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Abstract. Fitness landscape analysis is a well-established tool for gain-
ing insights about optimization problems and informing about the be-
havior of local and evolutionary search algorithms. In the conventional
definition of a fitness landscape, the neighborhood of a given solution is
a set containing nearby solutions whose distance is below a threshold,
or that are reachable using a deterministic local search operator. In this
paper, we generalize this definition in order to analyze the induced fit-
ness landscape for stochastic search operators, that is when neighboring
solutions are reachable under different probabilities. More particularly,
we give the definition of a stochastic local optimum under this setting, in
terms of a probability to reach strictly improving solutions. We illustrate
the relevance of stochastic fitness landscapes for enumerable combinato-
rial benchmark problems, and we empirically analyze their properties
for different stochastic operators, neighborhood sample sizes, and local
optimality thresholds. We also portray their differences through stochas-
tic local optima networks, intending to gather a better understanding of
fitness landscapes under stochastic search operators.

Keywords: Combinatorial optimization · Local optimality · Fitness land-
scape · Stochastic search operators.

1 Introduction

Originally coming from evolutionary biology [23], the fitness landscape is one of
the most common abstractions used to depict and analyze dynamical systems.
In evolutionary computation and related stochastic optimization algorithms, a
fitness landscape is the association of a search space of potential solutions, a
fitness function to be optimized, and a neighborhood relation between solutions
on which the optimization process is expected to move during the search process.
The aim of fitness landscape analysis is twofold. The first one is to understand
the relation between the geometry of the optimization problem and the search
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dynamics, using the pictures of peaks, valleys, or plateaus. More recently, with
the renew of machine learning techniques, the second goal uses features com-
puted from the fitness landscape to predict algorithm performance or to select
relevant algorithm components according to the optimization problem [10]. From
the large number of features designed for evolutionary computation, one of the
most intuitive and most important one relates to local optimality. A local opti-
mum, which can be depicted as a peak of the landscape, is a solution with the
best fitness value locally, among its set of neighboring solutions. This definition
arises from the neighborhood relation of the fitness landscape. In combinatorial
optimization, the neighborhood is a finite set, most often defined by a natural
distance between solutions such as Hamming distance or Kendall distance.

However, most local search and evolutionary algorithms use stochastic local
search operators, which do not always directly match with a finite set of neigh-
boring solutions. For example, the bit-flip mutation operator conventionally used
in genetic algorithms, which flips each bit independently with a given rate, does
not produce a finite set of neighboring solutions with an equal probability of
being reached. Similarly, hyperheuristics might combine several local search op-
erators with different probability distributions [16]. The explored solutions at
each iteration is not properly caught by any finite set. Even when the neigh-
borhood is defined as a finite set, its cardinality might be too large for being
computationally enumerated, as it is the case, for instance, in genetic program-
ming or population-based multi-objective search [20]. Therefore, a subpart of
the neighborhood is typically sampled at random or in a heuristic way, making
the deterministic definition of neighborhood and local optimum less relevant.

In this paper, we extend the definition of neighborhood to stochastic local
search operators, and we investigate stochastic local optimality in this context.
The principle is to define a stochastic local optimum when the probability to
strictly improve a solution by applying a stochastic operator is small, below a
given threshold. The threshold can be related to the inverse of the computational
budget available to find an improving solution. Intuitively, a stochastic local op-
timum is a solution that is difficult to improve in a reasonable computational
effort using the stochastic operator, and therefore constitutes an attraction point
for evolutionary or local search. By extending the fitness landscape paradigm,
and in particular its neighborhood relation, to stochastic search operators, we
expect the definition of local optimality to reveal new insights into the search
space structure, and to allow for a better analysis of the design of algorithms
based on stochastic operators. In this work, the methodology is to support the
relevance of the new definition of stochastic local optimum with an experimen-
tal analysis on enumerable combinatorial optimization problems with different
properties, and to show the potential additional benefit of this approach for
fitness landscape analysis.

Our contributions can be summarized as follows:

(1) We extend the definition of fitness landscape to stochastic operators, and we
propose a new definition of local optimum for stochastic local search.
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(2) We empirically show the relevance of this definition on enumerable NK-land-
scapes.

(3) We show some potential interests of stochastic fitness landscapes for iterated
local search, and we reveal, for the first time, the structure of local optima
networks for stochastic operators.

Outline. The paper is organized as follows. In Section 2, we first recall neces-
sary definitions and related works. In Section 3, we present the stochastic fitness
landscape and stochastic local optimality definitions. In Section 4, we detail the
experimental setup, and the results of the analysis. The discussion and conclu-
sions close the paper in Section 5.

2 Preliminaries

A fitness landscape [14] is defined as a triplet (X , f,N ) such that X is the
search space of candidate solutions, f : X → IR is the fitness function, and N
is a neighborhood relation. In combinatorial optimization, the search space is
a finite set. The neighborhood relation N : X → 2X assigns a set of solutions,
called neighbors, to any solution from the search space. Although this definition
is quite general, the basic idea behind it is to define neighboring solutions in
the vicinity of a solution. Standard definitions are based on a distance measure
between elements from the search space, such as the Hamming distance: N (x) =
{x′ ∈ X | d(x, x′) 6 D}, where d is a distance function and D is the radius of
the neighborhood. Other standard definitions are based on a deterministic local
search operator that performs a move from one solution to another: N (x) =
{x′ ∈ X | ∃θ s.t. opθ(x) = x′}, where opθ is a parametric deterministic operator
such as swap or insertion. In both cases, the neighborhood relation allows one
to depict the fitness landscape with peaks, plateaus, and valleys, but also to
analyze the fitness landscape using tools from graph theory [14, 21].

One of the main intuitive and fundamental feature of a fitness landscape deals
with local optimality, where local optima represent the peaks in the pictures
collection of the fitness landscape. For a maximization problem, a local optimum
is a solution x ∈ X such that:

∀x′ ∈ N (x), f(x′) 6 f(x) (1)

The number of local optima in the fitness landscape provides a first information
about the difficulty of a combinatorial optimization problem, and about the
performance of local and evolutionary search algorithms [8]. For large landscapes,
different methods allow one to estimate the number of local optima using uniform
random sampling, biased random sampling [1, 7], or the length of an adaptive
walk before being trapped [11]. In addition to the number of local optima, the
size, the distribution and the structure of local optima’s basins of attraction is
one major feature related to algorithm performance [5, 8], including for problems
from machine learning [3]. The basin of attraction of a local optimum x? is
defined as the set of solutions from which a hill-climbing algorithm h falls into:
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B(x?) = {y ∈ X | h(y) = x?}. Depending on the pivot rule used by the hill-
climber, e.g., first or best improvement, the structure of the basins is different,
and so is its impact on search performance [2, 15]. Besides local optima and their
basins of attraction, a complementary view of fitness landscapes is given by the
so-called local optima network (LON) [4, 13]. In particular, the LON with escape
edges [19] is defined as a weighted directed graph (V,E), where vertices V are
local optima, and there is an edge (xi, xj) ∈ E between local optima xi and xj
if there is a solution y ∈ X such that the distance between xi and y is below a
given threshold, and y belongs to the basin of attraction of xj ; i.e. (xi, xj) ∈ E
iff ∃y ∈ X such that d(xi, y) 6 D and y ∈ B(xj). The weight wij of an edge
(xi, xj) gives the ratio of such solutions y ∈ X that satisfies the definition above
from the set of solutions at distance D. Several metrics have been proposed
to characterize LONs, and have been related to problem difficulty or search
performance for both single-objective [18] and multi-objective optimization [6,
11].

However, although many evolutionary and local search algorithms are based
on a stochastic operator, all definitions related to local optimality and fitness
landscape analysis are based on a deterministic neighborhood relation, consid-
ering a set of neighbors that is often finite. We argue that this only partially
reflects the properties of stochastic search operators, and we introduce the no-
tion of stochastic local optimality and fitness landscapes in the next section.

3 Stochastic Fitness Landscapes and Local Optimality

A local search algorithm is based on a local search operator op : X → X which
moves from one solution to another solution. A stochastic local search operator
defines a probability distribution over the search space. When the search space
is finite, as in discrete or combinatorial optimization, a stochastic operator can
be defined by the probabilities of moving from a solution x ∈ X to a solution
y ∈ X : P{op(x) = y} = px→y such that ∀x, y ∈ X , px→y > 0, and ∀x ∈ X ,∑
y∈X px→y = 1. When the search space is infinite, a stochastic operator can be

defined with probability density functions over the search space.
A typical example of a stochastic local search operator is the bit-flip mu-

tation operator used in standard genetic algorithms. It flips each bit from a
given bitstring of size n independently at random, with a rate p. In this case,
px→y = pk(1− p)n−k, where k is the Hamming distance between x and y. Be-
sides, a stochastic operator can be derived from any neighborhood relation
with finite support. For a given neighborhood relation N such that, ∀x ∈ X ,
|N (x)| <∞, a stochastic operator opN can be defined using a uniform random
distribution over the set of neighbors: ∀y ∈ N (x),P{opN (x) = y} = 1

|N (x)| .

It is straightforward to extend the definition of a fitness landscape by replac-
ing the neighborhood relation with a stochastic search operator.

Definition 1. A stochastic fitness landscape (SFL) is a triplet (X , op, f) where
X is the search space, f : X → IR the fitness function, and op is the stochastic
local search operator.
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However, this definition only makes sense if it is possible to define reasonable
basic features of such fitness landscapes. As pointed out in Section 2, one of the
main features is the concept of local optimality. According to Eq. (1), a local
optimum is a solution for which all neighbors have a lower or equal fitness value.
Roughly speaking, if we translate this definition in terms of probability, the
probability to reach a neighbor with a lower or equal fitness value from a local
optimum is very high. However, this probability cannot always be considered
as 1. Indeed, for an ergodic operator and a finite search space, there is a non-
zero probability to reach the global optimum from any solution from the search
space. As such, considering a probability of 1 would end up having the global
optimum as the single local optimum. We thus introduce a threshold ε > 0
to define a stochastic local optimum. The probability to reach a neighbor with
lower quality is higher than (1−ε): P{f(op(x)) 6 f(x)} > (1−ε), or equivalently
P{f(x) < f(op(x))} 6 ε.

Definition 2. Given a SFL (X , op, f), and a real number ε > 0, a solution
x ∈ X is a stochastic local optimum (SLO) at a local optimality threshold ε iff
P{f(x) < f(op(x))} 6 ε.

In other words, a solution is a stochastic local optimum at threshold ε when the
probability to reach a strictly improving solution by applying the stochastic op-
erator is below ε. Notice that the definition is still effective when the probability
to obtain the same solution is not null, i.e. when P{op(x) = x} > 0.

Interestingly, the definitions of deterministic and stochastic local optimality
can be connected. Let us consider a neighborhood relation with finite support;
i.e. ∀x ∈ X , |N (x)| < ∞. A solution x ∈ X is a deterministic local optimum
underN iff x is a stochastic local optimum under opN at threshold ε < 1

/
|N (x)|.

Indeed, the probability to strictly improve a solution x is equal to n+
/
|N (x)|,

where n+ is the number of strictly improving neighbors. As a consequence, when
x is a deterministic local optimum for N , the probability to strictly improve x
with opN is zero. Conversely, when the probability to strictly improve x is strictly
below 1

/
|N (x)|, no neighbor from N (x) has a higher fitness value.

In the definition of a stochastic local optimum, the threshold ε is critical, and
a relevant value has to be carefully chosen with respect to the considered land-
scape and search scenario. Intuitively, we can think of the ε-value as the inverse
of the expected computational budget (in terms of fitness evaluations) required
to escape from a local optimum with a stochastic operator. For instance, in one
scenario, if at a given step of the search process, the remaining computational
budget is neval, we could define ε = 1

neval
. Alternatively, in an iterated local

search scenario switching between a local search operator and a perturbation
operator, the threshold could be defined as the inverse of the budget dedicated
to each local search run: ε = 1

nls
. At last, in an evolutionary algorithm sce-

nario for which λ candidate solutions are computed at each iteration, as in a
(µ+ λ)−evolution strategy, the ε-value can be set to ε = 1

λ . As such, the prob-
ability of strictly improving the current population is below the computational
budget of one iteration of the algorithm. Furthermore, we argue that a fitness
landscape analysis could actually benefit from the use of a broader range of
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ε-values. Fitness landscape metrics such as the number of local optima or the
size of the basins of attraction can be studied according to the ε-value in order
to show the metrics spectrum, and not only for a given accurate value of ε. We
illustrate this point and analyze the impact of ε empirically in the next section.

4 Experimental Analysis
4.1 Experimental Setup

Problem Testbed. We consider NK-landscapes as a problem-independent
model of combinatorial optimization problems defined on binary strings. NK-
landscapes were proposed in [9] for constructing multi-modal fitness landscapes
in a tunable way, by adjusting the epistatic (or non-linearity) degree K. Given
a binary string x ∈ {0, 1}N , its fitness f(x) ∈ [0, 1), is defined as follows:

f(x) := 1
N

N∑
i=1

fi(xi, xi1 , . . . , xiK ), where fi : {0, 1}K+1 → [0, 1]: is the epistasis

level of the i-th bit, its value depend on the allele at the bit i but also on the other
alleles at theK other epistatic bits , and {i1, . . . , iK} ⊂ {1, . . . , i−1, i+1, . . . , N}.
For each variable xi, there exist two ways for selecting the K epistatic bits: ei-
ther randomly, or by choosing the K closest ones. Beside that NK-landscapes
belong to the family of NP-hard problems for K > 1 [22], it has the property
of modeling many interesting optimization problems [21]. Thus, it is not just a
serious testbed for randomized search heuristics, but also a proxy for other com-
binatorial optimization problems. We shall mention that the best algorithm to
tackle NK-landscapes is not our concern here. We do not consider this problem
for benchmarking purposes, but rather for illustration/concept-testing purposes,
given that the number of local optima is known to be closely related to the
epistatic degree K.

In order to analyze the impact of different parameters on the definition of
SLO, we consider enumerable instances from NK-landscapes with a bitstring
length N ∈ {10, 12, 16, 18}, and an epistatic degree K ∈ {0, 1, 2, 3}. These K-
values were chosen as they correspond to linear, quadratic, cubic, and quartic
versions, the most recurrent problem types encountered in combinatorial opti-
mization. We report the result over 20 different instances for each combination
of N and K, that we generate with adjacent epsitatic interactions.

Stochastic Operators. We investigate the bit-flip mutation operator as a
stochastic local search operator. It flips each bit independently at random, with

a rate p. We experiment different rates p =
c

N
, inversely proportional to the

bitstring length N , such that c ∈ {1, 2, 4, 8}. For comparison purposes, we also
consider the standard 1-bit flip neighborhood operator, which flips 1 bit precisely.
Thus, the neighborhood consists of all solutions located at Hamming distance 1,
and the neighborhood size is N .

Estimating Stochastic Local Optimality. Even for small enumerable prob-
lem instances, it is not computationally doable to enumerate all possible neigh-
bors for each solution to compute exactly all SLO from the search space. There-
fore, to estimate the improving probability given in Definition 2, we use the
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Fig. 1. Number (average value and confidence interval, computed over 20 considered
instances) of SLO with respect to the problem non-linearity K, for different problem
sizes N and stochastic operators op with a bit-flip mutation rate c/N .

classical estimator of the empirical mean: p̂+ = λ+

λ where λ+ is the number of
strictly improving solution over a random sample of λ solutions produced by the
stochastic operator. Thus, a solution is depicted as a SLO when this estimation
p̂+ is lower or equal to the threshold ε. The quality of the estimation depends
on local optimality threshold values, and the sample size λ. We study different
values, proportional to the bitstring length: ε ∈ {1/(j · N), | j ∈ {1, 2, 4, 8}},
and λ ∈ {2iN | i ∈ {0, . . . , 7}}.

4.2 Experimental Results

In this section, we illustrate the relevance of the SLO definition, and we show
preliminary scenarios for analyzing stochastic fitness landscapes5.

Number of Stochastic Local Optima. Fig. 1 shows the number of SLO
over all instances according to the degree of non-linearity K, the problem di-
mension N , and different mutation rates p. The threshold is set to ε = 1/(4N)
(other values are reported below). In order to increase the estimation accuracy,
the sample size is set to the largest value λ = 128N . Except for a very large
mutation rate p = 8/N , and a small problem dimension N < 16, the expected
number of SLO seems to increase fast with the degree of non-linearity K. It also
increases with the problem size N . As expected, the trend follows the number
of local optima for the classical 1 bit-flip neighborhood. These first results show
that the proposed definition of SLO make sense w.r.t. the multimodality of NK-
landscapes. The number of SLO is also impacted by the mutation rate, and a
more precise analysis is detailed below.

Local Optimality Threshold. In Fig. 2, we report the number of SLO as a
function of the local optimality threshold ε. The sample size is set to the largest
value λ = 128N , and the bit-flip mutation rate is set to the typical setting
of p = 1/N . The number of SLO increases with ε for all problem instances.

5 code, and data are available on https://gitlab.com/b.aboutaib/slo
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Fig. 2. Number (average value and confidence interval) of SLO with respect to the
local optimality threshold ε, for different instances (size N and non-linearity K).

Indeed, a small threshold allows fewer solutions to be a SLO. Let us remind
that the extreme setting of ε = 0 implies that a single solution is a SLO: the
global optimum. Notice that the number of SLO increases with the degree of
non-linearity K, and the problem dimension N for all investigated ε-values. For
large ε-values, the number of SLO is larger than for the the standard 1 bit-flip
neighborhood. In this case, the inverse of the ε-value is larger than 1/N .

Impact of the Sample Size. We now investigate how the sample size impacts
the estimation of the number of SLO. From a statistical point of view, a large
sample size gives a better estimation of the improving probability considered in
Definition 2. Therefore, a better estimation of the number of SLO is expected.
Fig. 3 shows the estimated number of SLO as a function of the sample size for
different values of N , K, and ε. The estimated number decreases with the sample
size to converge toward the number of SLO. The empirical mean estimator of
improving probability tends to overestimate the number of SLO when the sample
size is too small with respect to the ε-value. At a first sight, a sample size of
about 2 or 3 times the inverse of ε seems to provide a fair estimation. However for
a given sample size, the estimated number of SLO increases with non-linearity
K, and problem dimension N . Further theoretical studies should allow us to
improve this first empirical finding.

Mutation Rate vs. Local Optimality Threshold. In Fig. 4, we report the
number of SLO as a function of the bit-flip mutation rate p, for different ε-values
and different degrees of non-linearityK. The problem dimension is set toN = 18,
and the largest sample size of λ = 128N is used. In order to better appreciate the
trend, additional rate values are experimented: p = c/N , with c ∈ {0.5, 1, . . . , 8}.
The local optimality threshold is set to ε ∈ {1/N, 1/(2N), 1/(4N), 1/(8N)}.

All curves have a convex shape. As such, given a threshold value ε, there
is a bit-flip mutation rate that minimizes the expected number of SLO, which
does not map to the extreme bounds of the domain. In other words, the lowest
number of SLO is reached at a particular trade-off point between low and high
bit-flip mutation rates. For example, for K = 2 and ε = 1/(2N), the mutation
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Fig. 3. Number (average value and confidence interval) of SLO with respect to the
sample size, for different instances (size N and non-linearity K) and local optimality
threshold ε. The mutation rate is set to p = 1/N (i.e., c = 1).

rate that minimizes the number of SLO is 1.5/N , but changing ε to 1/(8N)
shifts this mutation rate to 2.5/N . Interestingly, this observation suggests that
there exists an accurate mutation rate that reduces the multimodality of the
stochastic fitness landscape, and that does not correspond to the largest bit-flip
mutation rate. To the best of our knowledge, this is the first fitness landscape
analysis that brings an understanding of a relevant mutation rate for a stochastic
operator. A high mutation rate results in a landscape with many local optima.
Hence, a local search would be easily stuck, and would not benefit from potential
local improvements. A low mutation rate also induces a large number of local
optima. However, by contrast, it shall be understood as a lack of exploration
with respect to the local optimality threshold. Remember that a single feature
is not able to explain all facets of search difficulty, and other metrics from the
fitness landscape would be required to have a better global picture.

4.3 Stochastic Fitness Landscape Analysis

Iterated Local Search. In this section, we illustrate the potential usefulness of
a stochastic fitness landscape analysis for the design of search algorithms based
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Fig. 4. Number (average value and confidence interval) of SLO with respect to the bit-
flip mutation rate c/N , for different instances (non-linearity K) and local optimality
threshold ε (see legend). The problem size is N = 18.

on stochastic local search operators. We consider the Iterated Local Search (ILS)
framework [12] as a case study. ILS aims at escaping from poor local optima
based on a perturbation mechanism followed by a local search procedure. When-
ever the local search falls into a local optimum, it is perturbed by means of ran-
dom modifications to obtain a new (inferior) solution from which another local
search round starts. This process is iterated until the computational budget is ex-
hausted. In the following, we analyze the performances of ILS on NK-landscapes.
In particular, we perform 30 independent ILS executions on a randomly gener-
ated instance with N = 18 and K ∈ {1, 2, 3}. We set the perturbation rate
to 0.3; that is, each bit is flipped with a rate of 0.3. The local search components
considered within the ILS is a first-improvement hill-climbing algorithm, where
at most λ solutions are produced at each step by means of a stochastic bit-flip
mutation with a rate of c/N . If there is no strict improvement, the current solu-
tion is considered as a stochastic local optimum, and a perturbation is performed
for further iterations. The maximum number of fitness evaluations for the ILS
is set to 104.

In Fig. 5, we report the relative deviation (to be minimized) from the best
know solution of the final fitness value obtained by the ILS for different mutation
rates, λ-values, and degrees of non-linearity. For any λ-value, there is a muta-
tion rate that maximizes the expected ILS performance. Interestingly, in most
of λ scenarios, this value corresponds, to the mutation rate that minimizes the
number of SLO, as disclosed above. This illustrates that analyzing the stochastic
fitness landscape of the target problem might actually provide insightful infor-
mation about the suitable configuration of stochastic local search algorithms.

Stochastic Local Optima Network. In order to complement our analysis of
stochastic fitness landscapes, we now naturally extend the concept of Local Op-
tima Network (LON) [4, 13] to stochastic local optima. We define the Stochastic
LON (SLON) as a graph where nodes are stochastic local optima, and edges
represent the pairwise connections between stochastic local optima with respect



On Stochastic Fitness Landscapes 11

K: 1 K: 2 K: 3

1/N 2/N 4/N 8/N 1/N 2/N 4/N 8/N 1/N 2/N 4/N 8/N
0.00

0.05

0.10

Mutation Rate

D
ev

ia
tio

n 
fr

om
 th

e 
be

st

Lambda N 2N 4N 8N

Fig. 5. Deviation of solution quality, from the best known solution, (average value and
confidence interval) obtained by ILS with respect to the bit-flip mutation rate, for
different instances (non-linearity K) and sample sizes λ. The problem size is N = 18.

to another stochastic operator. More particularly, an edge (xi, xj) is defined and
weighted so as to render the probability of reaching SLO xj from SLO xi. In
this work, escape edges [19], as defined in Section 2, are computed according to
a bit-flip mutation operator.

We generate a SLON for an NK-landscape with N = 18 and K = 2. The SLO
is defined by the bit-flip stochastic operator with three different mutation rates
p ∈ {1/N, 2/N, 3/N}, and a stochastic operator for escape edges with a muta-
tion rate of 3/N . The sample size to estimate SLO and edges is set to λ = 4N .
Fig. 6 shows the obtained SLON for the same NK-landscape. The node colors
indicate the fitness value: the redder, the better. The node size is logarithmically
proportional to the size of the corresponding basin of attraction. The edge size
is linearly proportional to its weight (self-loops are omitted to improve read-
ability). We cannot report the SLON and related metrics for all instances due
to space restriction. However, they are consistent with the visual impression of
Fig. 6. For the considered sample size λ, the main observations are as follows: the
number of SLO increases with the mutation rate, the density of edges decreases
with the mutation rate, and so does the self-loop weights wii. The feature from
standard (deterministic) LON that is the most correlated with the performance
of ILS is known to be the average distance between local optima and the global
optimum [13]. The distance between two nodes i and j is defined as the inverse
of the weight wij . Over all instances with N = 18 and K = 2, the expected
average distance to the global optimum is 8.48, 7.67, and 9.80, respectively, for
mutation rates 1/N , 2/N , and 3/N . This metric suggests that the stochastic
fitness landscape corresponding to a mutation rate of 2/N is ‘easier’ to search
than the one corresponding to a mutation rate of 1/N or 3/N . This observation
is in line with the performance of ILS reported in Fig. 5. Indeed, the SLON for
p = 1/N has a lower number of SLO, but nodes with higher fitness values seem
to be clustered, which corresponds to a funnel structure [17]. By contrast, for
p = 2/N , despite a larger number of SLO, paths to the global optimum seem
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Fig. 6. Stochastic local optima networks for an NK-landscape with N = 18 and K = 2.
From left to right, the mutation rate is: p = 1/N , 2/N , and 3/N , respectively.

to be shorter, and then more likely to happen during the search process of ILS.
For p = 3/N , we infer that the huge number of SLO decreases the probability of
reaching the global optimum by following a path on the network, thus inhibiting
the performance of ILS.

5 Discussion and Further Considerations
In this paper, we defined and analyzed fitness landscapes based on stochastic
search operators. Based on this definition, we empirically investigated enumer-
able instances from NK-landscapes. More particularly, we studied the number of
stochastic local optima as a preliminary feature of such stochastic fitness land-
scapes, showing the relevance of stochastic local optima when measuring the
multimodality of stochastic fitness landscapes. We also studied the underlying
stochastic local optima networks. We found out that there is a critical region
in the stochastic operator setting (the mutation rate) in which stochastic local
optima are more scarce. A proper setting within this region would make the
computational effort to solve the problem much more effective and would result
in better solution quality.

Let us emphasize that the proposed definition of local optimality and fit-
ness landscape for stochastic operators is not entitled to any particular problem
class. Moreover, although we exhaustively enumerated the search space of NK-
landscapes in order to avoid any bias in our current analysis, this is obviously
not practical for large-scale optimization problems. As such, we plan to investi-
gate sampling procedures that will enable studying the stochastic fitness land-
scape of other academic and real-world optimization problems. We hope that
the proposed definition will enable analyzing better many recurrent problems
and optimization algorithms, such as population-based evolutionary, estimation
of distribution, or genetic programming algorithms.
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