically the variety of optimal spatial distributions obtained using a core/periphery model

where the core differs from the periphery either in terms of input productivity, depollution

efficiency, environmental awareness or self-cleaning capacity of nature. We also compare the

distributions with and without diffusion. Key aspects in the optimal policy of the regulator are

the role of aversion to inequality, notably leading to smoothing consumption across locations,

and the control of diffusive pollution adding another smoothing engine.
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1. Introduction

Pollution control has been the target of a huge bulk of research in many fields, including man-

agement, operational research and economics. In the management literature (see for example

the early work of Cohen and Hurter, 1974, and references therein), the minimization of the cost

of pollution control at the firm and industry levels has been the object of numerous studies.

While the usual direct costs (say those related to equipment control and to adoption of cleaner

technologies or inputs) were of course taken into account, this literature has also incorporated

into the analysis for a long time less direct factors affecting the profitability of firms and in-

dustries. One has to do with the subsequent impact on demand due to rising consumer price

indexes (see again Cohen and Hurter, 1974). An even more important indirect cost, according

to this terminology, comes from environmental regulation, in particular taxation (see Bawa,

1975). An interesting related question is whether taxation is more efficient compared to direct

pollution control instruments, which we label later pollution abatement controls. For exam-

ple, Bawa (1975) argued that environmental problems, being often characterized by infrequent

serious crises, make direct controls more appropriate than tax policy.

In this paper, we do not contribute to this old but still highly relevant question. If any, the

most recent trend in the related ongoing debate is the increasingly shared belief that the most

urgent environmental problems are global, and in any case hardly restricted to the borders of a

city, region or country. This does not disqualify the firm and industry levels because even though

the problems are global, actions have to be taken also locally in all respects. For example, while

the global warming problem has to do with global CO2 pollution, ancillary local greenhouse gas

mitigation actions might well be useful as excellently argued by Ostrom (2016) (see also Davis

et al., 2001). Our point here is that a large part of the serious environmental problems faced

can be hardly formulated at the level of a local industry. This is due to the fact that the latter

problems derive from pollution processes which are essentially transboundary. This is true for

air and water pollution both for global or local pollutant diffusion. Indeed, there is an increasing

evidence that an ancillary carbon reduction benefit can be achieved through the introduction of

SO2 control policies, a typical local air pollutant. These issues and many others related have

been intensively tackled in the operational research literature, either in applied work (see, e.g.,

Kerl et al., 2015, on U.S., Xu and Masui, 2009, and Zhao et al., 2013, on China, or the earlier

work of Stam et al., 1992, on Europe) or in more stylized settings (see Bertinelli et al., 2014, or

de Frutos et al., 2019a,b).
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Needless to say, one cannot capture all the essential implications of transboundary pollution

without modelling it as precisely as possible. Highly stylized models of transboundary pollution,

like those using the two-country setting (see for example, Bertinelli et al., 2014), may capture

some of the significant implications of transboundary pollution, but they cannot by construction

deliver all the spatiotemporal dynamics inherent in the latter. Here, we rely on an analytical

framework developed by Boucekkine et al. (2019a) to inquire about optimal pollution abatement

policy over continuous space and continuous time when pollution is transboundary, driven by a

diffusion equation. Key contribution of Boucekkine et al. (2019a) is to provide with a spatiotem-

poral structure allowing for a large set of geographic heterogeneity features while still providing

closed-form solutions. We only use some of the heterogeneity traits allowed but, importantly

enough, we introduce into the latter framework space and time dependent pollution abatement

controls (Boucekkine et al., 2019a, do not consider pollution control policies)1. More precisely,

we shall consider three types of geographic discrepancy: discrepancy in productivity, in abate-

ment efficiency, and in the nature self-cleaning capacity. Of course, the literature (in particular

in Operation Research) is not short of contributions accounting for geographic discrepancy in a

context of pollution mitigation. One of the most recent ones, due to Leibowicz (2020), develops a

quite compelling theoretical spatial framework for sustainable urban land use and transportation

planning, taking into account the damages caused by greenhouse gas emissions. The framework

developed is static. Here we are concerned with the spatiotemporal implications of transbound-

ary pollution, and in particular on the inherent long-term sustainabilty issues. Moreover, our

extended model allows to generate closed-form spatiotemporal optimal paths, and to identify

the (optimal) corresponding long-term geographic distributions.2

Importantly enough, we consider a central planner problem, that is the case of a regulator who

has to design the optimal spatiotemporal production paths for the whole spatial economy (here

space is the unit circle in R2). More precisely, she has to internalize two facts: (i) production

generates pollution, which is bad for the welfare of the inhabitants, and (ii) pollution flows across

space driven by a diffusion process. The regulator is given a pollution control instrument to

help her to tackle the problem, a direct one we label abatement. It is worth pointing out here

that by internalizing (ii), the regulator is actually preventing potential free-riding: as pollution

1In a stimulating contribution Camacho and Perez-Barahona (2015) present a spatial model which includes

the possibility of abatement in terms of land devoted to pollution absorption.
2Typical related exercises run by economists (see the seminal paper by Stokey, 1999) only characterize optimal

time paths and the corresponding pointwise stationary solutions.
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is transboundary, non-cooperative producers located at different areas may choose the intensity

and location of their production facilities in an opportunistic way. We shut down this channel and

abstract away from any strategic ingredient (see de Frutos et al., 2019a, 2019b for an excellent

exploration of these aspects, and La Torre et al., 2019, for the global vs local dimension of

policies.).

Differently from all the operational research contributions already mentioned, our approach

to the solution of the dynamic optimization problem does not include the use of dynamic pro-

gramming or maximum principle methods. Indeed it is based on a reformulation technique

of the objective functional where the spatial distribution of the instantaneous disutility of the

emissions in the various locations appears (see Section 3 for details).

The functional reformulation approach that we use to solve the problem allows, in particular,

to include in our setting a series of spatial heterogeneities which could not be managed in the

previous contributions that explicitly model the process of spatio-temporal diffusion of pollution,

in particular those of Frutos et al., 2019a, 2019b. In fact, thanks to the linearity of the disutility

of pollution in the expression of the agent’s payoff, once transformed, the functional objective

can be maximized pointwise (in time and space). This fact allows us to solve a general class of

problems without having to solve complex infinite-dimensional Hamilton-Jacobi-Bellman equa-

tions and finally getting the optimal control “directly” (see in particular Theorem 3.3 and its

proof in Appendix A).

Our model allows, in particular, to take account of different levels of productivity in differ-

ent locations and, moreover, to consider time-dependent productivity parameters and different

levels of environmental awareness in different locations. All of them are arguably essential to

understand the impact of spatial technological and behavioral discrepancy. As already under-

lined our model also allows a double channel of decision making: investment and abatement.

A more detailed discussion of the properties of our methodology and its applicability for real

world explorations is reported in Section 5.

The rest of the paper is organized as follows. Section 2 briefly presents the model. Section

3 delivers the main results, the associated technical and methodological details being relegated

in the appendix. Section 4 provides a sample of the optimal spatiotemporal paths generated

depending notably on the type of geographic heterogeneity selected. In Section 5 we discuss the

results while Section 6 concludes.
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2. The model

We now describe briefly the model. We consider a central planning problem of a spatial

economy. There is only one good in this economy: it is consumed, used in production as

input (or invested), used in pollution abatement, and, of course, it is produced at any location.

Furthermore, we postulate that this good is not traded across locations. Only pollution is

transboundary. This is of course made for simplification, in order to get the closed-form solutions

needed. Modelling trade across locations requires typically another adequate diffusion equation

as in Boucekkine et al. (2019b), which would make the problem definitely much more intricate

than those treated separately in the two previous papers. As to the spatial support, we choose

to work on the circle in R2:

S1 :=
{
x ∈ R2 : |x|R2 = 1

}
.

The space structure we use is the simplest possible which allows to treat the problem in a way

that the movements of the pollutants cannot push them out of the space. So in the model the

total mass of the pollutant can only be reduced by the effect of the decay and of the depollution

policies (see below). The set S1 can be thought as the segment [0, 2π] with the identification of

the two extremes 0 and 2π. As a sub-manifold of R2, the space S1 has no boundary and this is

crucial to guarantee the above property.

At time t, at any location x ∈ S1, there is a single individual consuming c(t, x), investing

i(t, x), depolluting b(t, x), and producing y(t, x).3 The production technology is linear in the

capital input, i(t, x), that is:

y(t, x) = a(t, x) i(t, x),

where a(t, x) is productivity at location x and time t. Again for simplification, to deal with

a single diffusion equation in the optimal control problem, we assume that capital inputs do

not accumulate over time nor are they exchanged across space. The resource constraint at any

location x is:

c(t, x) + i(t, x) + b(t, x) = y(t, x),

3Notice that we do not account for heterogenous population density in this model, contrary to Boucekkine et

al. (2019b). That is because we are more concerned with other types of geographic heterogeneities, in particular

the technological ones, as argued in the introduction. We could of course introduce a general population density

as in Boucekkine et al. (2019b) without any change in the methodology. Allowing people to move voluntarily

is more difficult to insert without inducing nontrivial methodological problems but conveniently chosen ad hoc

migration schemes can be easily accommodated.
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which yields : c(t, x) = (a(t, x)− 1) i(t, x)− b(t, x). This is a very simple and flexible productive

structure, which has the invaluable advantage to accommodate most types of spatial heterogene-

ity (so far, heterogeneity in productivity), including the solution step. The link with pollution

is simple too: we assume that pollution one-to-one arises from the use of input, i(t, x).

We consider the following control problem with infinite time horizon in S1. Let

p0, δ : S1 → R, ϕ : R+ × S1 → R,

be given measurable functions. At each time t ∈ R+ and location x ∈ S1, the planner chooses

the control variables investment, i(t, x), and the pollution abatement, b(t, x), knowing that the

law of motion of pollution, p(t, x), is given by the following parabolic PDE

(1)


pt(t, x) = σpxx(t, x)− δ(x)p(t, x) + i(t, x)− ϕ(t, x)b(t, x)θ, (t, x) ∈ R+ × S1,

p(0, x) = p0(x), x ∈ S1,

where σ > 0, θ ∈ (0, 1). Here, pt, px, pxx denote, respectively, the derivative with respect to time,

and the first and second derivative with respect to space. The right-hand side of the PDE above

gives the component of pollution stock variation at location x: it depends on transboundary

pollution, σpxx(t, x), where σ measures the strength of diffusion; on nature self-cleaning capacity,

δ(x)p(t, x), where δ(x) is the rate of self-cleaning at location x; on input, i(t, x); and, finally,

on abatement, ϕ(t, x)b(t, x)θ, where ϕ(t, x) is the efficiency (or productivity) of abatement, and

θ is the return to scale of the abatement technology (0 < θ ≤ 1). As the law of pollution

accumulation is written, one can read abatement as applying to the whole pollution stock.

However, we can rewrite the same equation as

pt(t, x) = σpxx(t, x)− δ(x)p(t, x) + (1− η(t, x)) i(t, x),

where η(t, x) = ϕ(t,x)b(t,x)θ

i(t,x) . The term η(t, x) can be immediately interpreted as the abatement

rate of new emissions (as the latter are indexed on input use, i(t, x)), that is abatement at

the source of pollution. That is the way we interpret abatement in our model as it transpires

from our quantitative exercises in Section 4. In Boucekkine et al (2019a), there is no pollution

abatement control, i.e. ϕ ≡ 0, and no way to distinguish between gross emissions and net (after

abatement) emissions.

The payoff functional of the regulator internalizes, as outlined in the introduction, the negative

externality exercized by (local) pollution on population wellbeing (notably health) and also the
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transboundary nature of pollution via the state equation above. Precisely, the functional writes

as

J
(
p0; (i, b)

)
:=

∫ ∞
0

e−ρt
(∫

S1

(
c(t, x)1−γ

1− γ
− w(x)p(t, x)

)
dx

)
dt,

where ρ > 0, γ ∈ (0, 1) ∪ (1,+∞), and

a : R+ × S1 → R+, w : S1 → R+,

are given measurable functions with a ≥ 1. The function p in the integral above is the solution

to (1) corresponding to the initial datum p0 and to the control (i, b). The functional above takes

into account two aspects of human well being: consumption and health (via pollution negative

externality). Note that the functional is strictly concave in the former and linear in pollution.

The latter linearity assumption is needed for the analytical solution to work. The spatial function

w(x) can be interpreted as the degree of pro-environmental culture (or environmental awareness)

at location x. We shall not play on it in this paper.

Finally note that because of absence of trade and the technological assumptions made above,

we can rewrite the objective functional in terms of the investment and abatement controls as

announced above:

J
(
p0; (i, b)

)
:=

∫ ∞
0

e−ρt

(∫
S1

((
(a(t, x)− 1)i(t, x)− b(t, x)

)1−γ
1− γ

− w(x)p(t, x)

)
dx

)
dt.(2)

We shall work with this functional hereafter.

3. Analytic results

In this section we describe the analytical results we get for the model we introduced in

Section 2. For each of them we will refer the reader to the proof in the appendix where all the

mathematical setting necessary to study the problem is developed.

We will make use of the following

Assumption 3.1.

(i)
∫
S1 |p0(x)|2dx <∞, δ ∈ C(S1;R+), and w ∈ C(S1; (0,+∞));

(ii) There exists L > 0 and g ≥ 0 such that

(a(t, x)− 1)
1−γ
γ + ϕ(t, x)(a(t, x)− 1)

θ
1−θ ≤ Legt, ∀(t, x) ∈ R+ × S1;

(iii) ρ > g.
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We also specify the set of the admissible controls: the planner aims at maximizing (2) over

the measurable functions (i, b) in the set

A =

{
(i, b) : R+ × S1 → R+ × R+ :

∫ ∞
0

e−(ρ−g)t
(∫

S1

|i(t, x)− ϕ(t, x)b(t, x)θ|2dx

)1/2

dt <∞

and c(t, x) = (a(t, x)− 1)i(t, x)− b(t, x) ≥ 0 ∀(t, x) ∈ R+ × S1

}
.

(3)

First, we observe, in the following proposition, that Assumption 3.1 is enough to ensure the

well-posedness of the functional J .

Proposition 3.2. Let Assumption 3.1 hold. Then the functional J(p0, (i, b)) is well-defined for

all (i, b) ∈ A, possibly equal to +∞ or −∞ (depending, respectively, on the occurences γ ∈ (0, 1)

and γ ∈ (1,+∞), respectively).

Proof. See Appendix A.1. �

The planner aims at solving the optimization problem

(4) v(p0) := sup
(i,b)∈A

J(p0; (i, b)).

The function v denotes the value function of the optimization problem and a couple (i∗, b∗)

such that J(p0; (i∗, b∗)) = v(p0) is said to be an optimal control for the problem starting at p0.

As announced the planner optimization problem can be explicitly solved. To state the result

it is necessary to introduce a function α : S1 → R, which will represent the core of our solution.

The latter is a function of the spatial variable x and, as argued below, it can be suitably

interpreted in terms of the disutility of the pollution. It is defined (see Appendix A.2 and,

notably, Proposition A.2) as the unique solution in C2(S1;R) to the ODE

(5) ρα(x)− σα′′(x) + δ(x)α(x) = w(x), x ∈ S1.

This ODE can be viewed as an ODE on the interval [0, 2π] with periodic boundary zero-order

and first-order boundary conditions, i.e.ρα(x)− σα′′(x) + δ(x)α(x) = w(x), x ∈ (0, 2π),

α(0) = α(2π), α′(0+) = α′(2π−),
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falling into the Sturm-Liouville theory with periodic boundary conditions (see Coddington and

Levinson, 1955). We have

(6) 0 < min
S1

w(·)
ρ+ δ(·)

≤ α(x) ≤ max
S1

w(·)
ρ+ δ(·)

∀x ∈ S1.

Such function represents the core of the solution and has a natural interpretation: indeed one

way to formally rewrite α is the following integral expression

(7) α(x) =

∫ ∞
0

e−ρt
(∫

S1

w(ξ)z(t, ξ;x) dξ

)
dt

where z(t, ξ;x) is the solution of the parabolic equation
∂z
∂t (t, ξ) = ∂

∂ξ

(
σ(ξ) ∂z∂x(t, ξ)

)
− δ(ξ)z(t, ξ),

z(0, ξ) = ∆{x}(ξ).

z(t, ·;x) defined here is indeed the spatial density (with respect to the variable x) at time t

of a unit of pollutant initially concentrated at point x (here ∆{x}(ξ) is the so-called Dirac’s

delta at x), once one takes into account the diffusion process and the natural decay. Thus, the

term
∫
S1 w(ξ)z(t, ξ;x) dξ measures the instantaneous disutility all over the space and the whole

expression in the right hand side of (7) is the total spatial (temporally discounted) future social

disutility of a unit of pollutant initially concentrated at x.

The following theorem contains the core of our results. We are able to explicitly find the

input level and the cleaning effort which maximize the social welfare function. Consequently,

we can also find the expression of the optimal net emissions, the optimal consumption and the

the maximal attainable social welfare.

Theorem 3.3. Let Assumption 3.1 hold. Then the couple (i∗, b∗) given by

i∗(t, x) := α(x)
− 1
γ (a(t, x)− 1)

1−γ
γ + (ϕ(t, x)θ)

1
1−θ (a(t, x)− 1)

θ
1−θ ,(8)

(9) b∗(t, x) := (θϕ(t, x)(a(t, x)− 1))
1

1−θ ,

belongs to A and is optimal for the problem (4). The optimal net emissions flow is

(10)

n∗(t, x) := i∗(t, x)−ϕ(t, x)b∗(t, x)θ = α(x)
− 1
γ (a(t, x)−1)

1−γ
γ +θ

1
1−θ (1−θ−1)ϕ(t, x)

1
1−θ (a(t, x)−1)

θ
1−θ

and the optimal consumption flow is

(11) c∗(t, x) := (a(t, x)− 1)i∗(t, x)− b∗(t, x) =
(a(t, x)− 1

α(x)

) 1
γ
.
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The evolution of the optimal pollution profile p∗ over time is the unique solution of the following

parabolic equation:

(12)

pt(t, x) = σpxx(t, x)− δ(x)p(t, x) + n∗(t, x), (t, x) ∈ R+ × S1,

p(0, x) = p0(x), x ∈ S1.

Finally, the maximal social welfare (value function) is affine in p0:

v(p0) = J
(
p0; (i∗, b∗)

)
= −

∫
S1

α(x)p0(x)dx+

∫ ∞
0

e−ρt
(∫

S1

γ

1− γ

(a(t, x)− 1

α(x)

) 1−γ
γ

dx

)
dt

− θ
1

1−θ

∫ ∞
0

e−ρt
(∫

S1

α(x)
(
ϕ(t, x)(a(t, x)− 1)

) θ
1−θ dx

)
dt.

Proof. See Appendix A.4. �

In our model, the local depollution effort depends on local productivities (at production and

at depollution), and is not impacted by the transboundary nature of pollution. In contrast,

investment (and therefore consumption and production) do depend on this the latter: the reg-

ulator has to account for the fact not only the local technological characteristics but also the

implication of investing at a certain location on the neighboring ones in terms of pollution.

Finally notice that local investment is not necessarily increasing with local productivity at pro-

duction, a(t, x): a higher local productivity might lead to lower investment i, in such a way that

local emissions decrease at the expense of a slightly lower production. All these properties are

illustrated in the numerical section below.

In the particular case where the coefficients a and ϕ do not depend on time, the optimal

values of i and b described in (8) and (9) are also time-independent and the pollution profile

converges in the long-run to a steady state, as described in the following proposition.

Proposition 3.4. Let Assumption 3.1 hold. Assume that the coefficients a and ϕ are time

independent, i.e. a(t, x) = a(x) and ϕ(t, x) = ϕ(x), and that δ(·) 6= 0. Then

lim
t→∞

∫
S1

|p∗(t, x)− p∗∞(x)|2 dx = 0,

where p∗∞ is the unique solution to the ODE

(13) σp′′(x)− δ(x)p(x) + n∗(x) = 0, x ∈ S1.

Proof. See Appendix A.5. �
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4. Numerical exploration of the long-term spatial distribution

In this section we shall use the analytical results of the previous section, notably Proposition

3.4, to explore the properties of the optimal spatial distributions, and in particular the optimal

long term spatial distribution of pollution.

In the pictures, we represent the space S1 as the segment [0, 2π] with the additional require-

ment that the pollution which “exits” from the right boundary 2π automatically “enters” from

the left boundary 0 (and vice-versa).

All the simulations of this section take all the coefficients (notably a and ϕ) as time-

independent. This is indeed the situation where we can apply Proposition 3.4 to characterize

the long-run optimal spatial distributions. Observe indeed that, whenever the coefficients are

time-dependent the convergence toward a stationary state is not at all ensured (and it arises

only for very particular specifications)4.

The contribution of this section is specifically to highlight the implications of the type of

geographic heterogeneity considered. We shall study four of them: the heterogeneity in produc-

tivity, the heterogeneity in abatement efficiency, the heterogeneity in environmental awareness,

and finally, the discrepancy in the rate of natural self-cleaning. For a given benchmark calibra-

tion to be displayed below, we first compute the spatial distributions induced corresponding to

each type of discrepancy represented in the form of a core/periphery configuration.5 We also

study briefly the implications of combining some of these heterogeneities. Second, we show how

some structural parameters of the model are important in the shape of distributions obtained.

4.1. Benchmark calibration. The level of the parameter a is calibrated in order to have an

investment (input) - GDP ratio (which corresponds here to the value of 1/a) in a typical range

of 15%−40% (see for instance IMF, 2019). Future discount is typically considered to be around

1%− 5% (see Barro, 2015), it is taken here equal to 3%. The inverse of intertemporal elasticity

4In particular, if we would have dealt with a more general time-dependent setting, where the parameters

exogenously change over time, we could again use the results of Theorem 3.3 to identify and represent the optimal

contemporaneous values of i, b and n, but we could not use Proposition 3.4 to characterize and represent any

long-run steady state. The dynamics of i, b and n with time-dependent parameters can be richer but, since their

values at the optimum at a fixed time t only depend on the value of parameters at t, their behavior follows exactly

the same mechanisms we describe in our time-independent parameter examples.
5We use this New Economic Geography terminology to designate unimodal spatial distributions which capture

the idea of economic/demographic/technological centers. In this literature, second nature (endogenous) agglom-

eration mechanisms are usually studied. Here we consider first nature agglomeration: we take agglomeration as

given, and start from given unimodal distributions for productivity and other exogenous variables.
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of substitution is 6 that is consistent for instance with the data by Barsky et al. (1997). The

natural decay of pollutants strongly depends on the type of pollution (air, water, soil,...) and

the nature of pollutant. Here, though our theory would apply, as we wrote, to different types

of pollution, we focus on air pollution. The related empirical literature is quite abundant:

depending on the pollutant (including, e.g., SO2 and NO2), the value of an annual decay ranges

from 30% to 50% (see Versino and Angeletti, 2012, or Perry and Tabor, 1962, among others). As

to the diffusion parameter σ, we shall comment on it in the discussion Section 5.2 (see references

therein). Broadly speaking, for a rigourous calibration of the speed and extent of pollution on

real data, we’d need a more comprehensive model including, among others, advection to capture

the role of winds and currents (in the case of water pollution). An essential point we make

in this paper is the implications of departing from the no-diffusion case (σ = 0). Indeed, the

counterpart no-diffusion cases are represented in our figures below. A not-so-big departure from

the no-diffusion case will be shown to be enough to make readily clear the long-term outcomes

of diffusion as to the spatial distribution of pollution notably.

It is more difficult to calibrate other parameters: the efficiency of the depollution technology

(i.e., the values of ϕ and θ), the unitary disutility from pollution w, and as we have written just

above, the diffusion parameter σ. We take them respectively equal to 0.05, 0.2, 1 and 0.5. In the

last subsection, we shall consider some departures from these benchmark values to illustrate how

the shapes of spatial distributions are sensitive to some parameters. In particular, the value of γ

will be shown to be crucial. As explained in Boucekkine et al. (2019b) in a different spatiotem-

poral context, γ measures a mixture of individual behaviour (here, intertemporal substitution

in consumption) and the regulator’s aversion to inequality in consumption as well. Therefore,

the larger γ, the more equal should be the spatial consumption distribution.

Last but not least, it should be noted that the linearity in local pollution in the objective

functional (for analytical reasons outlined above) shuts down this specific aversion to inequality

channel in what concerns pollution. This does not mean that the regulator will not take care of

the spatial distribution of pollution: as it will be clear in the figures displayed below, where the

optimal long-term pollution spatial distributions are shown both with and without diffusion, the

regulator does optimally internalize the transboundary nature of pollution but smoothing out

the distribution of pollution across space. In a sense, our exercise allows to disentangle properly

the action of the regulator in the face of transboundary pollution. One could expect that, with

strictly convex disutility of pollution in the objective functional, the optimal shapes would have
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been smoother. Still, given the specification of the model we are able to solve, we cannot provide

a proof of this fact.

Heterogeneity in the technological parameter a

Figure 1. Numerical illustration of the situation in which input productivity is higher in a

technologically more developed core and lower in the periphery, the peak in productivity is 10%

higher than the floor value (the value of a is 3.3 at the core x = π and 3 at the periphery).

All other exogenous parameters are homogeneous in space. The spatial optimal distribution of

economic and environmental relevant variables in terms of their value at the core, the relations

between production and net emissions and production and abatement are represented. The

values of other parameters (constant over space) are: ρ = 0.03, σ = 0.5, δ = 0.4, w = 1, γ = 6,

ϕ = 0.05, θ = 0.2. Dashed lines are related to the no-diffusion benchmark.

4.2. Spatial distributions by type of geographic heterogeneity. In this and in the fol-

lowing subsection we present the results of a series of quantitative exercises using the calibrated

model. There are eight associated figures. Each figure contains the graphs of the same nine vari-

ables. The first five graphs represent, for the given exercise, the optimal spatial profiles (hence

the variable in the horizontal axis is the space variable x ∈ [0, 2π]) for: investment (Subfigure

(a)), abatement (b), net emission (c), consumption (d), and production (e). Since, as already

mentioned, the parameters a and ϕ are kept constant over time (but not in space) the profiles of

all these variable are also constant over time (see Theorem 3.3): by construction, they also repre-

sent, of course, the long run spatial distributions of these variables. The sixth graph (Subfigure
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High heterogeneity in the technological parameter a

Figure 2. Numerical illustration of the situation in which input productivity is higher in

a technologically more developed core and lower in the periphery, the peak in productivity is

66% higher than the floor value (the value of a is 5 at the core x = π and 3 at the periphery).

All other exogenous parameters are homogeneous in space. The spatial optimal distribution of

economic and environmental relevant variables in terms of their value at the core, the relations

between production and net emissions and production and abatement are represented. The

values of other parameters (constant over space) are: ρ = 0.03, σ = 0.5, δ = 0.4, w = 1, γ = 6,

ϕ = 0.05, θ = 0.2. Dashed lines are related to the no-diffusion benchmark.

(f)) represents the long-run distribution of the pollutants that is the steady state characterized

in Proposition 3.4. Observe that, differently from the variables we have just mentioned above,

the pollution profile does have a dynamics over time and here we just represent its long-run

distribution (hence, again, the variable in the horizontal axis is the space variable x ∈ [0, 2π]).

In such six graphs the values of the plotted variables (hence the variable in the vertical axis) are

expressed in terms of their value at the core so the vertical coordinate at any given point in the

space is the value of the variable (e.g. investment) divided by its value at the core x = π. The

core location is emphasized by a gray vertical line.

The last three graphs are about the relations between three couples of variables: production vs

net emission (Subfigure (g)), production vs abatement (h), and production vs long-run pollution

(i). In all three graphs the horizontal axis expresses the value of the production/income divided
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by its value at the core. Hence, when the core is a minimum point for the production with

respect to space (Fig. 1, 2, 4, 5), the values on the horizontal axis are smaller than 1 while,

when the core is a maximum point for the production with respect to space (Fig. 3, 6, 7, 8)

the values on the horizontal axis are bigger than 1. The variable in the vertical axis, in the

three graphs is, respectively: net emissions (g), abatement (h), long-run pollution (i); again it

is displayed divided by its value at the core. Hence, as for the horizontal variable, the scale may

differ depending on the fact that the core is a minimum/maximum6 point of the corresponding

variable. Due to this choice in all such graphs, when production is equal to 1, also the other

variables are equal to 1. The interest here is to see the trends of pollution related variables

when production changes: in all the figures but Figure 8 we get monotonic relations between

the couples of variables under examination while in Figure 8 we show that, in a case where two

heterogeneities are at work, also non monotonic relations may arise.

In each figure, in each graph, we visualize two situations: the first is a case with positive

diffusion σ > 0, the second is the no-diffusion benchmark (σ = 0) to show the role of the spatial

dynamics we have in the model. Indeed the no-diffusion benchmark corresponds to point-by-

point dynamic optimization while the positive diffusion case takes into account the complex

spatio-temporal dynamics of the pollutants we have in the model. Observe that in some of the

figures the profiles of investment, abatement, net emission, consumption, and production are

the same for the two situations but the spatial long-run profiles of the pollutants are different.

This is due to the presence of the diffusion dynamics of the pollutants when σ > 0. This process

is not at work when σ = 0.

Figure 1 and Figure 2 illustrate the outcomes of a spatial discrepancy in input produc-

tivity through a core/periphery configuration. The peak value of productivity is 10% (Resp.

66%) higher than the periphery floor value in the former (Resp. latter) figure. Both deliver

however the same qualitative picture. For the benchmark calibration chosen, both show that

the regulator will invest less, depollute more, produce less and therefore pollute less in the core

than in the periphery. This goes at odds with the typical picture generated by economic growth

models à la Stokey (1999). Typically, these models are concerned with the evolution over time of

a growing economy: as the economy develops, it eventually starts depolluting when it becomes

rich enough, ultimately leading to curb pollution without breaking down growth. Here, looking

6This is true in all the figures but Figure 8, where the graphs of net emissions and long-run pollution with

respect to space have, in the core, only a local, but not global, minimum: hence the scales of the vertical variable

in the seventh and ninth graph contain both values less and greater than 1.
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at the spatial (long-term) distributions resulting from optimal spatiotemporal dynamics7, we

see that the picture can be indeed very different from the Stokey story. The optimal outcome

would be indeed less pollution in the core (Subfigures 1(f) and 2(f)) than in the periphery but

at the same time, more production in the periphery (Subfigures 1(e) and 2(e)). Incidentally,

consumption is higher in the core (Subfigures 1(d) and 2(d)) and pollution is smoothed out with

respect to the no-diffusion case, illustrating the two main engines driving the regulator’s action:

on one hand, she aims at lowering inequalities in consumption, which in this case requires to

produce more and to pollute more in the periphery (as no trade in the good is allowed across

locations); on the other hand, she internalizes both the negative pollution externality at any

location and pollution diffusion, leading to smooth out the pollution spatial shape with respect

to the no-diffusion case. We will see in the last sub-section that the value of parameter γ is

crucial in the shape of the relationships generated between long-term pollution, production and

abatement.

When it comes to heterogeneity in depollution efficiency across space, the picture

is different, as shown in Figure 3. Quite naturally, abatement is larger in the core (Subfigure

3(b)), and this goes with a larger optimal investment and a larger production (Subfigures 3(a)

and 3(e)). More interesting, though production is larger in the core, its long-term optimal

pollution (Subfigure 3(f)) is lower thanks to its technological superiority in abatement. The

picture is analogous to Stokey’s typical outcome on time paths. But we do generate it here

putting spatial heterogeneity in depollution efficiency, not in input productivity (when γ = 6).

If we combine both heterogeneities, as in Figure 4 with same benchmark calibration, we get

qualitatively the same outcomes as in the case of a single discrepancy in input productivity,

that’s the above described mechanisms associated with the latter dominate. Again, this is only

true at the benchmark calibration as we will show below. Many more pictures can arise when

we depart from the latter, and we will show one particular and striking case therein.

We now shed light on the consequences of spatial discrepancy in self-cleaning capacity

parameter, that is through the function δ(x), we get a peculiar and interesting picture (see

Figure 5). First of all, and in contrast to the previous figures in which diffusion and no-diffusion

paths coincide except for pollution, here diffusion (that’s the parameter σ) matters in optimal

investment, production and consumption (Subfigures 5(a), 5(e) and 5(d))). By Theorem 3.3, δ(x)

7As observed in the first footnote of Section 4 we expect that the main mechanisms should be preserved looking

at the transitional dynamics, also for time variable data a and ϕ.
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Heterogeneity in the depollution efficiency ϕ

Figure 3. Numerical illustration of the situation in which depollution efficiency is higher in

a certain core and lower in the periphery, the peak in depollution efficiency is 10% higher than

the floor value (the value of φ is 0.055 at the core x = π and 0.05 at the periphery). All other

exogenous parameters are homogeneous in space. The spatial optimal distribution of economic

and environmental relevant variables in terms of their value at the core, the relations between

production and net emissions and production and abatement are represented. The values of

other parameters (constant over space) are: a = 3, ρ = 0.03, σ = 0.5, δ = 0.4, w = 1, γ = 6,

θ = 0.2. Dashed lines are related to the no-diffusion benchmark.

enters the expression of optimal investment — given in (8) — indirectly through function α(x),

which itself depends on the diffusion parameter σ via the solution of the differential equation (5).

Second, optimal abatement (Subfigure 5(b)) — given in (9) — does not depend on δ(x) neither

directly nor indirectly. As a result, as self-cleaning capacity is larger in the core, investment,

production and consumption (Subfigures 5(a), 5(e), 5(d)) are bigger at the core, while pollution

is still lower than in the periphery. We get again the Stokey classical picture where pollution goes

down with production (or income) across location (Subfigures 5(i)). Moreover, for all variables,

the regulator “uses” diffusion to smooth pollution across space.

Finally when we consider the spatial heterogeneity in the environmental awareness pa-

rameter w. In Figure 6 all the parameters are space-independent but w(x) has the core/periphery

unimodal shape: higher in a region (around x = π, where the peak is reached) and lower in the

periphery. The picture we get is in line with the intuition: in the zones where the environmental
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Heterogeneity in productivity and depollution efficiency

Figure 4. Numerical illustration of the situation in which both input productivity and depol-

lution efficiency are higher in a technologically more developed core and lower in the periphery.

Both the peaks in the productivity the depollution efficiency are 10% higher than the floor

values (the value of a is 3.3 at the core x = π and 3 at the periphery, the value of φ is 0.055 at

the core and 0.05 at the periphery). All other exogenous parameters are homogeneous in space.

The spatial optimal distribution of economic and environmental relevant variables in terms of

their value at the core, the relations between production and net emissions and production and

abatement are represented. The values of other parameters (constant over space) are: ρ = 0.03,

σ = 0.5, δ = 0.4, w = 1, γ = 6, θ = 0.2. Dashed lines are related to the no-diffusion benchmark.

awareness is higher the disutility for one unit of pollution is higher and then the planner decides

to reduce the polluting investments and consequently to reduce both production (Subfigure 6(e))

and consumption (Subfigure 6(d)) in these locations. The behavior of the abatement (Subfigure

6(b)) can seem surprising because it does not peak in the area where the awareness is higher but

this is in line with the expression of the optimal spatial distribution of b (see (9)) which does

not take into account the distribution of w.

4.3. The role of structural parameters. In this subsection, we will provide two striking

examples of how the spatial distributions can be strongly impacted by changes in the structural

parameters. In Figure 7, we report the optimal distributions obtained when we decrease γ

from 6 to 0.5 under a core/periphery configuration structure on input productivity (all the
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Heterogeneity in the natural decay parameter δ

Figure 5. Numerical illustration of the situation in which natural decay is higher in a region

and lower in the remaining part of the surface, the peak is in x = π where the value is 0.425 and it

decreases in peripheral where its value is 0.4. All other exogenous parameters are homogeneous

in space. The spatial optimal distribution of economic and environmental relevant variables

in terms of their value at the core, the relations between production and net emissions and

production and abatement are represented. The values of other parameters (constant over

space) are: a = 3, ρ = 0.03, σ = 0.5, w = 1, γ = 6, ϕ = 0.05, θ = 0.2. Dashed lines are related

to the no-diffusion benchmark.

other parameter values are unchanged). Compared to the benchmark, here Figure 1, there are

notable changes: investment in the core is increased (Subfigures 7(a)), and not reduced, and

despite an increase in depollution effort in the core (Subfigures 7(b)), net emissions (Subfigures

7(c)) and long-term pollution (Subfigures 7(f)) are higher than in the periphery, again in sharp

contrast to the benchmark case. The reason behind this fact is that lowering so strongly γ

is reflected in a much lower aversion to inequality: as a result, the regulator does not need to

increase investment more in the periphery to compensate the disadvantage in input productivity.

Eventually, consumption (Subfigures 7(d)) is less smooth than in the benchmark.

So far, we have generated a rich set of spatial distributions shapes but with a monotonic

relationship between production and pollution (or emissions). Our model can generate non-

monotonic relationships between these two variables by combining different types of geographic

discrepancies and adjusting the values of some critical parameters like γ. Figure 8 provides an
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High heterogeneity in the environmental awareness parameter w

Figure 6. Numerical illustration of the situation in which environmental awareness is higher

in a region and lower in the remaining part of the surface, the peak is in x = π where the value

is 1.3 and it decreases in peripheral where its value is 1. All other exogenous parameters are

homogeneous in space. The spatial optimal distribution of economic and environmental relevant

variables in terms of their value at the core, the relations between production and net emissions

and production and abatement are represented. The values of other parameters (constant over

space) are: a = 3, ρ = 0.03, σ = 0.5, δ = 0.4, γ = 6, ϕ = 0.05, θ = 0.2. Dashed lines are related

to the no-diffusion benchmark.

example. In this picture, as in Figure 4, we both consider heterogeneities in input productivity

and depollution efficiency but here the level of the depollution efficiency is significantly higher

(equal to 0.595 in the periphery) and, as in Figure 7, γ = 0.5. We get a non-monotonic

relation between production and emissions (Subfigures 8(i)) in the spirit of the the so-called

Environmental KC (see Stokey, 1999).

5. Discussion of results

5.1. Heterogeneity in the model. The topic of pollution management and dynamics, espe-

cially in its transboundary terms, is certainly not new in the operations research literature. We

can for instance mention the contributions by Stam et al., (1992), Xu and Masui (2009), Zhao

et al. (2013), Bertinelli et al. (2014), Ouardighi et al. (2018), Ferrari and Koch (2019) and

many others.
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Heterogeneity in input productivity a with low γ

Figure 7. Numerical illustration of the situation in which input productivity is higher in a

region and lower in the remaining part of the surface. The peak in productivity is 10% higher

than the floor value (the value of a is 3.3 at the core x = π and 3 at the periphery). All other

exogenous parameters are homogeneous in space. The spatial optimal distribution of economic

and environmental relevant variables in terms of their value at the core, the relations between

production and net emissions and production and abatement are represented. The values of

other parameters (constant over space) are: ρ = 0.03, σ = 0.5, δ = 0.4, w = 1, γ = 0.5,

ϕ = 0.05, θ = 0.2. Dashed lines are related to the no-diffusion benchmark.

The contribution of this work is situated in a new and promising strand of literature in which

pollution management issues are considered in a model where a continuous number of locations

explicitly appears. This makes it possible to directly take into account the spatial externalities

of pollution and its distribution. To our knowledge, the only two works that have considered

such a setting are those of de Frutos et al., (2019a,b) and, in the different context of land-use

dynamics, Camacho and Perez-Barahona (2015).

In terms of the ability to take into account the complexity of the problem and the heterogeneity

observed from one site to another, the work presented here improves the setting of de Frutos et

al. (2019a,b) (which is, notably, in a game set-up) in different ways:

- Our model allows to specify different levels of productivity in different locations. This

means in particular to be able to take into account heterogeneous levels of technological
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Heterogeneity in productivity and depollution efficiency with low γ

Figure 8. Numerical illustration of the situation in which both input productivity and de-

pollution efficiency are higher in a region and lower in the remaining part of the surface. The

value of a is 3.3 at the core x = π and 3 at the periphery, the value of φ is 0.65 at the core and

0.59 at the periphery. All other exogenous parameters are homogeneous in space. The spatial

optimal distribution of economic and environmental relevant variables, in terms of their value

at the core, the relations between production and net emissions and production and abatement

are represented. The values of other parameters (constant over space) are: ρ = 0.03, σ = 0.5,

δ = 0.2, w = 1, γ = 0.5, θ = 0.2. Dashed lines are related to the no-diffusion benchmark.

development and adoption of technologies in different areas and then to use the model

to study core-periphery situations as the ones we simulated in Section 4.

- Our formulation also makes it possible to consider time-dependent productivity param-

eters. This allows to take into account (exogenously) the process of growth and techno-

logical development.

- Our setting allows us to consider different levels of environmental awareness in different

locations. This type of heterogeneity is, arguably, very important to explain a number

of differences in individual behavior that we observe across the different countries of the

world.

- We are able to specify a more general utility function with a generic inter-temporal

substitution parameter.
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In addition to all this, our model, unlike previous contributions in which the spatial dimen-

sion and the pollutant spatio-temporal diffusion process are explicitly modeled, allows a double

channel of decision making: on the one hand the control i, the investment (and therefore the

production and the emissions); on the other hand the control b, the abatement.

5.2. On the link of the model with available data. Our model is designed and presented in

stylized way to provide a simple and effective description of the main qualitative results, as can

be seen in the results of Section 3 and in the simulations of Section 4. It is however important

to note that, with a simple mathematical effort (that we avoided here to make our qualitative

analysis more clear), our model can be extended to more general set-ups, that could be even

more useful to test it on real data on pollution management across space.

First of all we observe that all the main results of Section 3 can be extended, without big

effort, to the case when the spatial variable x lives in the sphere S2 (the surface of planet earth)

or in a given a subset of it (a given country or region). This can be done along the way used in

Fabbri (2016), using the results of Grigoryan (2012) and could be useful to use real spatial data

to calibrate our model.

Concerning calibration on the parameters of our model, we already observed, at the beginning

of Subsection 4.1, that the parameters a, ρ, δ and γ can be reasonably calibrated from the existing

empirical literature. With a some more effort the other parameters can also be deduced from

the actual data. For example:

- Concerning w one can use indicators of environmental awareness such as, for instance,

those described in the report by European Commission (2015) which uses, in particular,

data of land use and waste recycling.

- One could use classical empirical studies to determine the value of σ (see for example

Birney and Durham, 1971 or Desalu et al., 1974 ). Such values evidently depend on the

type of pollutant considered.

Other possible extensions of the model include σ depending on x and an advection term p

reflecting the average flow (“wind”) direction in the model. In this way other aspects of the

problem could be quantified in the context of our analysis. We are working on an extension of

the model taking account of such parameters.
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6. Conclusions

In this paper, we construct a spatiotemporal model where optimal investment and optimal

depollution can be jointly determined where pollution is transboundary. Beside the nice feature

of keeping the analytical nature of the solution paths when including pollution control, we have

been able to uncover many aspects of optimal policy under transboundary pollution and geo-

graphic heterogeneities. We have studied three types of spatial discrepancies (input productivity,

depollution efficiency and nature self-cleaning capacity) and we could have studied more given

the flexibility of our framework. A rich set of optimal spatial distributions has been identified

and we have also clarified the mechanisms leading the regulator to choose these distributions.

Key aspects in the optimal policy of the regulator are indeed the role of aversion to inequality,

notably leading to smoothing consumption across locations, and the control of diffusive pollution

adding another smoothing engine.

Clearly, while clarifying the latter aspects, several issues remain open. A few are due to the

analytical solution which requires linearity in the state variable within the objective functional.

Allowing for the strict convexity of the disutility from pollution is a natural extension, beside

generalization. It will allow to incorporate aversion to environmental inequality in the frame,

which is an increasingly important normative aspect.

Appendix A. Proofs

NOTE: Throughout the Appendix, Assumption 3.1 will hold and will not be repeated in the statement

of the results.

A.1. Formulation in Hilbert spaces. Here we give a rigorous formulation of the problem formulated

in Section 3 by embedding it in an infinite dimensional setting.

On S1 we consider the metrics induced by the Euclidean metrics of R2. In this way S1 can be isomet-

rically identified with 2πR/Z and the functions S1 → R with 2π-periodic function R→ R; differentiaton

of functions S1 → R is defined according to this identification.

We proceed now to our infinite dimensional reformulation of the problem. We will use the framework

of Lebesgue and Sobolev spaces, for more details we refer to Brezis (2011). The procedure is similar to

Boucekkine et al. (2019a), but their results do not cover the problem we are studying here because of

the presence of the abatment.

The infinite dimensional space H, where we will reformulate our maximization, is the Lebesgue space

L2(S1;R), i.e.

H := L2(S1;R) :=

{
f : S1 → R measurable :

∫
S1

|f(x)|2dx <∞
}
,
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endowed with the usual inner product 〈f, g〉 =
∫
S1 f(x)g(x)dx, which makes it a Hilbert space. Actu-

ally, rather than a space of functions, L2(S1;R) is a space of equivalence classes of functions, with the

equivalence relation identifying functions which are equal almost everywhere, i.e. out of a null Lebesgue

measure set. For details we refer again to Brezis (2011). We denote by ‖ · ‖ the associated norm, by H+

the nonnegative cone of H, i.e.

H+ := {f ∈ H : f ≥ 0},

and by 1 the constant function equal to 1 on S1. Moreover, we introduce the Sobolev space — we refer

to Brezis (2011) for the notion of weak differentiability:

W 2,2(S1;R) :=
{
f ∈ L2(S1;R) : f is twice weakly differentiable, f ′, f ′′ ∈ L2(S1;R)

}
.

Consider the differential operator L : D(L) ⊂ H → H, where

D(L) = W 2,2(S1;R); Lψ = σψ′′ − δψ, ψ ∈ D(L).

Due to Assumption 3.1, the latter is a closed, densely defined, unbounded linear operator on the space

H (see, e.g. Lunardi, 1995, p. 71-75, Sections 3.1 and 3.1.1). A core for it is the space C∞(S1;R) (see,

e.g., Engel and Nagel, 1995, pages 69-70). Let ψ ∈ C∞(S1;R). Integration by parts yields

〈Lψ,ψ〉 =

∫
S1

([Lψ](x))ψ(x)dx = −
∫
S1

σ|ψ′(x)|2dx−
∫
S1

δ(x))|ψ(x)|2dx ≤ 0.(14)

Since C∞(S1;R) is a core for L, (15) extends to all functions ψ ∈ D(L), showing that the operator L is

dissipative. Similarly, a double integration by parts shows that

(15) 〈Lψ1, ψ2〉 = 〈ψ1,Lψ2〉, ∀ψ1, ψ2 ∈ C∞(S1;R).

Again, since C∞(S1;R) is a core for L, (15) extends to all couples of functions in D(L), showing that

L is self-adjoint, i.e. L = L∗, where L∗ denotes the adjoint of L. Therefore, by Engel and Nagel (1995)

(see in particular Chapter II), L generates a strongly continuous contraction semigroup (etL)t≥0 ⊂ L(H);

in particular, since L is dissipative and ρ > 0, by standard theory of strongly continuous semigroup in

Banach spaces (see, e.g. Engel and Nagel, 1995, Ch. II, p. 82-83 and Ch. II, Th. 1.10, p. 55]), it follows that

ρ belongs to the resolvent set of L, i.e.

ρ− L : D(L) −→ H

is invertible with bounded inverse (ρ− L)−1 : H → H and the resolvent formula hold: for every ρ > 0

(16) (ρ− L)−1h =

∫ ∞
0

e−(ρ−L)thdt ∀h ∈ H.

Given i, b : R+ × S1 → R+ with functions I,B : R+ → H+, provided by

I(t) = i(t, ·), B(t) = b(t, ·).
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Moreover, define

Φ : R+ → H+, Φ(t) := ϕ(t, ·),

and

[Φ(t)B(t)θ](x) := Φ(t)(x)(B(t)(x))θ = ϕ(t, x)b(t, x)θ, t ≥ 0, x ∈ S1.

Then, defining also the function (net emissions)

N : R+ → H, N(t) := I(t)− Φ(t)B(t)θ,

the set A is rewritten as

A =

{
(I,B) : R+ → H+ ×H+ :

∫ ∞
0

e−(ρ−g)t‖N(t)‖dt <∞,

(A(t)(x)− 1)I(t)(x)−B(t)(x) ≥ 0 ∀(t, x) ∈ R+ × S1

}
.

Hence, given (I,B) ∈ A and with the identification P (t) = p(t, ·), we can reformulate (1) in H as an

abstract evolution equation:

(17)

P
′(t) = LP (t) +N(t), t ≥ 0,

P (0) = p0 ∈ H.

According to Part. II, Ch. 1. Def. 3.1(v) of Bensoussan et al. (2007) we define the mild solution to (17) as

(18) P (t) = etLp0 +

∫ t

0

e(t−s)LN(s)ds, t ≥ 0.

The formula (18) provides our notion of solution to (1). Now we go on by reformulating the objective

functional. Set A(t) := a(t, ·) and[(
(A(t)− 1)I(t)−B(t)

)1−γ
1− γ

]
(x) :=

(
(a(t, x)− 1)i(t, x)− b(t, x)

)1−γ
1− γ

, t ∈ R+, x ∈ S1.

The functional (2) is rewritten in this formalism as

(19) J(p0, (I,B)) =

∫ ∞
0

e−ρt

[〈(
(A(t)− 1)I(t)−B(t)

)1−γ
1− γ

,1

〉
− 〈w,P (t)〉

]
dt.

Proposition A.1. J(p0, (I,B)) is well defined for all p0 ∈ H and (I,B) ∈ A.

Proof. The term
((A(t)− 1)I(t)−B(t))1−γ

1− γ
in (19) is always either positive (if γ ∈ (0, 1)) or negative (if

γ > 1). So, it suffices to show that
∫∞
0
e−ρt〈w,P (t)〉dt is well defined and finite. We have∫ ∞

0

e−ρt
〈
w,P (t)

〉
dt =

∫ ∞
0

e−ρt
〈
w, etLp0 +

∫ t

0

e(t−s)LN(s)ds
〉

dt.(20)
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Now, since w is bounded and etL is a contraction, the integral
∫∞
0
e−ρt〈w, etLp0〉dt is finite. Moreover,

for all T > 0 we get, by Fubini-Tonelli’s Theorem∫ T

0

(∫ t

0

e−ρt
〈
w, e(t−s)LN(s)

〉
ds

)
dt

=

∫ T

0

(∫ t

0

e−ρs
〈
w, e−(ρ−L)(t−s)N(s)

〉
ds

)
dt

=

∫ T

0

e−ρs

〈
w,

∫ T

s

e−(ρ−L)(t−s)N(s)dt

〉
ds.

Using again the fact that e(t−s)L is a contraction and Assumption 3.1, we have, for each s ≥ 0, T ≥ 0∥∥∥∥∥
∫ T

s

e−(ρ−L)(t−s)N(s)dt

∥∥∥∥∥ ≤
∫ ∞
s

e−ρ(t−s)‖N(s)‖dt ≤ 1

ρ
‖N(s)‖.

Hence, by definition of A, the claim follows sending T to +∞. �

Proof of Proposition 3.2. The claim of Proposition 3.2 is the counterpart of the claim of Proposition

A.1 above, where the rigorous formulation of the optimal control problem in the infinite dimensional space

H is considered.

A.2. The function α. We define a function α, which will represent the core of the solution. Set

(21) α := (ρ− L)−1w =

∫ ∞
0

e−(ρ−L)tw dt,

where the equality above is due to (16). By definition, α is the unique solution in W 2,2(S1;R) of the

abstract ODE

(22) (ρ− L)α = w.

More explicitly, α, as defined in (21), is the unique solution in the class W 2,2(S1;R) to

(23) ρα(x)− σα′′(x) + δ(x)α(x) = w(x), x ∈ S1,

meaning that it verifies (23) pointwise almost everywhere in S1. The latter ODE can be viewed as an

ODE on the interval [0, 2π] with periodic boundary zero-order and first-order boundary conditions, i.e.ρα(x)− σα′′(x) + δ(x)α(x) = w(x), x ∈ [0, 2π],

α(0) = α(2π), α′(0) = α′(2π),

falling into the Sturm-Liouville theory with periodic boundary conditions (see Coddington and Levinson,

1955). Recall that we are dealing with the topology induced by the topology of R2 on S1 and we are

identifying functions on S1 with 2π-periodic functions on R. By Sobolev embedding W 2,2(S1;R) ⊂

C1(S1;R), so α ∈ C1(S1;R).
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Proposition A.2. We have α ∈ C2(S1;R) and

0 < min
S1

w(·)
ρ+ δ(·)

≤ α(x) ≤ max
S1

w(·)
ρ+ δ(·)

∀x ∈ S1.

Proof. The fact that α solves (23) and the fact that σ > 0 yield

α′′(x) =
1

σ
[(ρ+ δ(x))α(x)− w(x)] , for a.e. x ∈ S1.

Since α ∈ C1(S1;R), it follows, by Assumption 3.1, that α ∈ C2(S1;R).

Now, let x∗ ∈ S1 be a minimum point of α over S1. Then α′′(x∗) ≥ 0. Plugging this into (23) we get

(ρ+ δ(x∗))α(x∗) = σ(x∗)α
′′(x∗) + w(x∗) ≥ w(x∗),

and the estimate from below follows. The estimate from above can be obtained symmetrically. �

A.3. Rewriting the objective functional. Using (18) it is possible to rewrite the second part of the

functional (2) in a more convenient way. Setting

e−(ρ−L)t := e−ρtetL, t ≥ 0,

first, we rewrite ∫ ∞
0

e−ρt
(∫

S1

w(x)p(t, x)dx

)
dt =

∫ ∞
0

e−ρt
〈
w,P (t)

〉
dt

=

∫ ∞
0

e−ρt
〈
w, etLp0 +

∫ t

0

e(t−s)LN(s)ds
〉

dt

=

〈
w,

∫ ∞
0

e−(ρ−L)tp0 dt

〉
+

∫ ∞
0

e−ρt
〈
w,

∫ t

0

e(t−s)LN(s))ds

〉
dt.

(24)

Note that the first term of the right hand side is the only one which depends on the initial datum p0.

We now devote some space to rewrite and study (in Propositions A.2) such term. Then we show how

to rewrite the whole functional, including second term (Proposition A.3). First of all, by (16), it can be

rewritten as 〈
w,

∫ ∞
0

e−(ρ−L)tp0 dt

〉
=
〈
w, (ρ− L)−1p0

〉
=
〈
(ρ− L)−1w, p0

〉
= 〈α, p0〉 .

We now rewrite also the last term of the last line of (24) getting the following result.

Proposition A.3. We have

J
(
p0; (I,B)

)
= −〈α, p0〉+

∫ ∞
0

e−ρt

[〈(
(A(t)− 1)I(t)−B(t)

)1−γ
1− γ

,1

〉
−
〈
α, I(t)− Φ(t)B(t)θ

〉]
dt.
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Proof. Using the definition of α given in (21), the last term of the last line of (24) can be rewritten by

exchanging the integrals as follows:∫ ∞
0

(∫ t

0

e−ρt
〈
w, e(t−s)LN(s)

〉
ds

)
dt

=

∫ ∞
0

(∫ t

0

e−ρs
〈
w, e−(ρ−L)(t−s)N(s)

〉
ds

)
dt

=

∫ ∞
0

e−ρs
〈
w,

∫ ∞
s

e−(ρ−L)(t−s)N(s)dt

〉
ds

=

∫ ∞
0

e−ρs
〈
w, (ρ− L)−1N(s)

〉
ds

=

∫ ∞
0

e−ρs
〈
(ρ− L)−1w,N(s)

〉
ds.

(25)

The claim immediately follows. �

A.4. Solution of the problem.

Theorem A.4. The couple (I∗, B∗) given by

(26) B∗(t)(x) = (θϕ(t, x)(a(t, x)− 1))
1

1−θ ,

I∗(t)(x) = α(x)−
1
γ (a(t, x)− 1)

1−γ
γ + (θϕ(t, x))

1
1−θ (a(t, x)− 1)

θ
1−θ .(27)

belongs to A and is optimal starting at each p0. The corresponding optimal net emissions flow is

(28) N∗(t) := I∗(t)− Φ(t)B∗(t)θ = α(x)−
1
γ (a(t, x)− 1)

1−γ
γ + θ

1
1−θ (1− θ−1)ϕ(t, x)

1
1−θ (a(t, x)− 1)

θ
1−θ ,

and the optimal consumption flow is

(29) C∗(t) = (A(t)− 1)I∗(t)−B∗(t) =
(a(t, x)− 1

α(x)

) 1
γ

.

The optimal pollution flow is

(30) P ∗(t) := etLp0 +

∫ t

0

e(t−s)LN∗(t)ds.

Finally, the value function is affine in p0:

v(p0) = J
(
p0; (I∗, B∗)

)
= −〈α, p0〉+

∫ ∞
0

e−ρt
(∫

S1

γ

1− γ

(a(t, x)− 1

α(x)

) 1−γ
γ

dx

)
dt

− θ
1

1−θ

∫ ∞
0

e−ρt
(∫

S1

α(x)
(
ϕ(t, x)(a(t, x)− 1)

) θ
1−θ dx

)
dt.

Proof. First of all, we need to check that (I∗, B∗) ∈ A. We have(
(A(t)− 1)I∗(t)−B∗(t)

)
(x) =

(a(t, x)− 1

α(x)

) 1
γ ≥ 0 ∀(t, x) ∈ R+ × S1.

Morever, by the expression of N∗(t) provided by (28) and by (6), and considering Assumtpion 3.1(ii), we

get the existence of some constant C0 > 0 such that

0 ≤ N∗(t)(x) ≤ C0e
gt ∀(t, x) ∈ R+ × S1.
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We conclude that (I∗, B∗) ∈ A by Assumption 3.1(iii).

Concerning optimality, after writing explicitely the inner products in the expression of J provided

by Proposition A.3, the integrals can be optimized pointwisely, getting the expression of the optimizers.

Indeed, fix (t, x) ∈ R+ × S1. By strict concavity of the integrand function with respect to ι := I(t)(x)

and β := B(t)(x), the unique maximum point can be found just by first order optimality conditions. The

resulting system is

(31)


(
(a(t, x)− 1)ι− β

)−γ
(a(t, x)− 1)− α(x) = 0,

−
(
(a(t, x)− 1)ι− β

)−γ
+ α(x)ϕ(t, x)θβθ−1 = 0.

The claim on the optimal control then follows by solving the above system. The remaining claims

immediately follow from straightforward computations. �

Proof of Theorem 3.3. It follows by noticing that the claims of Theorem 3.3 are just the rephrasing in

the original PDE setting of the claims expressed in Theorem A.4 in the infinite-dimensional formulation.

A.5. Limit behaviour in the time-homogeneous case. We consider now the special case when the

coefficient are time-independent, i.e. a(t, x) = a(x), etc.. In this case the expressions of the optimal

controls are time independent, too:

(32) B∗(t)(x) ≡ B∗(x) := [ϕ(x)(a(x)− 1)θ]
1

1−θ ,

I∗(t)(x) ≡ I∗(x) := α(x)−
1
γ (a(x)− 1)

1−γ
γ + (ϕ(x)θ)

1
1−θ (a(x)− 1)

θ
1−θ .(33)

Finally, we prove the following proposition.

Proposition A.5. Let Assumption 3.1 hold and assume, furthermore, that δ(·) 6= 0. We have

lim
t→∞

P ∗(t) = P ∗∞ in H,

where P ∗∞ ∈W 2,2(S1;R) is the unique solution in H to the abstract ODE

LP +N∗ = 0.

Proof. Let λ0 be the spectral bound of L (see Chapter IV of Engel and Nagel (1995)). Since δ 6≡ 0, the

operator L is strictly disspative, hence λ0 < 0. Let us write

L = L0 − λ0, where L0 := L+ λ0,

and note that L0 is dissipative by definition, hence esL0 is a contraction. Then, we can rewrite

P ∗(t) = eλ0tetL0p0 +

∫ t

0

eλ0(t−s)e(t−s)L0N∗ds = eλ0tetL0p0 +

∫ t

0

eλ0tetL0N∗ds,



31

and take the limit above when t → ∞. Since esL0 is a contraction, the first term of the right hand side

converges to 0, whereas the second one converges to

P ∗∞ :=

∫ ∞
0

e−λ0sesL0N∗ds ∈ H.

Then, the limit state P ∗∞ ∈ H can be expressed using again Proposition 3.14, page 82 and Theorem 1.10,

Chapter II of Engel and Nagel (1995) as P ∗∞ = (λ0−L0)−1N∗, i.e. P ∗∞ is the solution to (λ0−L0)P = N∗

or, equivalently, to LP +N∗ = 0. �

Proof of Proposition 3.4. The claim of Proposition 3.4 is the counterpart of the claim of Proposition

A.5 above. Indeed, (13) is the ODE counterpart of the abstract equation LP ∗∞ +N∗ = 0.
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Camacho, C., and Pérez-Barahona, A. Land use dynamics and the environment. Journal of Economic Dynamics

and Control 52 (2015): 96-118.

Coddington, E. A. and Levinson, N. (1955). Theory of ordinary differential equations. New York: McGraw-Hill.

Cohen, A., and Hurter, A. P. (1974). An input-output analysis of the costs of air pollution control. Management

Science, 21 (4), 453-461.

Davis, D., Krupnick, A., and McGlynn, G. (Eds.), 2001. Ancillary benefits and costs gas mitigation. In: Pro-

ceedings of an IPCC Co-Sponsored Workshop,27–29 March 2000. Organization for Economic Co-Operation

and Development,Washington, DC

Desalu, A., Gould, L. and Schweppe, F. (1974). Dynamic estimation of air pollution. IEEE Transactions on

Automatic Control, 19(6), pp.904-910.

El Ouardighi, F., Kogan, K., Gnecco, G., and Sanguineti, M. (2018). Transboundary pollution control and

environmental absorption efficiency management. Annals of Operations Research, 1-29.

European Commission (2015) Attitudes of Europeans towards biodiversity. Special Eurobarometer 436.

Engel K.J., Nagel R. (1995). One-parameter Semigroups for Linear Evolution Equations., Graduate Texts in

Mathematics 194, Berlin: Springer.

Ferrari, G. and Koch, T., (2019). On a strategic model of pollution control. Annals of Operations Research,

275(2), pp.297-319.

de Frutos F., Martin-Herran G. (2019a). Spatial vs. non-spatial transboundary pollution control in a class of

cooperative and non-cooperative dynamic games. European Journal of Operational Research, 276(1), 379-394



32
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