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Abstract: Two new iodo derivatives of bis-salphen zinc complexes [salphen = N,N’-

bis(salicylideneimine)-1,2-diaminobenzene] have been synthesized and fully characterized. The 1H 

NMR, 13C NMR, IR, UV-Vis, TGA, elemental analysis and MALDI mass spectral data of these complexes 

are presented. In addition, X-Ray single crystal diffraction analysis of complex 1 has been recorded. 

These two compounds present a great potential interest for generating 2D covalent organic 

nanoarchitecture.  

Keywords: Metal-Salophen complexes / Crystal structure / Zinc / NMR / TGA 

1. Introduction 

Metal-salphen or bis-salphen are promising molecules for engineering two-dimensional nanomaterials 

since their planar structure is ideal to favor flat adsorption on surfaces.[1-7] These molecules can be 

prepared using a one-step process. This makes these compounds  accessible , cost-effective synthesis 

and easy to functionalized. [8] These compounds have surprisingly received little attention as sources 

of supramolecular planar building blocks [9, 10] for engineering complex two-dimensional 

nanoarchitectures. Directional and selective intermolecular interactions have been successfully 

exploited to control the lateral arrangement of molecular building blocks. Large-scale two-dimensional 

organic nanoarchitectures have thus been engineered taking advantage of intermolecular hydrogen-

bonds [11-14] and halogen bonds. [15-17] Molecular building blocks with halogens also have an 

interesting potential to create novel on-surface synthesized 2D covalent organic nanoarchitectures. 

[18-20] 

Herein, we present two molecules which are ideal  candidates as molecular building block to elaborate 

complicated self-assembled halogen-bonded nanoarchitectures. [21] These molecules are composed 

of two iodo derivatives of bis-Zn(II)salphen complexes 1-2 (Scheme 1). These two molecules differ by 

the position of the iodine atoms on the four external phenyl rings. These different designs are expected 

to lead to totally different molecular arrangements as it has already been noticed in our precedent 

work [21]. Indeed, we showed that a tiny modification of the skeleton of the molecule can drastically 

affect its self-assembly. [21] The synthetic work is presented as well as the 1H NMR, 13C NMR, IR, TGA, 

UV-Vis and MS spectra. The X-Ray analysis of complex 1 is also shown. 

                  



3 
 

 

Scheme 1 

2. Experimental 

Physical Measurements. IR spectra were measured on a PerkinElmer Spectrum 100 FT-IR spectrometer 

with samples as KBr pellets. UV-Vis spectra were recorded on a Varian Cary 5000 spectrophotometer. 

MS spectra were recorded by the Service de Spectrométrie de Masse of Paul Sabatier University using 

Waters MALDI micro MX spectrometer for matrix-assisted laser desorption ionization (MALDI; matrix: 

trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malonitrile (DCTB); =337nm). NMR 

experiments were performed at 298K on a Bruker AVANCE I 500MHz spectrometer equipped with a 5 

mm Z-gradient TCI cryoprobe and on a Bruker AVANCE III HD 500MHz equipped with a 5 mm Z-gradient 

BBO PRODIGY cryoprobe. Full assignments of 1H and 13C spectra were made with the assistance of 

COSY, HMBC and HSQC spectra. Coupled TG/DTA measurements were performed on about 15 mg of 

each sample, using a Setaram-Labsys apparatus, from ambient to 1000 °C. A 100 ml min−1 Helium flow 

was used and the warming up was realized with a 15 °C min−1 ramp rate. Mass loss was given with an 

accuracy done near 0.01% 

General methods for the preparation of complexes. All of solvents and materials were used without 

further purifications. The synthesis of complexes 1 and 2 follows the procedure given by Kleij et al. [22] 

The bis-salphen complexes were prepared in a yield of around 60% by a one-pot protocol consisting of 

four condensation and two metalation stages. The high selectivity for the targeted complexes 1-2 was 

obtained by combining the tetramine and Zn(OAc)2 in DMSO to which the salicylaldehyde reagent was 

added as a solution in the same solvent. Procedures using other solvent as THF or mixture of solvents 

as THF/MeOH as used in Lin’s publication [23] afforded lower yields or intractable mixtures of 

components. 

2.1 Preparation of complexes 1-2 

2.1.1. Synthesis of complex 1: [(2-1,2,4,5-tetrakis(N-(5-iodosalicylidenealdiminato))benzene)-

bis(N,Ndimethylformamide)-di-zinc(ii)]  

To a solution of 1,2,4,5-tetraaminobenzene tetrahydrochloride (100 mg, 0.352 mmol) and 

Zn(OAc)2.2H2O (309.1 mg, 1.408 mmol) in DMSO (30mL) was added a solution of 4-iodosalicylaldehyde 

(349.3 mg, 1.408 mmol) in DMSO (10 mL). The reaction mixture was stirred for 18 h and then filtered 
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(fraction 1 = 215.8 mg). A second fraction of product was obtained by addition of MeOH (200 mL) to 

the mother liquor which gave after filtration another fraction (25.6 mg). Total yield: 241mg (0.203 

mmol, 58 %). This complex is almost insoluble in THF, DMF or DMSO. In order to analyze it by 1H NMR, 

an additive (i.e., NBu4OAc) was needed to solubilize it in DMSO. 1H NMR (500 MHz, DMSO-d6 + 

NBu4OAc, 25°C) δ 8.95 (s, 4H, Hd), 8.14 (s, 2H, He), 7.07 (d, 3J = 7.6 Hz, 4H, Hc), 7.03 (d, 4J = 1.7 Hz, 4H, 

Ha), 6.76 (d, 3J = 8.1 Hz, 4H, Hb). 13C{1H} NMR (126 MHz, DMSO-d6 + NBu4OAc, 25°C) δ 172.64 (C1), 162.12 

(C7), 139.96 (C8), 137.38 (C5), 132.34 (C2), 121.32 (C4), 120.04 (C6), 104.34 (C9), 103.24 (C3). The signals 

corresponding to the additive (NBu4OAc) are not listed here. MS (MALDI+, DCTB): calcd for 

C34H18I4N4O4Zn2 [M]+ = 1185.9; found: 1185.9. Anal. Calcd for C34H18I4N4O4Zn2.1H20: C, 33.95; H, 1.68; 

N, 4.66. Found: C, 33.26; H, 1.20; N, 4.56. IR (KBr pellet):  = 1602 s, 1581 s, 1492 s, 1459 m, 1414 m, 

1383 m, 1298 w, 1246 w, 1199 w, 1171 m, 1136 w, 1064 w, 948 w, 915 m, 857 w, 777 w, 733 w, 584 

w, 496 w. cm-1. UV-Vis (in THF with NBu4OAc) ( [nm],  [M-1cm-1]) (502 (sh), 58970; 480, 67270; 430, 

50340; 330, 41930; 264, 46918). 

2.1.2. Synthesis of complex 2: [(2-1,2,4,5-tetrakis(N-(4-iodosalicylidenealdiminato))benzene)-

bis(N,Ndimethylformamide)-di-zinc(ii)] 

To a solution of 1,2,4,5-tetraaminobenzene tetrahydrochloride (100 mg, 0.352 mmol) and 

Zn(OAc)2.2H2O (309.1 mg, 1.408 mmol) in DMSO (30 mL) was added a solution of 5-iodosalicylaldehyde 

(349.3 mg, 1.408 mmol) in DMSO (10 mL). The reaction mixture was stirred for 18h and then filtered 

(fraction 1 = 231.8 mg). A second fraction of product was obtained by addition of MeOH (200 mL) to 

the mother liquor which gave after filtration another fraction (50.4 mg). Total yield: 282mg (0.238 

mmol, 68%). This complex is almost insoluble in THF, DMF or DMSO. In order to analyze it by 1H NMR, 

an additive (i.e., NBu4OAc) was needed to solubilize it in DMF. 1H NMR (500 MHz, DMF-d7 + NBu4OAc, 

25°C) δ 9.08 (s, 4H, Hd), 8.35 (s, 2H, He), 7.64 (d, 4J = 2.6 Hz, 4H, Hc), 7.35 (d, 3J = 9.0, 2.5Hz, 4H, Ha), 6.52 

(d, 3J = 8.1 Hz, 4H, Hb). 13C{1H} NMR (126 MHz, DMD-d7 + NBu4OAc, 25°C) δ 172.73 (C1), 160.98 (C7), 

143.50 (C5), 141.19 (C3), 140.30 (C8), 126.50 (C2), 123.49 (C6), 104.04 (C9), 69.79 (C4). The signals 

corresponding to the additive (NBu4OAc) are not listed here. MS (MALDI+, DCTB): calcd for 

C34H18I4N4O4Zn2 [M]+ = 1185.9; found: 1185.9. Anal. Calcd for C34H18I4N4O4Zn2.1H20: C, 33.95; H, 1.68; 

N, 4.66. Found: C, 33.13; H, 1.17; N, 4.59. IR (KBr pellet):  = 1606 s, 1510 s, 1491 m, 1456 s, 1406 m, 

1374 m, 1305 m, 1246 w, 1164 s, 948 w, 872 w, 829 m, 783 w, 625 m, 557 w, 496 w. cm-1. 

2.2. X-Rays study 

The crystallographic data of compound 1 were collected at 193(2) K using a Bruker-AXS D8-Venture 

diffractometer equipped with a CMOS detector (Photon 100) and a 30W air-cooled microfocus source 

using Cu Kα radiation (λ=1.54178 Å). Phi- and omega-scans were used. The space group was 

determined on the basis of systematic absences and intensity statistics. Semi-empirical absorption 

correction was employed. [24] The structure was solved using an intrinsic phasing method (SHELXT), 

[25] and refined using the least-squares method on F2. [26] All non-H atoms were refined with 

anisotropic displacement parameters. Hydrogen atoms were refined isotropically at calculated 

positions using a riding model with their isotropic displacement parameters constrained to be equal 

to 1.5 times the equivalent isotropic displacement parameters of their pivot atoms for terminal sp3 

carbon and 1.2 times for all other carbon atoms. A counter cation NtBu4+ is partially disordered: equal 

xyz and Uij constraints (EXYZ and EADP) and several restraints (SAME, SIMU, DELU) were applied to 

model the disorder over 2 positions. Hydrogen atoms of the H2O molecule were located by difference 

Fourier map and were refined using restraints DFIX and SADI to get suitable target values. 
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Selected data for 1 : C34H18Br2I4N4O4Zn2, 4 (C16H36N), 2 Br, 2 (H2O) M = 2510.36, triclinic, space group 

P1, a = 10.9172(3) Å, b = 17.1431(5) Å, c = 17.1840(5) Å,  = 117.6852(13)°,  = 103.5977(16)°,  = 

90.8450(16)°, V = 2739.18(14) Å3, Z = 1, crystal size 0.25 x 0.08 x 0.04 mm3, 37748 reflections collected 

(9683 independent, Rint = 0.0560), 636 parameters, 259 restraints, R1 [I>2(I)] = 0.0368, wR2 [all data] 

= 0.0901, largest diff. peak and hole: 1.819 and –0.836 eÅ–3. 

3. Results and discussion 

3.1 NMR analysis 

Complexes 1-2 (scheme 1) are sparingly soluble under non-polar conditions. The NMR analysis was 

therefore made under polar conditions (DMSO-d6 for 1 and DMF-d7 for 2) with a necessary additive 

agent (NBu4OAc). The analysis confirms the proposed connectivity patterns (cf Figure 1 and Figures S1-

S3). The numbering system used for the assignments of signals is provided in Figure 1 and in the 

Supporting Information. 

 

Figure 1: Complex 1: 1H NMR (500MHz, DMS0-d6, 25°C) (aromatic region) 

3.2 Thermogravimetric analysis 

Thermogravimetric analysis (TGA) are used up to 1000°C at He atmosphere to investigate the thermal 

stability of complexes 1 and 2. The measurements reveal that the complex 1 and complex 2 are stable 

up to approximatively 400°C and 300°C respectively. The thermogravimetric plots (TGA and DTG) of 

complexes 1 and 2 as weight loss versus temperature are shown in supplementary materials (Figures 

S4-S5). The thermal decomposition of the two complexes essentially takes place in one stage. This 

He 

Hd 

Ha 

Hb Hc 
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stage is probably related to the omission of the four bromine atoms with a mass loss of 53% for 1 at 

420°C and 45% for 2 at 380°C compared to the calculated 43% for both complexes. 

3.3 FT-IR Spectra 

The experimental IR spectra of the complexes 1 and 2 are shown Figure 2. These spectra look almost 

identical except at low frequencies (around 600cm-1 and 800cm-1). The calculated spectra (Figure 3) 

are in close agreement with the experimental ones. Indeed, the experimental observed differences 

between complexes 1 and 2 at low frequencies are also observed on the theoretical spectra. In order 

to get the calculated IR spectra, the optimized geometry of complex 1 and complex 2 have been 

obtained using Density Functional Theory (DFT) with Gaussian09 software [27] using PBE0 

functional.[28] All atoms were described using a double zeta quality basis set (LANL2DZ).[29] 

 

Figure 2: Experimental IR spectra of complex 1 (black) and complex 2 (red) (2000-400cm-1) 

 
Figure 3: Calculated IR spectra of complex 1 (black) and complex 2 (red) (2000-400cm-1) 

3.4 UV-Vis Analysis 
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The experimental UV-vis spectrum of complex 1 is shown in Figure 4. The spectrum was taken in THF 

with an additive agent (NBu4Br) in order to increase the solubility. In the UV-Vis range, it shows five 

peaks as follows: 502nm (shoulder), 480nm (strong), 430nm (medium), 330 nm (medium) and 264nm 

(medium). It has to be noted that the same spectrum is obtained in DMSO with NBu4OAc as additive 

agent. 

 

Figure 4: Experimental UV-Vis spectrum of complex 1 in THF with (NBu4Br) as additive agent. 

3.5 X-Rays analysis 

The X-Ray molecular structure of complex 1 is shown in Figure 5 and Figures S6-S7. Crystals suitable 

for single-crystal XRD were obtained by adding an additive (NBu4Br) to a solution of complex 1 in THF. 

As a consequence, one bromine atom of the additive appears to bind to one molecular central zinc 

atom. Complex 1 crystallizes in a triclinic lattice and its asymmetric unit comprises one half of a 

centrosymmetric dinuclear complex, a tetrabutylammonium cation, a molecule of NBu4Br and a water 

molecule coming from the chemical reaction medium. The coordination geometry can be viewed as a 

distorted five-coordinated square pyramid with a τ5 value [30] of 0.14, fairly close to the value of 0 for 

an ideal square pyramid. The axial site is occupied by the Zn atom, its deviation from the mean plane 

defined by O1, O2, N1 and N2 is 0.5478(6) Å. The Zn-O and Zn-N distances Zn1-O1, Zn1-O2, Zn1-N1 

and Zn1-N2 found within the salphen complex are similar to other bis-salphen zinc complexes 

described [1.985(3), 1.995(3), 2.123(3) and 2.108(3) Å respectively]. [22, 31, 32]  The C1-C6 ring is 

almost coplanar with the central phenyl ring C15-C17A (tilting angle of 4.56°) whereas the C8-C13 is 

tilted by 12.8°. Only the anionic part of the complex 1 is represented in Figure 5 for clarity. 

Crystallographic data are shown on Supplementary materials. 

                  



8 
 

 

Figure 5: Molecular view of anionic part of the complex 1. Thermal ellipsoids represent 50% probability 

level. H and disordered atoms are omitted for clarity. 

Selected bond lengths [Å] and angles [°]: Zn1–O1 1.985(3), Zn1–O2 1.995(3), Zn1–Br1 2.445(1), Zn1–

N1 2.123(3), Zn1–N2 2.108(3); O1–Zn1–O2 89.69(6), O1–Zn1–N1 87.89(12), O1–Zn1–N2 144.02(13), 

O2–Zn1–N1 152.40(13), O2–Zn1–N2 89.07(12), N1–Zn1–N2 77.12(12) O1-Zn1-Br1 105.34(9), O2-Zn1-

Br1 107.23(10), N2-Zn1-Br1 109.33(9), N1-Zn1-Br1 99.92(9) 

4. Conclusions 

In conclusion, two new iodo derivatives of bis-salphen zinc complexes have been synthesized and fully 

characterized. These molecules, stable at room temperature, quite easy to make, chemically pure, 

readily available, will in the future be used as molecular building block to engineer novel two-

dimensional halogen-bonded self-assembled nanoarchitecture. 

CCDC-1951509 (1) contains the supplementary crystallographic data for this paper. These data can be 

obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.a-

c.uk/data_request/cif. 
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