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The perpetual opposition between antiviruses and malware leads both parties to evolve continuously. On the one hand, antiviruses put in place solutions that are more and more sophisticated and propose more complex detection techniques in addition to the classic signature analysis. This sophistication leads antiviruses to leave more traces of their presence on the machine they protect. To remain undetected as long as possible, malware can avoid executing within such environments by hunting down the modifications left by the antiviruses. This paper aims at determining the possibilities for malware to detect the antiviruses and then evaluating the efficiency of these techniques on a panel of antiviruses that are the most used nowadays. We then collect samples showing this kind of behavior and propose to evaluate a countermeasure that creates false artifacts, thus forcing malware to evade.

INTRODUCTION

There is a permanent confrontation between malware and antiviruses (AVs). 1 On the one hand, malware mainly intend to infect devices in a short amount of time, while remaining undetected for as long as possible. On the other hand, of course, AVs aim at detecting malware in the fastest way possible.

When a new malware is detected, AVs lead further analysis to produce a signature and keep their database up-to-date quickly. Malware authors, willing to create long-lasting malware at low cost, can then use simple methods to avoid being detected and analyzed deeply by these AVs. To this end, a malware can search for the presence of traces or artifacts left by an AV, and then decide whether or not they execute their malicious payload. We call such a malware an evasive malware.

This article focuses on the evaluation of the evasion techniques used by Windows malware in the wild. First, we evaluate how common AVs cope both with unknown malware and well-known evasion techniques. To this end, we develop and use Nuky, a ransomware targeting Windows, and implementing several evasion techniques. a https://orcid.org/0000-0002-4751-3941 1 https://www.av-test.org/en/statistics/malware/ Second, we design and evaluate a countermeasure, mentioned by [START_REF] Chen | Towards an understanding of antivirtualization and anti-debugging behavior in modern malware[END_REF] and [START_REF] Chen | Advanced or not? A comparative study of the use of anti-debugging and anti-vm techniques in generic and targeted malware[END_REF], that simply consists of reproducing the presence of the artifacts on computers by instrumenting the Windows API in order to force malware to evade. The purpose of this countermeasure is to limit the infection's spread and not to replace malware detection. We study the impact of this approach on both malware and legitimate software before concluding on its limitations. To evaluate these experiments, we create a small dataset and discuss the problem of collecting evasive samples.

We give an overview of AV abilities and evasion techniques in Section 3 and Section 4. We evaluate AV's abilities to detect new evasive malware in Section 5. Then, we present the countermeasure and the construction of the dataset used for its evaluation in Section 6 and Section 7. Finally, before concluding, we discuss the limitations of this study in Section 8.

STATE OF THE ART

There are multiple definitions of evasive malware in the literature. For instance, [START_REF] Naval | Environment-reactive malware behavior: Detection and categorization[END_REF] define environment-reactive malware as: Detection-aware malware carrying multiple payloads to remain invisible to any protection system and to persist for a more extended period. The environment aware payloads determine the originality of the running environment. If the environment is not real, then the actual malicious payload is not delivered. After detecting the presence of a virtual or emulated environment, malware either terminates its execution or mimics a benign/unusual behavior.

However, this definition designates malware aiming at detecting virtual or emulated environments only. We complete this definition using part of the proposition made by [START_REF] Tan | Detecting malware through anti-analysis signals -A preliminary study[END_REF]) that calls a malware detecting "dynamic analysis environments, security tools, VMs, etc., as anti-analysis malware".

We choose to use this definition for the term "evasive malware" instead of the proposed terms "environment-reactive malware" or "anti-analysis malware", because we believe this is the term that is the most used by both researchers and malware writers.

One possibility for malware to detect unwanted environments is to search for specific artifacts present only in these environments. For instance, [START_REF] Blackthorne | Avleak: Fingerprinting antivirus emulators through black-box testing[END_REF] detail an experiment that extracts fingerprints about AV's emulators, and [START_REF] Yokoyama | Sandprint: Fingerprinting malware sandboxes to provide intelligence for sandbox evasion[END_REF] extract predefined features from a Windows computer. Once the harvest of artifacts completed, malware can then decide whether they are running in an AV environment or a standard environment.

Malware then use these artifacts to create evasion tests, as described by [START_REF] Bulazel | A survey on automated dynamic malware analysis evasion and counterevasion: Pc, mobile, and web[END_REF], [START_REF] Afianian | Malware dynamic analysis evasion techniques: A survey[END_REF] and [START_REF] Miramirkhani | Spotless sandboxes: Evading malware analysis systems using wear-and-tear artifacts[END_REF]. It is also possible to artificially add artifacts by using implants as detailed by [START_REF] Tanabe | Evasive malware via identifier implanting[END_REF].

To detect evasive malware, we can compare the malware's behavior launched in an analysis environment and on a bare-metal environment. To compare behaviors, [START_REF] Kirat | Malgene: Automatic extraction of malware analysis evasion signature[END_REF] search for differences in the system call traces. [START_REF] Kirat | Barecloud: Bare-metal analysis-based evasive malware detection[END_REF] extract raw data from the disk of each environment and compare file and registry operations, among others, to detect a deviation of behavior. Finally, [START_REF] Lindorfer | Detecting environment-sensitive malware[END_REF] compare the behavior of malware between multiple analysis sandboxes and discover multiple evasion techniques.

It is possible to create an analysis environment that is indistinguishable from a real one, called a transparent environment, as presented by [START_REF] Dinaburg | Ether: malware analysis via hardware virtualization extensions[END_REF]. However, [START_REF] Garfinkel | Compatibility is not transparency: VMM detection myths and realities[END_REF] gives reservations about the possibilities of creating a fully transparent environment as for them, "virtual and native hardware are likely to remain dissimilar".

For this reason, we decide to do the opposite of a transparent environment by creating an environment containing artificial dissimilarities. To the best of our knowledge, this idea was already discussed by [START_REF] Chen | Towards an understanding of antivirtualization and anti-debugging behavior in modern malware[END_REF] but never tested on real malware.

ANTIVIRUS ABILITIES

AVs are tools that aim at detecting and stopping the execution of new malware samples. They are an aggregate of many features designed to detect the malware's presence by different means, as described by [START_REF] Koret | The Antivirus Hackers Handbook[END_REF]. Using these features incurs overhead that, if too significant, can hinder the use of legitimate programs. In order to stay competitive, AV editors have to limit this overhead. For this reason, it is difficult for them to apply time demanding techniques.

Most AVs use signature checking by comparing the file against a database of specific strings, for instance. The signature database needs to be updated regularly to detect the latest discovered malware. 23 Fewer AVs use features that produce significant overheads, such as running the malware in an emulator. 45 During its installation, an AV adds files and modifies the guest OS. For instance, an AV can load its features by manually allocating memory pages or by using the LoadLibrary API to load a DLL file, as described by [START_REF] Koret | The Antivirus Hackers Handbook[END_REF]. As we detail in the following section, evasive malware can detect these modifications and then adapt their behavior.

Once a new malware is detected, AVs send the sample to their server for further analysis. To analyze malware more deeply, an analyst can use multiple tools such as debugger to break at particular instructions or Virtual Machines (VMs) and emulators to analyze it in a closed environment.

A malware willing to last longer can then try to complicate the analyst's work by using anti-debugger or anti-VM techniques to slow down the analysis.

In the previous section, we gave details about the environment in which we are interested. We now detail possible ways for evasive malware to detect the presence of such environments. Evasive malware can use many evasion techniques, and [START_REF] Bulazel | A survey on automated dynamic malware analysis evasion and counterevasion: Pc, mobile, and web[END_REF], [START_REF] Lita | Antiemulation trends in modern packers: a survey on the evolution of anti-emulation techniques in UPA packers[END_REF] and [START_REF] Afianian | Malware dynamic analysis evasion techniques: A survey[END_REF] report a vast majority of them. In this article, we separate these techniques into three main categories: detection of debugging techniques, detection of AV installation and execution artifacts, and detection of VMs. In this section, we briefly describe these categories, and we list the artifacts searched by Nuky for each of them in Table 1.

Detection of debuggers:

To observe malware in detail, an AV can use a debugger to add breakpoints at a specific instruction. The usage of debuggers implies that a process has to take control of the debugged process. This take of control leaves marks visible from the debugged process, thus can be seen by the malware. For instance, these marks can be the initialization of specific registers, the presence of wellknown debuggers' process, or specific behaviors of some Windows API functions.

Detection of AVs' installation and execution artifacts:

The installation of the AV makes some changes to the operating system. For Windows, it starts by creating a folder, often in the Program Files folder. This folder contains the executable of the antivirus and the other resources it requires. During the installation of an AV, some of the registry keys are changed or added. They can set up hooks of the Windows API from the user or the kernel level.

In the same way, the execution of the core process and plugins of the AV leaves artifacts within the operating system, and these alterations can be visible from the user-mode. A simple technique to detect the presence of antivirus is thus to search for standard AV processes names in the list of the running processes.

Detection of VMs, emulators, sandboxes: Finally, an AV can execute malware in a sandbox, i.e., a controlled and contained testing environment, where its behavior can be carefully analyzed. These sandboxes intend to reproduce the targeted environment but, indeed, slightly diverge from the real environment. An evasive malware can then search for precise files, directories, process names, or configurations that indicate the presence of a VM or emulator. In the following, we use 2 different configurations of Nuky, first to test the detection capability of the available AVs and then to test the evasive capability of malware using the theoretical techniques enumerated in Section 4.

Set-Up: All of our experiments use the same architecture. We prepare Windows images equipped with some of the most popular AVs, according to a study from AVTest.9 These images are all derived from the same Windows 10 base image, populated with files taken from the Govdocs1 dataset. 10 Every AV is set on a high rate detection mode to give more chances for AVs to trigger alerts. Some AVs propose a specific feature designed to put a specific folder (specified by the user) under surveillance. For these AVs, we build an additional Windows image with the AV parametrized to watch the Documents folder. For all our experiments, we update the AVs before disconnecting the test machine from the network (offline mode), to ensure that the Nuky samples do not leak to the AVs.

AVs' Detection Abilities

This first experiment aims at finding which AVs can catch Nuky depending on the payload used, and to verify that they are all able to detect the Eicar's file. In this experiment, Nuky does not use any evasion technique and executes each of its 4 payloads. Nuky is a new malware and consequently not present in AVs records. Nevertheless, its first 3 payloads (Compression, Encryption, and Stash) are characteristic of common malware. An AV should, therefore, be able to identify them. Before launching Nuky, we run targeted scans on Nuky's executable file, but no AV succeeds to detect it as malicious. We then execute Nuky 10 http://downloads.digitalcorpora.org/corpora/files/ govdocs1/ 

× × × Immunet (ClamAV) × Kaspersky × Avast × Avast+ × × × × AVG × Avira × K7 Computing × * × * × * ×
once for each payload on every AV with an image restoration step before each run.

As depicted in Table 3, only AVs equipped with a specific ransomware detection feature succeed in detecting Nuky's payloads. K7 Computing's product also detects Nuky after some time. Nevertheless, Nuky succeeds in ciphering part of the computer's files before being stopped. We expect K7 Computing to generate false positives as a legitimate image rotation made by the Photos program is detected malicious by this AV. Same observation for Windows Defender blocking a file saved using LibreOffice Draw. However, they still detect Nuky as malicious and are the AVs we want to precisely identify in the second experiment to abort Nuky's execution and avoid detection. Finally, all AVs achieve to detect the test payload with Eicar's file.

The fact that a majority of AVs do not detect the compression, encryption, and stash payloads could be a sign that they still heavily rely on signature analysis.

Nuky's Evasion Abilities

In the second experiment, we enable the three evasion blocks one-by-one, to check whether Nuky using the test payload (Eicar's file) is still detected or not, compared to the first experiment. If Nuky is no longer detected, it means that the evasion block successfully identifies an AV and does not launch its payload. Otherwise, if the evasion block fails, this means that Nuky does not detect the presence of any AV and runs its malicious payload.

We consider an evasion as successful if at least one of the 2 following conditions is satisfied: • An AV detects Nuky in the first experiment, but no longer in the second experiment. • Nuky prints the AV's name identified in a console.

It can also send the name through an IRC channel. However, as Nuky can be executed in closed environments without a console or disconnected from the network, we can lose some proofs of evasion.

It may be our case, as only the AV evasion block provides detections for which we can see Nuky's results printed in the console. We do not observe a difference using the debugger evasion block nor the VM evasion block. The reason could be that the AVs we tested do not use the debuggers and VMs targeted by Nuky. It could also be possible that Nuky prints the results on an unreachable console.

Table 4 shows the number of artifacts found in each AV by the 2 techniques composing the AV evasion block.

As our evasions heavily rely on string comparisons, our string set has to be exhaustive to detect a maximum of AVs' artifacts.

Using these evasion methods, we can successfully identify the AVs on which Nuky can launch its ciphering payload without being detected and, thus, increase its life expectancy.

In the first experiment, we find that AVs have troubles to detect Nuky's payloads unless they propose specific features to detect ransomware. In the second experiment, we show that it is possible to identify precisely AVs to adapt the malware's behavior.

DATASET CREATION

In the previous section, we conclude that the AVs' evasion methods are easy to set up and very efficient against modern AVs. We now detail the way we collected evasive samples in order to build a dataset to test our countermeasure. First, we describe the way we build a filter to keep only evasive samples, and second, how we use it to collect samples.

Filtering Using Yara Rules

To create our filter, we use a program called Yara11 , which allows matching samples according to a set of rules. Yara can match samples containing a specific string or loading a specific Windows library or function and, thus, does not work on ciphered or packed malware. However, we believe that the evasive tests could occur before the unpacking or deciphering, thus readable and matchable.

We create a rule containing five subrules, each composed of several conditions and designed to find malware that respectively try to detect a debugger, detect a running AV or sandbox, manipulate and iterate over folders, find VM's MAC addresses, and find a debugger window.

A set of rules designed to match evasive samples already exists12 . However, we create a new one as these rules match too easily and return too much nonevasive malware.

Samples Collection

The difficulty of collecting samples of evasive malware lies in the fact that, by definition, these malware avoid being caught. We manually crawl the WEB in public datasets such as hybrid-analysis13 and public repositories like theZoo14 , for instance. The data collection covers 3 months between the November 18th, 2019 and the January 21st, 2019.

Over this period, we found 62 samples matching the Yara rule among the few thousand samples crawled. To avoid false positives and to be sure to keep samples PE files that are more likely to be actual malware, we selected only samples that are not signed and marked as malicious by VirusTotal15 . Table 6 lists all the MD5 of the 18 selected malware, and Table 5, the number of samples matched by each rule.

The fact that some rules do not give any result might be because we crawled the WEB by hand, and therefore, had not numerous samples to match.

The Yara rule we use is very restrictive and matches only a few samples for the duration of the malware harvest. However, we get only a few false positives and now intend to automate the WEB crawling process to continue the acquisition of malware.

Selected Samples Description

We create groups of samples sharing most of their assembly code by comparing them using Ghidra's diff tool. All samples within a group contain the same code in the text section that seems to carry the evasion part of the malware. Groups A, B, and C share a significant part of their text section with small additions of code or function's signature modifications. The other groups are very different and contain their unique code.

We compute the entropy for each sample and find a min-entropy of 6.58 and a max-entropy of 7.11. Based on the experiment described by [START_REF] Lyda | Using entropy analysis to find encrypted and packed malware[END_REF], these values could suggest that the samples are packed or encrypted. We found in every sample different resources that seem to be PE files that could be unpacked or decrypted after the evasion tests.

All these similarities could be due to the sharing of code on public projects such as Al-Khaser 16 or smaller ones 17 . Some packers also propose the addition of an evasion phase before unpacking such as the Trojka Crypter. 18 16 https://github.com/LordNoteworthy/al-khaser 17 https://github.com/maikel233/X-HOOK-For-CSGO 18 MD5: c74b6ad8ca7b1dd810e9704c34d3e217

AV EVASION COUNTERMEASURE

It is possible to thwart such evasion techniques by instrumenting the Windows API to force malware to evade, as discussed by [START_REF] Chen | Towards an understanding of antivirtualization and anti-debugging behavior in modern malware[END_REF]. To do these instrumentations, we used Microsoft Detours, a framework that facilitates the hooking of Windows API functions. 19Microsoft Detours produces a new DLL file loaded at execution time in the malware using the AppInit registry20 . This method is efficient against software such as Al-Khaser but needs tests on real malware. We now describe the Windows API functions that we modify, discuss the countermeasure's efficiency on real malware, and measure the overhead it induces.

Windows API Instrumentations

We implemented 3 types of instrumentations on 8 functions. First, for IsDebuggerPresent and GetCur-sorPos, we always return the same fixed value, respectively True and a pointer to a cursor structure with the coordinates set to 0.

Second, for GetModuleHandle, RegOpenKeyEx, RegQueryValueEx, CreateFile, and GetFileAttributes, they access file handles, registry names, and values by providing their names in parameters. We instrument the functions to return fake handles, values, and system error codes if the name requested is related to an analysis tool.

Finally, CreateToolhelp32Snapshot is modified to create fake processes of popular analysis tools if they are not already running on the machine.

Countermeasure Efficiency

We test our countermeasure by comparing the behavior of the malware we collected on images with and without the countermeasure enabled. We use the same Windows image created for the AVs experiments and create a second image, similar but with the countermeasure installed. We consider that we successfully forced a malware to evade if it behaves differently on the 2 images. All 18 malware are tested by hand using Process Monitor from the SysInternals library. 21For 14 malware, we observe on the image without the countermeasure that they launch a subprocess in the background. Besides, these malware start a WerFault.exe process. With the countermeasure enabled, the parent process of these malware immediately stops, which could mean they evade. The results detailed in Table 6 show that 2 malware crash in both environments and 2 others keep the same behavior.

Countermeasure Overhead

We evaluate the overhead induced by the countermeasure on 4 software typically found on Windows computers that are VLC, Notepad, Firefox, and Microsoft Paint. We also measure Al-Khaser, a program performing a set of evasion techniques and generating a report on their results. We removed from Al-Khaser all the techniques relying on time observation. We run each software 100 times, interacts with them, and computes the mean of all the execution times with and without the countermeasure enabled, as shown in Table 7. The only significant overhead that we observe is on Al-Khaser with +14.62%, as this software heavily calls our instrumented functions, which we consider the worst-case scenario.

LIMITATIONS AND FUTURE WORK 8.1 Nuky

When testing AVs against evasion techniques, we use a minimal number of basic evasion techniques, well known to attackers, and easily reproducible. Almost all the techniques we test are based on string comparisons and are not representative of all the possible ways to detect an AV. For now, Nuky represents the malware that any attacker could write by looking at tutorials, and not the elaborated malware created by big groups or states. We intend to extend Nuky's functionalities to make it harder to detect. We did not achieve to test the evasion techniques targeting debuggers and VM's with our simple experiment. We can then only conclude on the efficiency of the category of evasions targeting AVs, which contains for now 2 techniques. However, we believe that it is possible to test the other categories of evasion with more elaborated black-box testing.

Countermeasure

We chose to instrument the Windows API functions to block the same basic techniques used by Nuky and not more elaborated ones. As for a signature database, this countermeasure needs continuous updates to be able to thwart new evasive techniques. Of course, with this method, we can only block malware evading using the Windows API and not those using different means.

To avoid testing the countermeasure on malware it was designed for, we used a different set of strings to construct the dataset and to implement the countermeasure. However, this bias is still present and is removable by using different techniques to collect malware and to evaluate the countermeasure.

We also need to measure the side-effects of this countermeasure on malware, legitimate software, and the operating system.

Dataset

There is no public repository properly providing malware with the details of the evasion techniques performed. For this reason, we use a small dataset we created and analyzed by hand, but on which we cannot generalize our conclusion for now.

We aim at automatically crawling and flagging samples to create a larger dataset and observe the evolution of such evasive malware through time by letting this experiment run in the long term.

Finally, after obtaining a fully formed dataset of evasive malware, we intend to study how they evade. Most of the tested malware just stop their execution, but others could choose to behave differently while still executing.

CONCLUSION

We found that AVs are still vulnerable to unknown malware using basic encryption, compression, and attribute modification. Only 3 out of the 9 AVs we tested caught Nuky, and we suspect them to generate a lot of false positives. Other AVs may also still rely on simple signature detection.

Moreover, when an AV succeeds in catching our malware, we prove that basic evasive techniques enable us to identify them precisely and change the malware's behavior to avoid detection. We showed that Nuky could escape AVs by detecting AV artifacts but need more tests for the debugger and VM artifacts.

A few samples of real malware implementing evasion techniques are collected using Yara rules. We found that a lot of these samples share their evasive code that we retrieved in public code repositories.

Finally, we implemented a countermeasure that seems to be able to thwart evasive malware by instrumenting the Windows API. In the end, 14 out of the 18 malware tested showed a different behavior with and without the countermeasure enabled. The highest overhead measured is on Al-Khaser with an addition of 14.62% to the execution time.

The code for Nuky's evasion part and the Yara rule is available on request.
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 1 Figure 1: Operation of Nuky.

Table 1 :

 1 Artifacts searched by Nuky for each category.

	Artifacts	Debugger AV VM
	Process Names	×	×	×
	GUI Windows Names	×		
	Debugger registers values	×		
	Imported functions	×		×
	Registries Names & Values	×		
	Folder Names		×	×
	.DLL Names			×
	Usernames			×
	MAC addresses			×

Table 2 :

 2 Nuky's payloads.

	Type	Method
	Encryption	AES in ECB mode 6
	Compression	Huffman 7
	Stash	Sets hidden attribute to true
	Test	Drops Eicar's file on Desktop 8
	5 EXPERIMENTS
	5.1 Nuky, a Configurable Malware

At this point, we want to measure the malware's ability to evade the most commonly used AVs. To carry out our experimentations, we develop Nuky, a configurable malware. Nuky has 4 different payloads and multiple evasion capabilities divided into 2 sections, as depicted in Figure

1:

• The Evasion Tests section is composed of 3 blocks containing numerous evasion techniques designed to detect the artifacts listed in Table

1

. Nuky is configurable to launch zero or multiple evasion blocks. • The Payload section contains 4 payloads detailed in Table

2

. They implement methods to modify files in the Documents folder on a Windows workstation.

Table 3 :

 3 Payloads detected by AVs. *Part of the files modified before stopping Nuky.

	Antivirus	AES Huffman Hide Eicar
	Windows Defender	×
	Windows Defender+ ×

Table 4 :

 4 Number of artifacts detected by Nuky's AV evasion block.

	Antivirus	Folder Names	Process Names
	Windows Defender	3	1
	Immunet (ClamAV)	1	1
	Kaspersky	4	4
	Avast	2	2
	AVG	2	2
	Avira	1	9
	K7 Computing	2	9

Table 5 :

 5 Number of samples matched by each rule.

	Rules	All samples Final samples
	Debugger	20	16
	AV and sandbox	0	0
	Folder manipulation	5	0
	MAC addresses	37	2
	Find window	0	0

Table 6 :

 6 Selected samples and countermeasure results.

	Group	MD5	Results
		de3d1414d45e762ca766d88c1384e5f6 OK
		2d57683027a49d020db648c633aa430a OK
		d3e89fa1273f61ef4dce4c43148d5488	OK
	A	bd5934f9e13ac128b90e5f81916eebd8	OK
		512d425d279c1d32b88fe49013812167 OK
		2ccc21611d5afc0ab67ccea2cf3bb38b	OK
		6b43ec6a58836fd41d40e0413eae9b4d OK
		ee12bbee4c76237f8303c209cc92749d	OK
		5253a537b2558719a4d7b9a1fd7a58cf	OK
	B	8fdab468bc10dc98e5dc91fde12080e9 e5b2189b8450f5c8fe8af72f9b8b0ad9	OK OK
		ee88a6abb2548063f1b551a06105f425	OK
		4d5ac38437f8eb4c017bc648bb547fac	OK
	C	f4d68add66607647bf9cf68cd17ea06a	OK
	D	862c2a3f48f981470dcb77f8295a4fcc CRASH
	E	e51fc4cdd3a950444f9491e15edc5e22 NOK
	F	812d2536c250cb1e8a972bdac3dbb123 NOK
	G	5c8c9d0c144a35d2e56281d00bb738a4 CRASH

Table 7 :

 7 Executions times (in seconds) with and without the countermeasure enabled. The first line of each row is with the countermeasure enabled, and the second line without.

	Software	Mean	Standard Deviation
	Al-Khaser	15.24 13.29	1.38 1.36
	VLC	0.8772 0.8593	0.0609 0.0677
	Notepad	0.0615 0.0607	0.0033 0.0028
	Firefox	0.8005 0.8026	0.0270 0.0259
	MS-Paint	0.0581 0.0583	0.0096 0.0106
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