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Abstract

This paper discusses the reconstruction of partially sampled spectrum-images to accelerate the acquisition in scanning
transmission electron microscopy (STEM). The problem of image reconstruction has been widely considered in the
literature for many imaging modalities, but only a few attempts handled 3D data such as spectral images acquired by
STEM electron energy loss spectroscopy (EELS). Besides, among the methods proposed in the microscopy literature,
some are fast but inaccurate while others provide accurate reconstruction but at the price of a high computation burden.
Thus none of the proposed reconstruction methods fulfills our expectations in terms of accuracy and computation
complexity. In this paper, we propose a fast and accurate reconstruction method suited for atomic-scale EELS. This
method is compared to popular solutions such as beta process factor analysis (BPFA) which is used for the first time on
STEM-EELS images. Experiments based on real as synthetic data will be conducted.

Keywords: scanning transmission electron microscopy, electron energy loss spectroscopy, atomic-scale images,
spectrum-images, partial acquisition, fast reconstruction

1. Introduction

Electron energy loss spectroscopy (EELS) performed in
a scanning transmission electron microscope (STEM) has
proved to be a powerful tool to analyze chemical compo-
nents and structures of a sample with a sub-nanometer
spatial resolution. A focused electron probe is scanned
over the sample and for each probe position an EELS spec-
trum is acquired, as well as several other signals such as
high-angle annular dark field (HAADF). The spectrum-
image thus acquired can be used to build not only maps
of the spatial distribution of the elements but also maps
of edges’ fine structures corresponding to local electronic
structures.

These important capabilities of modern microscopes are
somewhat limited by sample damage, instabilities and
poor signal-to-noise ratio (SNR). Indeed, acquiring such
EELS data set requires a suitable SNR and typical EELS
dwell time (exposure time per location) are in the ms range
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(1 − 100ms). These long dwell times proportionally lead
to a significant total electron dose received by the sam-
ple. This dose increases potential radiation damages to
the sample [2]. This is particularly problematic for sensi-
tive materials such as biological samples. Moreover a long
acquisition time may increase image distortions caused by
time-dependant instabilities of the sample and the micro-
scope. In particular, these instabilities may be substantial
at atomic scales. Performing a multi-frame acquisition,
followed by a non-rigid alignment step [3], is a promis-
ing research domain to improve the spatial resolution and
to reduce beam-induced damage. The new generation of
direct detection cameras with negligible correlated noise
could promote the use of this multi-frame setup with even
lower dwell-times. Finally some high resolution acquisi-
tions need to cover large areas (such as in [4] for scanning
electron microscopy (SEM)), leading to long acquisition
total time, heavy data storage and long processing steps.
To increase acquisition speed and/or reduce the full beam
exposure, a solution consists in reducing dwell time and
subsequently denoising the data as a post-processing op-
eration. Yet, reducing the exposure may be of limited
interest since the resulting SNR becomes too low to ex-
pect good denoising performance, especially in the case of
fine structure analysis.

A recent popular alternative is sparse (or partial) sam-
pling . This strategy consists in acquiring the relevant sig-
nals only in a small proportion of spatial locations, which
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allows for higher dwell time at these positions resulting
in the same amount of total electron dose. The result-
ing acquired image is partially empty and a reconstruction
step is required to obtain a fully exploitable image. This
paradigm received a renewed interest since the theoretical
results of compressed sensing (CS) which states that exact
recovery of sub-Nyquist rate acquisitions is possible under
certain conditions – one of them is that the data should be
sparse in an appropriate basis. The CS paradigm states
that the data should be projected on n random subspaces
with n far below the data size, which is well adapted to
electron microscopy tomography [5, 6, 7]. These results
raised a lot of interest toward inverse problems which esti-
mate the image based on partial spatial acquisitions which
is referred to as inpainting. It remains an active research
area for STEM [8, 9] and SEM [4], among others.

The two previously described acquisition schemes have
pros and cons. Schematically, low dwell-time acquisition
usually produces better spatial results while sparse sam-
pling images usually have rich spectral information. De-
termining which approach is the best is not trivial. To
that end, recent works studied and compared these solu-
tions [10, 11] based on experiments conducted on synthetic
as well as real images.

Following the second aforementioned acquisition
scheme, this paper addresses the problem of recon-
structing spatially sub-sampled atomic-scale STEM
EELS images. In particular one motivation here aims
at reducing computational burden of the inpainting
procedure to make its future implementation possible
into the acquisition process. The experimenter should
be able to visualize the full spectrum-image along the
acquisition, which requires both fast computation and
a good accuracy. In addition to this online setup, the
experimenter should be able to refine the reconstructed
spectrum-image afterwards, where very accurate but
possibly time-consuming algorithms are allowed. To that
end, we propose a new reconstruction method exhibiting
a relevant trade-off between accuracy and complexity. We
will also show that this proposed technique can serve as
a good initialization to accelerate more efficient yet more
computationally intensive methods. Moreover, among
the compared methods, we propose to apply the popular
beta process factor analysis (BPFA), originally dedicated
to remote sensing images [12]. Up to our knowledge,
it is the first time BPFA is applied to STEM-EELS
images, although it was already used in many microscopy
works for 2D data restoration such as in SEM [10].
The paper is organized as follows. Section 2 presents
an overview of inpainting techniques already used in
electron microscopy, with the emphasis placed on 2D
and 3D reconstructions. Since no fast and accurate
3D method fulfills all requirements to envisage a fully
operational online implementation, Section 3 describes
the newly proposed reconstruction method. Section 4

describes the synthetic, semi-real and real data, as well
as the experiments conducted to compare the proposed
approach to previous works (especially BPFA as a 3D
reconstruction method). The experimental results are
reported and discussed in Section 5. Section 6 concludes
this study.

2. Related works

The focus of this paper deals with reconstructing spa-
tially sub-sampled STEM images. Many works considered
this problem with different methods and modalities. Most
of them were proposed to process single 2D images while
few considered the reconstruction of 3D images. This sec-
tion discusses these works which are mainly divided into
two parts. The first one considers learning-free methods
which reconstruct the images based on the single acquired
dataset. The second one studies learning-based methods
which capitalize on a learning set to calibrate an operator
subsequently used to reconstruct the data.

2.1. Learning-free methods

Among learning-free methods, nearest neighbor (NN)
interpolation is a fast and simple solution possibly allowing
for dynamic joint acquisition and reconstruction. To avoid
piecewise-constant image like reconstruction, preferred so-
lutions interpolate with a weighted mean over a neighbor-
hood. The weights are chosen to be the normalized inverse
distance between the interpolated pixel and the neighbor
for reconstructing SEM data in [13], energy-dispersive X-
ray spectroscopy (EDS) data in [14, 15] and EELS data
in [15]. An alternative considered for SEM images in [10]
was based on a natural neighbor interpolation, which ad-
justs the weights based on a Voronöı cell representation
[16]. Note that STEM acquires full spectra at particular
spatial positions.

Regularized least-square (LS) methods generally offers
better results than NN as they additionally constrain the
reconstructed image to fulfill a predefined behavior, usu-
ally promoted by a well chosen regularization. Akin to
the CS paradigm, a classical regularization is the spar-
sity of the reconstructed image in an appropriate basis,
as the `1-norm regularized LS problem considered in [17]
for atomic force microscopy (AFM). This type of regu-
larized LS methods will be referred as `1-LS in Table 1.
In the case of periodic structures (as for atomic-scale im-
ages), this basis can be Fourier or discrete cosine transfor-
mation (DCT). The authors in [18] proposed an inpaint-
ing method for atomic-scale high-angle annular dark-field
(HAADF) images based on a thresholded Fourier trans-
form, which constrains the image sparsity in periodic ba-
sis. The method in [19] promoted the sparsity of the DCT
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representation to reconstruct HAADF images, using the
SPGL1 algorithm [20]. In the same way, this regulariza-
tion can be coupled with a wavelet basis to dynamically
reconstruct HAADF data [21]. Another standard regular-
ization is total variation (TV), i.e., the `1-norm of the im-
age gradient promoting piecewise constant reconstructed
image, as considered in [17] for AFM. The block-DCT rep-
resentation was coupled with TV for reconstructing SEM
data in [4]. The `2-norm of the image gradient is also
widely used as a regularization to promote spatial smooth-
ness and is referred to as the Sobolev energy [11]. In the
case of multi-band images, spectral regularizations were
proposed in addition to the spatial one. In [11], for in-
stance, the 3S method uses the weighted `2-norm across
the EELS spectrum-image bands or simply a nuclear norm
(which ensures the low-rank nature of the reconstructed
data) in addition to the classical Sobolev energy spatial
regularization.

Another class of reconstruction methods exploit the spa-
tial redundancy in the image, often referred to as patch-
based methods. They form a very popular and success-
ful class of reconstruction methods which raised a lot of
attention in the last decades to solve inverse problems
such as denoising, inpainting and deblurring. For exam-
ple, the exemplar-based inpainting [22] (EBI) reconstructs
partially corrupted images by iteratively replacing the im-
age patches by the best matching uncorrupted patch ex-
tracted from its neighborhood. To describe spatial re-
dundancy, successful algorithms aims at sparsely repre-
senting image patches thanks to atoms of a dictionary
jointly learned with the reconstructed data. BPFA is prob-
ably the most popular dictionary learning (DL) method
in the microscopy community [12]. It was first used for
atomic-scale HAADF images in [9] and was used after-
wards in many papers for the same kind of data [23, 24].
The authors of BPFA proposed Kruskal-factor analysis
(KFA) as a tensor extension of BPFA [25]. KFA was
used to reconstruct EELS images based on a multiplexed
spectrum-image acquisition [26]. Last, the expected-patch
log-likelihood (EPLL) algorithm assumes the patch distri-
bution to be a Gaussian mixture [27]. Yet, its computa-
tion time is important and the authors in [15] preferred a
simplified but accelerated version called fast EPLL (FE-
PLL) to reconstruct SEM images [28]. In addition to the
patch-based methods used in the microscopy community,
wKSVD [29] and ITKrMM [30, 31] learn the dictionary
from incomplete data without assuming particular patch
distribution. They remain state-of-the-art methods that
will be considered in this paper.

To achieve better performance with reduced acquisition
time, several predefined scan patterns were proposed such
as regular scan [32], random horizontal lines [24, 17], mixed
regular-random scan [18, 32], spiral scans [33, 34, 17] or
square-shape scan [17]. These results tend to show that
the best performance is achieved by semi-random scan pat-

terns, which introduce randomness and avoid large holes.
Last, adaptive sparse scanning enables consequent recon-
struction improvement by selecting the pixel to sample
based on previously acquired data. In [35], the authors
proposed to perform a first low-SNR scan to locate the
spatial edges. A second high-SNR scan is then performed
on these edges only. Finally, in the low-SNR acquired im-
age, the smooth regions are filtered and the edges are filled
with the pixels from the second high-SNR acquisition. An
alternative adaptive scanning scheme proposed in [36] con-
sists in iteratively locating possible points of interest to be
sampled. Learning-based adaptive sparse scanning are dis-
cussed in the next subsection.

2.2. Learning-based methods

Contrary to learning-free methods which recover the full
image based only on the partially acquired data, learning-
based methods learn an operator based on a possibly large
training set. These methods are known to be much more
accurate as long as the geometric content of the image to
reconstruct is similar to the content of the training data.

For instance, the GOAL algorithm learns a dictionary
which maximizes the sparsity of the training dataset rep-
resentation [37]. The learned dictionary is then used to
perform the inpainting task for test data. Similarly, EBI
which is originally a learning-free method, can be adapted
to benefit from the availability of a training set. To that
end, within the conventional EBI framework, instead of
extracting the copied patch from the neighborhood, this
patch can be chosen from a dictionary learned before-
hand on uncorrupted images. This is the strategy fol-
lowed in [38] to reconstruct 3D SEM data. GOAL and the
learning-based counterpart of EBI were used in [10] for 2D
SEM images but BPFA seemed to give better results.

Learning-based approaches can also be designed to de-
cide which positions should be sampled in order to min-
imize the distortion after reconstruction. Indeed, sub-
sampled data reconstruction performance highly depends
on the sample locations [10]. To improve the reconstruc-
tion quality, the supervised learning approach for dynamic
sampling (SLADS) learns a function (called expected re-
duction in distortion (ERD)) indicating which location
should be sampled to maximally reduce distortion [13].
This learning step is based on a list of descriptors and
requires labeled training data, and it was used to dynam-
ically sample SEM images. This method has been also
applied to EDS data in [14]. To that end, a convolutional
neuronal network (CNN) classifies the test data spectra
and the ERD function is computed simultaneously for all
labels. The paper [15] modified this approach to allow
mixed elements in EELS and EDS. All these approaches
needs a fast reconstruction which is achieved thanks to a
weighted NN technique.
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Family Method
Works

Execution time Accuracy
2D 3D

NN
NN - - ZZZ ÅÅ

Weighted neighbor [16, 10] - ZZ Å

LS-regularized

`1-LS [17, 19, 21, 4] Z Z

TV-LS [17] - Z Z

3S - [11] Z Z

DL-based methods

BPFA [9, 10] [12] ÅÅÅ ZZZ

EBI [10] [38] Å ZZ

FEPLL [28],[15] - Å ZZ

wKSVD - [29] ÅÅ ZZ

ITKrMM [30] [31] Å ZZ

GOAL [37],[10] - Å ZZ

Table 1: Comparison of the methods proposed in the microscopy literature for reconstructing partially sampled images. Additional references
not originated from the microscopy literature are also provided in italics. The execution time and accuracy are qualitatively evaluated based
on the results of Section 4.

2.3. Application to EELS and feasibility

The previous subsection focused on the related works
in microscopy which are summarized in Table 1. They
are rated depending on their computational complexity
and accuracy and grouped into three main families: NN,
LS-regularized and DL-based methods. The works from
the literature related to each method are given and sepa-
rated depending on their ability to reconstruct 2D mono-
band images (e.g., HAADF) or 3D spectrum-images (e.g.,
EELS).

Among the available methods for EELS reconstruction,
NN is fast but gives generally poor reconstruction re-
sults while DL-based methods are very efficient but re-
mains computationally expensive, especially when consid-
ering 3D patches. Therefore, this literature review shows
that none of the available methods can optimally recon-
struct a spatially sub-sampled spectrum-image fast enough
to be included into an experimental setup for online or
mini-batch processing. Note that 3S could satisfy the ac-
curacy and speed requirements but the results of Section 4
will show its regularization is not suited for atomic-scale
images. In this work, we will propose to apply BPFA to
EELS images, i.e., recovering a dictionary composed of 3D
patches, as this was originally designed for.

An alternative for systematically reconstructing a
spectrum-image consists in processing separately and in
parallel the 2D images associated with each channel. In
this case, note that NN as a 3D reconstruction performs
the same as a band-by-band processing. Yet, this is sub-
optimal as the reconstruction task is expected to perform
better by capitalizing on the information of the whole 3D
data. Similar considerations could lead to prefer recon-

structing one or several single channel images of interest
necessary for element mapping. However such a strategy
may be also sub-optimal when no a priori knowledge is
available regarding the sample to be imaged.

To conclude, NN and DL-based methods are not suited
for on-line reconstruction and only LS-regularized methods
combine accuracy and reduced computational cost. As a
consequence this paper proposes a method which belongs
to the regularized LS family to reconstruct quickly and
efficiently an atomic-scale spectrum-image. This method
is detailed in the next section and will be compared to
existing approaches in Section 4 based on synthetic as well
as real data experiments.

3. Proposed method

3.1. Structured sparsity in a well-chosen basis

To get a fast and accurate reconstruction technique, LS-
regularized methods exploiting sparsity in an appropriate
basis seems to provide a relevant trade-off. In particular,
to ensure an acceptable computation time, this basis or
dictionary can be chosen beforehand, exploiting some ex-
pected properties of the image to be reconstructed. Learn-
ing this dictionary during a pre-processing step would
be time consuming and the reconstruction results would
strongly depend on the training set. As a consequence,
an analytic basis such as Fourier, DCT or wavelets will
be preferred due to its explicit expression. The choice of
the basis will be discussed in Section 5.1 based on experi-
ments. Yet, the periodic structure of atomic-scale sample
is expected to favor Fourier or DCT representations.
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More precisely, in the case of atomic-scale EELS
spectrum-images, each 2D image in a given band is ex-
pected to exhibit a periodic pattern which can be described
thanks to a sparse representation in an appropriate basis.
Conversely, each spectrum measured in any spatial loca-
tion does not likely exhibit particular periodicity. Thus
this sparsity property only holds in the spatial direction of
the 3D datacube and a band-by-band basis transformation
is expected to lead to higher sparsity level (i.e., the propor-
tion of nonzero coefficients) compared to 3D basis trans-
formation. Besides, band-by-band representations are ex-
pected to share common characteristics since the spatial
structure is likely the same across the channel and only
depends on the sample. This structured sparsity tends to
promote images which non-zero band-by-band representa-
tion coefficients are located at the same place. This phe-
nomenon is illustrated in Fig. 1 when considering a DCT
representation (the choice of the basis will be discussed in
Section 5.1). Note that in the case of an important noise
level (such as for the band #1111), some powerful high-
frequency coefficients correspond to noise (at the bottom-
right corner of the panels). Yet, by jointly analyzing the
DCT representations for several channels, the location of
the main coefficients can be estimated after removing co-
efficients associated with noise.

3.2. Cosine Least Square reconstruction

Capitalizing on the finding of the previous sections, the
proposed method relies on a regularized LS problem whose
formulation writes

X̂ = arg min
X

1

2
||Y −XΦ||2F + λR(X). (1)

where X̂ is the recovered image, Φ is the subsampling op-
erator and Y is the acquired data. The operator R(·) is
a regularization and λ is a scalar that adjusts the impor-
tance of the regularization with respect to the data fidelity
term. To enforce the periodic spatial patterns to be simi-
lar across the channels, we choose the regularization R(X)
to be

R(X) = ||XΨ||2,1 (2)

where Ψ is an orthogonal band-by-band basis transform.
The `2,1-norm is defined as1

||U||2,1 =
∑
j

||Uj ||2 =
∑
j

√∑
i

|Uij |2 (3)

where Uj is the jth column of U, corresponding to the
spectrum associated with the jth pixel. Minimizing this
norm enforces the structured sparsity as it aims at setting
the columns of lowest magnitude to zero while preserving

1A slightly different definition of the `2,1-norm is proposed in [39],
where the `2-norm is first computed on the rows of U.
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Figure 1: Illustration of the data structured sparsity. The STEM
acquisition is composed of a 2D HAADF image (left panel, 1st row)
and the corresponding spectrum-image whose three bands are con-
sidered (left panels, 2nd to 4th rows). For each image, the locations
of the 2% DCT coefficients of highest magnitude are depicted (right
panels). Note that most of these coefficients are located in the same
areas of the DCT space for the HAADF as well as corresponding
bands, which suggests a certain structured sparsity in the the trans-
form domain.
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the most powerful columns. In case of a periodic basis
(e.g., Fourier or DCT), the regularization (2) promotes
similar and sparse frequency representations across all the
bands. For further details, see Appendix A. In the sequel
of the paper, the resulting method will be referred to as
Cosine Least Square (CLS).

CLS can be used directly on the partially-acquired
spectrum-image. Yet, as a preprocessing step, we propose
to perform a principal component analysis (PCA) of the
acquired data Y and to apply CLS on the T first principal
components. The formulation (1) remains the same but
the measurement matrix Y and reconstructed image ma-
trix X are replaced by the PCA spectrum-image Ỹ and
its reconstructed counterpart X̃. The fully reconstructed
image X can then be derived from X̃ by the correspond-
ing inverse transformation. While it is not a prerequisite
of the proposed method, this preprocessing step has sev-
eral advantages. First, it implicitly introduces a spectral
regularization of the inverse problem by imposing a low-
rank structure of the solution. Similar strategies have been
widely promoted for various tasks conducted on multiband
images, including compressive sensing [40, 41], inpainting
[11, 42], fusion [43, 44, 45] or mixture analysis [46, 47].
Second, by reducing the amount of data to process, it al-
lows the computational time to be significantly reduced.
This preprocessing may induce some reconstruction arte-
facts when the estimation of the covariance matrix is not
accurate, e.g., in case of a low sampling ratio. Moreover,
the number of PCA components to keep (which will be
referred to as PCA threshold in the following) should be
carefully chosen as a too small threshold can make some
low-powerful structures disappear [48]. A systematic strat-
egy to adjust this threshold was proposed in [11]. The use
of PCA as a pre-processing step is discussed in the sup-
porting document [49].

Besides, the choice of the regularizing parameter λ in
(1) is non-trivial in general inverse problems. However,
it can be fairly adjusted by exploiting some information
about the image to be reconstructed such as the noise level
(which can be estimated beforehand) or the sparsity level,
i.e., the ratio of non-zero coefficients of the representation.
This prior knowledge can be used to assess the quality of
the solution X̂λ obtained by CLS for a given value λ of
the regularization parameter. For instance, for a relevant
solution, the data fidelity term is expected to be of the
order of magnitude of the noise level. Thus a dichotomic
search can be conducted to adjust the regularization pa-
rameter automatically. In other words, CLS is run for a
given value of the parameter and the data-fidelity term is
evaluated at convergence. Since the fidelity term increases
with λ, if its value is below (resp. above) the noise level,
λ should be increased (resp. decreased) and CLS should
be run again. For instance, a similar strategy has been
successfully followed in [11].

3.3. CLS as a pre-processing step

As it will be shown in Section 4, the CLS algorithm is
fast and it efficiently reconstructs spectrum-images based
on partially acquired data. Thus we also propose here
to apply CLS as a pre-processing step for more advanced
algorithms, in particular to initialize DL-based methods.
To that end, the CLS-reconstructed data X̂ is decomposed
into a dictionary and a sparse representation using the con-
ventional mini-batch DL algorithm proposed in [50] cou-
pled to the orthogonal matching pursuit [51]. These dic-
tionary and code are subsequently used to initialize DL-
based reconstruction methods. This initialization is par-
ticularly interesting for wKSVD and ITKrMM which solve
a nonconvex optimization problem based on a direction al-
ternating scheme. Indeed, for such nonconvex problems,
initialization is known to be a crucial issue to ensure con-
vergence to a relevant solution. Alternatively, a similar
strategy cannot be easily adopted to initialize BPFA since
it implements a Markov chain Monte Carlo algorithm and
the dictionary and code distributions depend on hyperpa-
rameter distributions. The relevance of CLS as an initial-
ization step will be discussed in Section 5.4.

4. Experiments

4.1. Data

4.1.1. Materials

Two real atomic-scale spectrum-images referred to as
R1 and R2 have been acquired on a NION UltraSTEM200
at the Laboratoire de Physique des Solides (LPS), Orsay,
France. R1 is a spectrum-image acquired at 100kV on a
La1−xSrxMnO3/Pb(Zr,Ti)O3 (LSMO/PZT) heterostruc-
ture grown onto SrTiO3 [52]. The spectra were acquired
in an energy range corresponding to Ti− L2,3, O−K,
Mn− L2,3 and La−M4,5 edges. R2 is a spectrum-image
acquired at 100kV on a NdNiO3 thin film grown on a
LaAlO3 substrate [53]. The spectra were acquired in an
energy range corresponding to O−K, La−M4,5, NiL2,3

and Nd−M4,5 edges. To reduce the acquisition noise, the
images were acquired with relatively long dwell time. Ad-
ditional information about these images (such as their sizes
and resolutions, dwell times and the PCA threshold used
in Section 5.2) are reported in Table 2.

All experiments discussed in this section were conducted
on an Intel Xeon CPU E5540 @ 2.53GHz with 8 cores – in-
cluding hyperthreading – and 50Gb of memory. Note that
the high amount of memory is only required for BPFA as
a 3D algorithm while other methods can run on a machine
with only 13.2Gb of memory.
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Image Sample
Size (x, y, λ)
Res. (∆x = ∆y, ∆λ)

Dwell time
(ms)

Relevant edges PCA
threshold TElement Energy loss (eV)

R1

PbZrTiO3 /
LaSrMnO3 /

SrTiO3

(232, 101, 1530)
(0.055nm, 0.27eV)

20

Ti 456

9
O 532

Mn 640

La 832

R2
NdNiO3/
LaAlO3

(63, 115, 1505)
(0.045nm, 0.32eV)

20

O 532

7
La 832

Ni 855

Nd 978

S cf. R2
(70, 120, 1435)
(0.045nm, 0.32eV)

- cf. R2 4

Table 2: Additional information about the R1, R2 and S images.

4.1.2. Synthetic and semi-real images

Since R1 and R2 are naturally corrupted by noise, com-
puting relevant metrics to assess the performance of the re-
construction methods may be biased by an unknown noise
level. To alleviate, noise-free counterparts of R1 and R2

were first generated by conducting a PCA and keeping
only the first T principal components. The choice of the
threshold T is generally a difficult task. In this work, it
was set such that the discarded principal components did
not carry any spatial information. More details are pro-
vided in Appendix B. These denoised images, referred to
as R̄1 and R̄2, are assumed to be the ground-truth images
X to be reconstructed.

In addition to these two semi-real images, a synthetic
spectrum-image was generated based on the R2 data. To
that end, an independent component analysis was con-
ducted on R2 to extract four characteristic spectra that
were filtered afterwards while the associated spectral maps
were synthetically produced. These data were subse-
quently mixed to get the spectrum-image referred to as
S (see Appendix B for generation details).

To mimic realistic experimental setups, the three noise-
free images R̄1, R̄2 and S were subsequently corrupted by
an additive white Gaussian noise with signal-to-noise ratio
adjusted in agreement with the acquisition process. Fi-
nally these pseudo-real images, referred to as R∗1 and R∗2,
and the noisy synthetic image S∗, were uniformly randomly
spatially subsampled with a 20% ratio to provide the mea-
surement matrix Y. Note that results obtained for other
sampling ratios are reported in the supporting document
[49].

4.2. Methods

As discussed in Section 3.2, for all algorithms, a PCA is
first conducted on the observed image, keeping the T most
relevant principal components. The reconstruction algo-
rithms are then run in this lower-dimensional subspace.
The inverse transformation will be applied afterwards to
get the reconstructed image X̂. Compared methods are
NN, 3S, CLS, ITKrMM, wKSVD and BPFA. In particu-
lar, NN is the only one to be applied band-by-band. For all
methods, the algorithmic parameters have been adjusted
to reach the best performances for each method. In par-
ticular, DL-based methods consider 3D patches of size
M ×M × T with M = 25 for ITKrMM and wKSVD and
M = 41 for BPFA.

The ITKrMM and wKSVD implementations used in
these experiments are the Matlab codes provided by Prof.
K. Schnass2. The implementation of BPFA is the Matlab
code provided by Dr. Z. Xing3. The other methods have
been implemented by the authors of this paper and are
available in a Python library called inpystem4. The codes
to reproduce the experiments described in this paper are
also available online5.

4.3. Metrics

To evaluate the reconstruction quality, several quantita-
tive measures will be used to compare the ground truth X

2https://www.uibk.ac.at/mathematik/personal/schnass/

code/itkrmm.zip
3https://drive.google.com/open?id=

0B9548VKFKtmiY2ZNRFVUTjhyUFE
4https://github.com/etienne-monier/inpystem
5https://github.com/etienne-monier/2020-Ultramicro-fast
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and reconstructed X̂ images. First, the normalized mean-
squared error (NMSE) is chosen as an error measure and
is computed according to

NMSE(X̂,X) =
||X̂−X||2F
||X||2F

. (4)

The smaller NMSE, the better. Then, this error measure
is turned out as a performance measure by considering
its negative-logarithm, defining the signal-to-noise ratio
(SNR)

SNR(X̂,X) = −10 log10

(
NMSE(X̂,X)

)
. (5)

The higher SNR, the better. Additionally, we also con-
sider the average spectral angle distance (aSAD) defined
as [54, 55]

aSAD(X̂,X) =
1

P

P∑
j=1

acos

(
〈X̂j ,Xj〉

||X̂j ||2 × ||Xj ||2

)
, (6)

where P is the number of pixels. The aSAD, which is a
measure of spectral distorsion, is independent of scaling
and should be close to zero. Finally, the structural simi-
larity index (SSIM) averaged over all the bands is consid-
ered as a criterion to assess spatial reconstruction [56, 57].
A value close to 1 (resp. to 0) indicates that the spatial
structures are similar (resp. different). The closer to 1,
the better.

5. Results

5.1. Appropriate basis for sparsity

As explained in the previous section, the data sparsity
level highly depends on the image and on the basis chosen
for its representation. In the case of atomic-scale images,
previous works considered wavelets [34], Fourier [18] or
DCT [19, 4] bases. However, no systematic comparison of
these transforms has been conducted in these works. This
section proposes to fill this gap. Intuitively, Fourier trans-
form or DCT are expected to provide best results as they
are known to lead to highly sparse representations when
applied to periodic structures. To confirm this intuition,
we propose to monitor the magnitude of the data represen-
tation coefficients which are expected to decrease as fast
as possible when sorted in decreasing order. A significant
decreasing would mean that less coefficients are required
to accurately represent the data. Thus, the reconstruc-
tion error is evaluated for each image when represented
with the following transforms: Fourier basis, DCT basis,
Daubechies and symlet wavelets (with 3, 10 and 20 van-
ishing moments). The reconstruction error is evaluated
as a function of ratio r ∈ (0, 1) of nonzero representa-
tion coefficients, i.e., keeping only the r% representation

coefficients of highest magnitude. The inverse basis trans-
formation provides an estimate X̂ of X which is degraded
as r decreases. The reconstruction error correspond to
the normalized mean square error between X and X̂. To
summarize, the most suitable transform for a given image
should be the one whose reconstruction error drops fastest
with r as this shows that less coefficients are necessary to
describe the image.

This procedure has been applied to R1, R2 and S after a
PCA. The results are depicted in Fig. 2. They show that
DCT is always better than Fourier as the measurements
are real-valued data, which introduces a redundancy of fac-
tor 2 for each axis in the 2D Fourier space whereas DCT
does not suffer from this redundancy. Moreover, our intu-
ition is confirmed since DCT and Fourier perform better
for the three images compared to all the wavelet trans-
forms. Finally, in the case of atomic-scale images consid-
ered in this work, these experiments show that DCT offers
the sparsest transform and it will be chosen as the orthogo-
nal band-by-band transform Ψ in (2) of the proposed CLS
method.

5.2. Results on synthetic and semi-real images

In this section, the reconstruction methods were applied
to the two semi-real images R∗1 and R∗2 and to the synthetic
image S∗.

The metric values as well as the execution times are re-
ported in Table 3. These results show that there is a clear
performance gap, both in terms of quality and time, be-
tween NN and DL-based techniques. This is particularly
true for BPFA which exhibits a prohibitive computation
time, yet often leading to the best image reconstruction.
The LS-regularized methods 3S and CLS seem to fill this
gap, both in terms of accuracy and speed. CLS performs
particularly well as it gives a SNR close to the best meth-
ods with a very small computational time. 3S gives lower
performance results (even if better that NN) since its reg-
ularization is not appropriate to accurately describe the
periodic structure of atomic-scale images. Note also that
BPFA gives globally the best SNR and aSAD, except for
R∗1 for which CLS gives a better aSAD, while NN gives the
worst aSAD.

The reconstruction of a non-sampled pixel located in
Fig. 3 is also depicted in Fig. 4. In this figure, reference
data refers to the noise-free image R̄2. Equivalent plots
for a sampled pixel are omitted here since they do not
bring any meaningful insight: the reconstructed spectra
are close to be distinguished. These plots show that the
NN-reconstructed spectrum is significantly shifted with re-
spect to the reference while BPFA and CLS are close to
the reference spectrum. Error maps are reported in the
supporting document [49].
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Figure 2: Reconstruction error in term of NMSE for several bases
when representing R1 (top), R2 (middle) and S (bottom). The faster
the curve decreases, the better as it means the image needs less
representation coefficients to be accurately represented. The DCT
basis gives the best results for all images.

(a) R∗
1

Method SNR aSAD (100×) SSIM Time(s)

NN 30.81 1.384 0.680 0.423

3S 32.30 1.080 0.643 15.2

CLS 36.18 1.061 0.912 18.4

ITKrMM 36.52 1.097 0.923 6.85e+04

wKSVD 36.93 1.091 0.931 7.97e+04

BPFA 37.02 1.089 0.933 1.36e+05

(b) R∗
2

Method SNR aSAD (100×) SSIM Time(s)

NN 28.71 1.815 0.635 7.94e-02

3S 30.17 1.496 0.621 3.38

CLS 33.15 1.233 0.790 3.09

ITKrMM 33.67 1.253 0.819 9.55e+03

wKSVD 34.52 1.163 0.841 2.59e+04

BPFA 35.01 1.106 0.852 6.18e+04

(c) S∗

Method SNR aSAD (100×) SSIM Time(s)

NN 21.32 1.462 0.735 6.82e-02

3S 22.12 1.174 0.710 3.33

CLS 42.14 0.224 0.997 1.48

ITKrMM 44.16 0.338 0.998 9.61e+03

wKSVD 45.59 0.277 0.999 1.57e+04

BPFA 52.70 0.150 1.000 4.06e+04

Table 3: Reconstruction performance in terms of SNR, aSAD and
SSIM for semi-real R∗

1 and R∗
2 and synthetic S∗ images. The execu-

tion time is also given to be considered jointly with accuracy. There
is a clear performance gap in terms of quality and execution time
between NN and the DL-based methods . LS-regularized methods
fill this gap, especially CLS which performs well in comparison to
3S.
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(a) Band #2 of R̄2

(b) Band #2 of R̄2

(zoom)
(c) Mask (zoom)

Figure 3: Location of the sampled spectrum represented in Figure 4.
Image 3(a) shows the 2nd principal component of the semi-real im-
age R̄2 and locates the sampled pixel (blue dot) whose spectrum is
considered in Fig. 4. Fig. 3(b) and 3(c) shows zooms on the image
region-of-interest and on the sampling mask. The sampling mask
white (resp. black) pixels stand for sampled (resp. non-sampled)
pixels.

As a consequence, CLS appears as a relevant trade-off
between accuracy and complexity since it gives good re-
construction with small computational time. This method
could be interesting as an experimental tool whereas BPFA
could be used as a post-processing refinement method.
Combining both methods will be discussed in Section 5.4.

5.3. Results on a real image

Some illustrative results are also provided for R2. More
precisely, the real spectrum-image R2 is spatially subsam-
pled with a ratio of 20% and then reconstructed as in the
previous subsection.

Visual representations of the reconstructed spectrum-
images around some interesting edges are provided in
Fig. 5 and the reconstruction of a non-sampled spectrum
is shown in Fig. 6. In these figures, note that reference
data refers to the real, possibly noisy, image R2.

Similarly to the previous findings, DL-based methods
visually give excellent reconstructed maps when compared
to other methods. Results regarding reconstructed spec-
tra show that the NN-reconstructed spectrum for the non-
sampled pixel exhibits a significant shift while other algo-
rithms provide smaller biased results.
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(b) Non-sampled pixel (zoom)

Figure 4: Spectra reconstruction results for R∗
2 for a non-sampled

pixels located in Fig. 3. Reference spectra corresponds to the noise-
free image R̄2. The zoom represents the region-of-interest highlighted
as shaded a blue area. NN and 3S spectra are significantly shifted
compared to the reference whereas the spectra recovered by CLS and
DL-based methods are close to the reference spectrum.
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Sampling
mask

Component O−K La−M4,5 Nd−M4,5

Reference

NN

3S

CLS

ITKrMM

wKSVD

BPFA

Figure 5: Reconstruction results for R2. The images show the sum of 5 bands around 3 particular edges (O−K, La−M4,5 and Nd−M4,5).
The reference corresponds to the real, possibly noisy, image R2. The sampling mask is also provided in the first row where white (resp. black)
pixels stand for sampled (resp. non-sampled) pixels. These results confirm the performance gap between NN whose images are not smooth
enough and DL-based methods which are close to the reference with an additional denoising effect. CLS performs clearly better than NN and
3S and its results are close to DL-based methods.
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Figure 6: Spectra reconstruction results for R2 for a non-sampled
pixel with the same locations as in Fig. 3. Reference spectra corre-
sponds to the real image R2. The zoom represent the region-of-
interest highlighted as a shaded blue area. As for the synthetic
results, the NN spectrum is significantly shifted compared to the
reference spectrum while the results of CLS and DL-based methods
(especially BPFA) are close to the reference. Again, CLS appears to
be a relevant trade-off.

5.4. CLS as an initialization

Previous subsections compared the reconstruction
method performances on synthetic, semi-real and real im-
ages. They illustrated the interest of CLS as a fast and ef-
ficient method for reconstructing subsampled atomic-scale
spectrum-images. Besides, DL-based reconstruction meth-
ods are shown to provide higher performances at the price
of a higher computational cost. However, coupled with
CLS, these methods may be used as post-experiment re-
finement. In this section, we will confirm this interest
based on an additional experiment conducted on the semi-
real image R∗2. Similarly to the previous paragraph, this
image has been subsampled and then reconstructed with
wKSVD while considering two distinct initializations. The
first one is purely random, as initially implemented by the
algorithm. The second kind of initialization consists in
initializing wKSVD with a dictionary and a correspond-
ing sparse code derived from the CLS-based reconstructed
image. Then, the reconstruction quality is monitored as
a function of the iterations of the wKSVD algorithm by
plotting the reconstruction SNR. Results are depicted in
Fig. 7 for both initializations.

The results show that CLS-based initialization leads to
less iterations to get a target SNR compared to random
initialization. It confirms the interest of CLS to be used
as an initialization to accelerate more elaborated yet more
computationally intensive techniques. Note that this strat-
egy can be adopted for gradient-descent-based algorithms
such as wKSVD or ITKrMM, but is not suited for Markov
chain Monte-Carlo algorithms such as BPFA.
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33

33.5

34

34.5

Iteration number

S
N

R

Random init.
CLS init.

Figure 7: SNR as a function of wKSVD iterations for random and
CLS initializations. Colored filling corresponds to standard deviation
interval computed from 10 runs. The results show that CLS-based
initialization needs less iterations to get a target SNR compared to
random initialization. This promotes CLS as an initialization for
DL-based reconstruction methods.

6. Conclusion

In this paper, we introduced a new reconstruction
method referred to as CLS for STEM-EELS imaging that
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is both fast and accurate. Experiments on synthetic
and real data showed it was much faster than dictionary
learning-based reconstruction methods and more accurate
than NN methods. The combination of these two advan-
tages is highly interesting to envisage its practical imple-
mentation into an online experimental setup.

Moreover, time-consuming but more accurate dictio-
nary learning-based methods were also used as a post-
processing of the results provided by CLS. These methods
performed reconstruction as a 3D task and gave excellent
reconstruction quality. However, the price to pay was a
high computational time, which could be reduced by us-
ing the reconstructed spectrum-image recovered by CLS
as an initialization.

Conducting online microscopy acquisition and recon-
struction is an active research task as it speeds up acqui-
sition procedures and identification of components. Per-
forming reconstruction with CLS as an online algorithm
and coupling it with adaptive sampling is an interesting
perspective towards dynamic STEM-EELS imaging. Such
an acquisition protocol would allow sample drifts to be
handled, which was not the case in the experiments re-
ported in this paper.
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Appendix

A. CLS implementation

This appendix provides some details regarding the im-
plementation of CLS introduced in Section 3.2. Let X ∈
RB×P denote the unknown spectrum-image to be recon-
structed where B is the number of bands and P is the
number of pixels. The subsampling acquisition process
writes

Y = XΦ + E (7)

where Y ∈ RB×N is the observation matrix, N is the num-
ber of sampled pixels, Φ ∈ RP×N is the sampling operator
and E is a residual term associated with error modeling
and measurement noise. The elements of E are assumed
to be independent and identically distributed according to

a zero-mean Gaussian noise. Note that the sampling oper-
ator Φ is the concatenation of N columns extracted from
the identity P × P -identity matrix.

Reconstructing the full spectrum-image X from Y can
be formulated as the following optimization problem

X̂ = arg min
X

1

2
||Y −XΦ||2F︸ ︷︷ ︸

f(X)

+λ||XΨ||2,1︸ ︷︷ ︸
g(X)

(8)

where Ψ is the band-by-band DCT transform operator.
This optimization problem can be easily solved with it-
erative algorithms such as the fast iterative shrinkage-
thresholding algorithm (FISTA) [58]. This algorithm splits
the function to be minimized into two terms

• f which is a smooth convex function of the type C1,1,
i.e., continuously differentiable with Lipschitz contin-
uous gradient L(f),

• g which is a continuous convex and possibly nons-
mooth function.

Based on this decomposition, the main steps of the algo-
rithm are described in Algo. 1, which requires to evaluate
three elements, namely, the gradient ∇f , an upper bound
of the Lipschitz constant L > L(f) and the proximal oper-
ator proxg/L(X) = arg minU{g(U)/L+ 1

2 ||U−X||2}. The
gradient function ∇f can be easily derived as

∇f(X) = (XΦ−Y)ΦT . (9)

The ∇f function Lipschitz constant can be computed fol-
lowing

||∇f(X1)−∇f(X2)|| = ||X1 −X2|| · ||ΦΦT || (10)

with L(f) = ||ΦΦT || = 1. Last, the proximal operator is
column-separable and is computed for each column Xj of
X (with j = 1, . . . , P ) [59]

[proxg/L(X)]j =

{
0 if ||Xj ||2 < λ

L(
1− λ/L

||Xj ||2

)
Xj otherwise

(11)

As mentioned in Section 3.2, the reconstruction method
can be applied to the full measurement matrix Y or to its
representation Ỹ in a lower-dimensional subspace identi-
fied by PCA. The threshold T to be set can be chosen as
described in the following section.

B. Generation of the synthetic and semi-real
spectrum-images

Generating the synthetic spectrum-image S. To generate
the synthetic spectrum-image S, we propose to follow
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Algorithm 1: FISTA with constant step size [58]

1 Input : L > Lf an upper bound of Lf and the
observation Y

2 Initialisation : Set Z(1) = X(0) ∈ Rp, θ(1) = 1,
i = 1 while stopping rule not satisfied do

3 X(i) = proxg/L
(
Z(i) − 1

L (Z(i)Φ−Y)ΦT
)

4 θ(i+1) = 1
2

(
1 +

√
1 + 4(θ(i))2

)
5 Z(i+1) = X(i) +

(
θ(i)−1
θ(i+1)

) (
X(i) −X(i−1))

6 i← i+ 1

the strategy adopted in [11]. It consists in linearly mix-
ing Nc = 4 components according to realistic proportion
maps. The spectral components were obtained by smooth-
ing Nc signatures identified by an independent component
analysis conducted on the real-spectrum image R2. They
are gathered in theB×Nc matrix M and depicted in Fig. 8.
The proportion maps were generated synthetically by su-
perimposing periodic structures onto a smoothly varying
background similar to the content of the real spectrum-
image R2. These maps, gathered in the Nc×P matrix A,
are represented in Fig. 9. Finally, the synthetic image S
can be generated as MA.
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Figure 8: Spectral components used for generating the synthetic
image S.

Generating the semi-real spectrum-images R∗1 and R∗2. The
reference noise-free spectrum-images R̄∗1 and R̄∗2 used in
Section 5.2 are generated by keeping the first T principal
components identified by PCA conducted on R1 and R2,
respectively. Generally, determining the PCA threshold T
is not a trivial. In this work, we propose to choose T such
as the B−T remaining components do not contain spatial
information. To quantify the presence or absence of spatial
information in a principal components, we monitor their
whiteness based on the metrics proposed in [60, Chap. 3]

(a) Comp. 1 (b) Comp. 2

(c) Comp. 3 (d) Comp. 4

Figure 9: Proportion maps associated with the spectral components
represented in Fig. 8 used for generating the synthetic image S.

as

||r||∗2 =

√∑
τ 6=0

r(τ)2 (12)

where r(τ) is the 2D-autocorrelation function. The higher
value, the more information contained by the image. To
illustrate, this criterion is represented in Figure 10 as a
function of the index of the principal components for the
two spectrum-images R1 and R2. The PCA threshold T
is chosen as the maximal index sufficient to get to a sta-
tionary curve behavior. These values are reported in Ta-
ble 2. The semi-real spectrum-images R∗1 and R∗2 are finally
obtained by corrupting the reference noise-free spectrum-
images R̄1 and R̄2 with additive white Gaussian noises
whose variances have been adjusted to reach SNR values in
agreement with those of the corresponding real spectrum-
images R1 and R2, respectively.
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||∗ 2
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Figure 10: Whiteness criterion ||r||∗2 as a function of the principal
component index for the real image R1 and R2. The first powerful
principal components exhibit more spatial content than the last ones.
The PCA threshold is chosen as the maximal index sufficient to reach
a stationary curve behavior.
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bigeon, Reconstruction of partially sampled EELS images, in:
Proc. IEEE GRSS Workshop Hyperspectral Image SIgnal Pro-
cess.: Evolution in Remote Sens. (WHISPERS), 2018, pp. 1–5.

[33] X. Sang, A. R. Lupini, R. R. Unocic, M. Chi, A. Y. Borisevich,
S. V. Kalinin, E. Endeve, R. K. Archibald, S. Jesse, Dynamic
scan control in STEM: Spiral scans, Adv. Struct. and Chem.
Imag. 2 (1) (2017) 6.

[34] X. Li, O. Dyck, S. V. Kalinin, S. Jesse, Compressive sensing on
diverse STEM scans: real-time feedback, low-dose and dynamic
range, arXiv preprint arXiv:1805.04957 (2018).

[35] T. Dahmen, M. Engstler, C. Pauly, P. Trampert, N. De Jonge,
F. Mücklich, P. Slusallek, Feature adaptive sampling for scan-
ning electron microscopy, Scientific Rep. 6 (2016) 25350.

[36] T. Dahmen, P. Trampert, An adaptive sparse sampling scheme
for scanning electron microscopy using Delauney triangulation,
Microsc. Microanal. 25 (S2) (2019) 154–155.

[37] S. Hawe, M. Kleinsteuber, K. Diepold, Analysis operator learn-
ing and its application to image reconstruction, IEEE Trans.
Image Process. 22 (6) (2013) 2138–2150.

[38] P. Trampert, S. Schlabach, T. Dahmen, P. Slusallek, Exemplar-
based inpainting based on dictionary learning for sparse scan-
ning electron microscopy, Microsc. Microanal. 24 (S1) (2018)
700–701.

[39] M. Kowalski, Sparse regression using mixed norms, Appl. Com-
put. Harmonic Anal. 27 (3) (2009) 303 – 324.

[40] Q. Zhang, R. Plemmons, D. Kittle, D. Brady, S. Prasad, Joint

15



segmentation and reconstruction of hyperspectral data with
compressed measurements, Appl. Opt. 50 (22) (2011) 4417–
4435.

[41] G. Mart́ın, J. M. Bioucas-Dias, A. Plaza, Hyca: A new
technique for hyperspectral compressive sensing, IEEE Trans.
Geosci. Remote Sens. 53 (5) (2014) 2819–2831.

[42] L. Zhuang, J. M. Bioucas-Dias, Fast hyperspectral image de-
noising and inpainting based on low-rank and sparse represen-
tations, IEEE J. Sel. Topics Appl. Earth Observations Remote
Sens. 11 (3) (2018) 730–742.

[43] E. Wycoff, T.-H. Chan, K. Jia, W.-K. Ma, , Y. Ma, Non-
negative sparse promoting algorithm for high resolution hyper-
spectral imaging, in: Proc. IEEE Int. Conf. Acoust., Speech and
Signal Process. (ICASSP), Vancouver, Canada, 2013.

[44] M. Simões, J. Bioucas Dias, L. Almeida, J. Chanussot, A con-
vex formulation for hyperspectral image superresolution via
subspace-based regularization, IEEE Trans. Geosci. Remote
Sens. 6 (53) (2015) 3373–3388.

[45] Q. Wei, N. Dobigeon, J.-Y. Tourneret, Fast fusion of multi-
band images based on solving a Sylvester equation, IEEE Trans.
Image Processing 24 (11) (2015) 4109–4121.

[46] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, A. O.
Hero, Joint Bayesian endmember extraction and linear unmix-
ing for hyperspectral imagery, IEEE Trans. Signal Processing
57 (11) (2009) 4355–4368.

[47] N. Dobigeon, N. Brun, Spectral mixture analysis of EELS
spectrum-images, Ultramicroscopy 120 (2012) 25–34.

[48] N. Mevenkamp, B. Berkels, M. Duchamp, Denoising electron-
energy loss data using non-local means filters, Microsc. Mi-
croanal. 23 (S1) (2017) 106–107.

[49] E. Monier, T. Oberlin, N. Brun, M. Tencé, X. Li, N. Dobigeon,
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