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ABSTRACT
On the one hand, surrogate-assisted evolutionary algorithms are
established as a method of choice for expensive black-box optimiza-
tion problems. On the other hand, the growth in computing facili-
ties has seen a massive increase in potential computational power,
granted the users accommodate their approaches with the o�ered
parallelism. While a number of studies acknowledge the impact of
parallelism for single-objective expensive optimization assisted by
surrogates, extending such techniques to the multi-objective setting
has not yet been properly investigated, especially within the state-
of-the-art decomposition framework.We �rst highlight the di�erent
degrees of parallelism in existing surrogate-assisted multi-objective
evolutionary algorithms based on decomposition (S-MOEA/D). We
then provide a comprehensive analysis of the key steps towards
a successful parallel S-MOEA/D approach. Through an extensive
benchmarking e�ort relying on the well-established bbob-biobj
test functions, we analyze the performance of the di�erent algo-
rithm designs with respect to the problem dimensionality and dif-
�culty, the amount of parallel cores available, and the supervised
learning models considered. In particular, we show the di�erence
in algorithm scalability based on the selected surrogate-assisted ap-
proaches, the performance impact of distributing the model training
task and the e�cacy of the designed parallel-surrogate methods.
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1 INTRODUCTION
Context. Solving a multi-objective optimization problem (MOP)

aims at optimizing simultaneously a number of objectives which
are often con�icting with each other. This means that there is not
one optimal solution, but a whole set of solutions o�ering di�er-
ent trade-o�s between the objectives. Multi-objective evolutionary
algorithms (MOEAs) have been proven particularly e�ective to
solve black-box MOPs. However, a major drawback of MOEAs
is the amount of solutions that need to be e�ectively evaluated
in order to converge to a high-quality approximation set. In fact,
it is very common to observe some MOEAs requiring a budget
of few hundred of thousands up to millions of objective function
evaluations. While this is acceptable for low-cost objectives, this
can cause a serious bottleneck when tackling expensive MOPs, for
which one evaluation requires a high computational e�ort. This
drastically restricts the overall number of function evaluations the
practitioner can a�ord for the problem to be solved in a reasonable
and manageable amount of time. With respect to expensive MOPs,
di�erent studies investigate the design of novel MOEAs assisted
by surrogate models, considered as a powerful tool to speed up
convergence towards high-quality approximation sets. The main
idea explored so far with respect to surrogates for MOPs is to build
one or many data-driven meta-model(s) o�ering a cheap alterna-
tive to the expensive objective functions. It is hence possible for a
standard evolutionary algorithm to perform at its best using the
constructed models, thus allowing to pre-screen one or multiple
promising solutions that can be evaluated subsequently using the
original and expensive objective functions. For a recent survey
on state-of-the-art surrogate-assisted approaches, the reader is re-
ferred to [2, 3, 5, 9, 11]. In this paper, we are speci�cally interested
in coupling the bene�ts of parallel computing resources with the
use of surrogate model for solving expensive MOPs.

https://doi.org/10.1145/3377930.3390202
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Positioning and Related Work. On the one hand, the ever-increas-
ing availability of computing resources, the advent of new com-
puting facilities and of robust large-scale and massively parallel
platforms opens tremendous research opportunities for pushing
forward the development and uptake of evolutionary algorithms.
A huge body of literature exists on the design of parallel and dis-
tributed optimization algorithms in general, e.g., [15, 20]. Although
reviewing the literature is out-of-the-scope of this paper, let us
comment that three main classes of parallel approaches are usually
distinguished: (i) those exposing problem-dependent parallelism,
typically for speeding up the cost of evaluating one single candidate
solution, (ii) those exposing low-level parallelism with the goal of
providing a substantial parallel speedup when deploying an opti-
mization algorithm, for instance by evaluating multiple solutions
in parallel, and (iii) those exposing high-level parallelism, typically
referring to the situation where multiple, possibly di�erent, search
processes are executed in a cooperative and parallel manner, hence
possibly improving the search quality and not only the computing
time. On the other hand, although being particularly accurate for
dealing with expensive problems, it is not clear how the recently
proposed surrogate-assisted MOEAs can be adapted and scaled
e�ciently with respect to the available computing resources, while
allowing to attain improved approximation quality.

Methodology and Contribution Overview. We are aware of rela-
tively few investigations eliciting, in a comprehensive manner and
through a systematic analysis approach, the challenges underlying
the parallel design of surrogate-assisted MOEAs, together with the
design options one can adopt. This is precisely the general goal
we would like to contribute. Consequently, our aim is not to par-
allelize an existing surrogate-assisted approach nor to speedup a
particular algorithm, but rather to investigate the di�erent oppor-
tunities and design options that can lead to an e�ective parallel
surrogate-assisted MOEA.

More precisely, and in order to focus more deeply on the opti-
mization challenges, we leave behind the scene the characteristics
of the intended computing platforms and the corresponding paral-
lel and technological implementation issues. We instead consider
an abstract setting where it is simply assumed that some process-
ing units (PUs) are available and can communicate using some
abstract communication medium. As such, we focus on enabling
parallelism within the state-of-the-art MOEA based on decomposi-
tion (MOEA/D) [26]. As it will be discussed further in the rest of
the paper, decomposition, and more generally aggregation-based
MOEAs, are based on a divide-and-conquer principle which is by
nature of high degree of parallelism [4, 24], as well as a high de-
gree of �exibility in order to leverage existing surrogate-assisted
algorithms from both single- and multi-objective optimization [2].
In this context, our contributions can be summarized as follows:

• In light of the recent taxonomies developed by the MOEA
community for surrogate-assisted approaches [3, 9], we pro-
pose to identify and classify in a high-level manner the dif-
ferent levels of parallelism o�ered by decomposition ap-
proaches. Thereby, we discuss di�erent classes of parallel
designs for attacking expensive MOPs. This allows us to
set up nine algorithm variants instantiated with di�erent
components and aiming to push a step further for a better

understanding of what makes a surrogate-assisted approach
e�ective in terms of approximation quality when enabling
parallelism.

• Through extensive experiments including a range of bi-
objective benchmark functions from the well-established
bbob-biobj test suite covering di�erent problem proper-
ties [18], we focus on the gain in approximation quality
when using an increasing number of computing units.

• We investigate the convergence pro�le of the di�erent ap-
proaches and we report insights into the ability of a paral-
lel methodology to provide novel and improved surrogate-
assisted algorithm design when tackling expensive MOPs.
For instance, we found that parallelism can lead to an en-
semble design allowing to deal in a natural manner with
objectives having a di�erent degree of di�culty.

Outline. In Section 2, we provide the necessary background on
surrogate-assisted MOEAs. In Section 3, we discuss key parallel
design. In Section 4, we report our empirical �ndings

2 BACKGROUND AND POSITIONING
In this section, we provide an overview of existing surrogate-assisted
MOEAs with a focus on those based on decomposition. This will
serve in the following section as a baseline for the proposed parallel
designs.

2.1 Decomposition-based MOEAs
Let us assume a target MOP, de�ned as a vector function � : IR3 7!
IR< , with 3 variables and< objectives to be minimized. Given two
solutions G, G 0 2 IR3 , G 0 is dominated by G i�, for all 8 2 {1, . . . ,<},
58 (G) 6 58 (G 0), and there is a 9 2 {1, . . . ,<} such that 59 (G) <

59 (G 0). A solution G¢ 2 IR3 is Pareto optimal if there does not exist
any G 2 IR3 such that G¢ is dominated by G . The set of all non-
dominated solutions is the Pareto set. Its mapping in the objective
space is the Pareto front.

A successful class of MOEAs, that includes MOEA/D [26], rely
on the decomposition of the original MOP into a number of single-
objective sub-problems that are expected to be easier to solve [24,
26]. Given a weight vectorF 2 IR< , the scalarizing function 6(G |
F) assigns a scalar value to any solution G 2 IR3 . By generating
multiple weight vectors for con�guring the scalarizing function,
multiple sub-problems are de�nedwhose solution targets a di�erent
region of the Pareto front.

2.2 Surrogate-assisted MOEAs
When targeting expensive MOPs, we focus on two main classes
of surrogate-assisted MOEA/D (S-MOEA/D) approaches: (i) ap-
proaches based on �ltering (and to a lesser extent their extensions
to substitution) [2, 11, 14], and (ii) approaches based on Gaussian
processes [10, 12, 27]. They are brie�y discussed below.

2.2.1 Filtering-based approaches. Surrogate-assisted approaches
based on �ltering [14] are perhaps the most obvious technique to
tackle expensive problems. They are relatively simple and �exible
enough to be plugged in a wide range of evolutionary algorithms.
A �ltering approach is usually divided into three sequential steps.
Firstly, one or multiple regression models are built in order to �t
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the di�erent objective functions using a given training set. This
step is repeated regularly, when new solutions are evaluated using
the expensive functions, in order to maintain a surrogate model
which is as accurate as possible. Secondly, they are based on the
generation of a whole set of solutions in an iterative manner, for
which the estimate �tness values is computed using the underly-
ing surrogate. Thirdly, on the basis of these estimations, the most
promising solution is selected and evaluated by means of the real
(and costly) evaluation function. Hence, it becomes clear that a
�ltering approach acts as a pre-screening of o�spring solutions and
rely on the surrogate model to help for better-informed selection.
Filtering methods have been paired with MOEAs and MOEA/D
within, e.g., the MOEA/D-SVM algorithm [14]. Related approaches
are also discussed [2].

2.2.2 Gaussian Process-based approaches. An alternative strategy
for expensive optimization is the E�cient Global Optimization (EGO)
approach [12]. EGO uses Gaussian Processes (Kriging) as a surro-
gate model to estimate the objective values. Gaussian processes are
of particular interest since they provide both an estimate of solution
quality and an uncertainty around this prediction. Hence, di�erent
alternative acquisition functions can be considered to sample a
promising solution, such as the expected improvement (EI) or the
maximum probability of improvement (MPI). As such, EGO does
not speci�cally targets the solution with the best prediction, but it
rather seeks for the solution that optimizes a particular acquisition
function. This enables to balance the search between exploitation,
when selected solutions have high expected values, and exploration,
when selected solutions have high uncertainty. EGO has been cou-
pled with MOEAs within, e.g., the ParEGO [13], Multi-EGO [10]
and MOEA/D-EGO [27] approaches.

2.3 Overview of Parallel Approaches
We can basically distinguish between two categories of algorithms:
(i) those that were developed to support an e�ective parallel execu-
tion, and (ii) those that were not initially designed with a parallel
mindset, but that expose some natural degrees of parallelism. It
should also be noted that surveys about parallel surrogate-assisted
single-objective optimization can be found in [8, 21]

Looking at the �rst category, one can �nd relatively few special-
ized parallel surrogate-assisted algorithms. A remarkable approach
is the so-called multi-point expected improvement approach (Q-EI)
described in [22] and developed in [7]. The Q-EI approach is basi-
cally an extension of the EI acquisition function where, instead of
searching for one single point optimizing the expected improve-
ment in a Gaussian process, a whole set of @ solutions is computed.
The Q-EI is speci�cally designed to support the sampling and subse-
quent parallel evaluation of multiple solutions. This is designed in
such a way that a similar exploration/exploitation trade-o� than the
well-established EI acquisition function can be attained, speci�cally
in a parallel environment with a priori any scale, @ being a user-
de�ned parameter. We however remark that the Q-EI approach was
initially designed for single-objective problems, and leveraging it
to MOPs is in its own an open research question.

More recently, a parallel population-based approach is described
in [1], where a classic �ltering approach, based on a Radial Basis
function (RBF), and a local candidate search around multiple points

to balance exploration and exploitation, are combined in parallel
withmultiple solution evaluations. In [23], a �lteringmethod is used
where the o�spring selection is adjusted to consider the error of the
surrogate predictions. In particular, �lters are built asynchronously
based on the available computing resources. Despite their skillful
design, such focused approaches do not elicit in a systematicmanner
the di�erent degrees of parallelism that can be explored further.

Turning to the second category of approaches, which expose
an implicit degree of parallelism, representative algorithms are
MOEA/D-RBF [25] and MOEA/D-EGO [27]. Therein, a number of
models of di�erent nature are constructed using di�erent data sets
and trained in a sequential manner. Hence, a straightforward par-
allelization is to train the underlying models in parallel. Similarly,
most S-MOEA/D approaches, such as [10, 14, 25], and more gener-
ally any standard �ltering or substitution approach [2], compute a
whole set of solutions at each iteration, from which some are se-
lected for expensive evaluation. A standard sequential design choice
consists in restricting the number of solutions that are e�ectively
selected for evaluation in order to reduce the budget consumption.
Hence, it is clear that parallelism can be supported very naturally
by simply evaluating the promising solutions in parallel, in a way
that it matches the resources available.

Considering these two examples, it should be clear that either
the model training itself or the expensive evaluation step can be
parallelized within existing surrogate-assisted approaches. This
hence o�ers two obvious levels of parallelism: (i) constructing and
training di�erent models in parallel, and (ii) evaluating multiple
promising solutions in parallel. Nevertheless, it remains unclear
how these two levels can support massive parallelism, and how they
in�uence solving quality and e�ciency. For example, the previously-
mentioned algorithms such as MOEA/D-RBF [25] and MOEA/D-
EGO [27] train very few models, so that a typical setting where
much more computing cores are available would not fully bene�t
from a straightforward parallel execution. Similarly, it is unclear
how existing �ltering approaches would manage an increasing
number of parallel evaluations without biasing the search process
or e�ectively attaining the best approximation quality. This can be
attributed to the fact that, although they expose interesting levels
of parallelism, such approaches were not designed nor properly
analyzed and con�gured in order to support e�ective parallelism.

Interestingly, the class of decomposition-based algorithms, on
top of whichmany of the surrogate-assisted approaches listed above
are built, o�ers a high degree of parallelism. In fact, a number of
studies have already investigated the distribution of the compu-
tational �ow of MOEA/D based on the fact that the underlying
sub-problems could be solved cooperatively in parallel given some
extra communication e�ort; see, e.g., [4, 6, 21]. Accordingly, we also
investigate the possibility of coupling the two aforementioned levels
of parallelism, exposed in existing surrogate-assisted approaches,
with the parallel nature of decomposition-based MOEAs.

3 PARALLEL S-MOEA/D APPROACHES
In the following, we propose a principled parallel design, and ac-
cordingly a number of representative surrogate-assisted algorithms.
We �rst discuss some key design aspects, allowing us to later detail
the proposed parallel S-MOEA/Ds as summarized in Table 1.
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Table 1: S-MOEA/D techniques as instances of the general framework (PU is for processing unit).

Algorithm Generation and evaluation
of candidate solutions

Model training set Model building Model type and response

MOEA/D-Multistart concurrent algorithm runs — — —
S-MOEA/D-QEI MOEA/D on Q-EI fuzzy clustering local models built on available PUs Gaussian process for EI
S-MOEA/D-MEI MOEA/D on EI fuzzy clustering local models built on available PUs Gaussian process for EI
S-MOEA/D-LocalBatch per sub-problem parallel evaluation weight-centered clustering local models built on a single PU SVR for �ltering
S-MOEA/D-GlobalBatch per sub-problem parallel evaluation fuzzy clustering local models built on available PUs SVR for �ltering
S-MOEA/D-Multimodel per sub-problem parallel evaluation fuzzy clustering local models built on available PUs multiplemodels/kernels for �ltering
MP-S-MOEA/D-W parallel sub-problem solving weight-centered clustering local models built on sub-problem

speci�c PU
SVR for �ltering

MP-S-MOEA/D-F parallel sub-problem solving fuzzy clustering local models built on available PUs SVR for �ltering
MP-S-MOEA/D-G parallel sub-problem solving full data set global model built on a single PU SVR for �ltering

3.1 Key Design Issues for Parallel S-MOEA/D
3.1.1 Generation and Evaluation of Candidate Solutions. The most
straightforward aspect is to enable the parallel evaluation of mul-
tiple solutions, since this is a priori the most critical and CPU-
intensive operation. However, this can be achieved in several ways,
impacting the algorithm design by itself. In fact, before even evalu-
ating a pool of solutions, it is required to generate them. This can be
done either in a sequential manner by one processing unit (PU), or
distributively by a set of PUs. Di�erent alternatives can be though,
ranging from standard variation from evolutionary computation,
to multiple models-guided pool generation.

3.1.2 Training Data and Model Building. Here we are concerned
with both the amount of data (from solutions evaluated so far) to
use for training, and howmanymodels are to be used. Firstly, choos-
ing the learning data set is critically important, since it can highly
impact the outcome of the learning phase and hence the accuracy
of the surrogate(s). A straightforward option is to use all the data
available. However, this might lead to the construction of a global
surrogate at a high computational cost, which can even dominate
the expensive evaluation itself in some cases. This is particularly
true when trying to scale the amount of available PUs, given that
the amount of evaluated solutions should typically scale accord-
ingly. Interestingly, in an attempt to reduce the computational cost
of learning, common algorithms often consider to use a subset of
the data available, such as: the most recently evaluated solutions,
the best performing solutions, or even simply random solutions.
Other algorithms (not necessarily parallel) cluster the data in order
to both reduce the training cost and provide not solely one, but an
ensemble of models that are jointly used to improve the prediction
accuracy and then the candidate solution generation [2, 27]. Focus-
ing on decomposition approaches, and since the aim is to optimize
simultaneously di�erent sub-problems, training data can be natu-
rally split following the so-de�ned sub-problems [2, 10]. It should
be clear that such considerations provide multiple opportunities
when turning into a parallel design. Indeed, as for the evaluation
step distributed among multiple PUs, the training phase can occur
distributively or not, while clustering or not the learning data and
using one or multiple models possibly trained in parallel as well.

3.1.3 Model Type and Response. Provided that multiple models are
used, eventually using di�erent subset of learning data, the choice
of the model type is another important design issue. In most ap-
proaches, one model type and one speci�c kernel, when applicable,

are selected before the search starts, and are subsequently used
throughout the entire process. Given that we are considering black-
box problems, no speci�c knowledge about the objective functions
is available. As such, the choice of a particular surrogate can be
critical, and a better option would be to use di�erent model types
in order to eventually better �t the unknown characteristics of the
black-box functions. Furthermore, the objectives might typically
expose di�erent (unknown) characteristics, hence making a partic-
ular model more accurate for some functions. Such considerations
are not well documented, and very little studies on the subject exist
apart from [25].

3.2 Proposed Parallel S-MOEA/D Algorithms
We introduce, in this section, eight parallel S-MOEA/D algorithms
based on the di�erent components depicted in Table 1. First, let
us de�ne an iteration in the context of parallel S-MOEA/D: a full
iteration is completed when all PUs have computed the objective
values of one new solution using the true (costly) evaluation func-
tion. At each iteration, every algorithm: (1) constructs a training
data set, (2) updates its surrogate models, (3) generates a pool of
new solutions (o�spring) for potential evaluation, and (4) selects ?
solutions from this pool for evaluation, ? being the number of PUs.

For selecting the solutions to be evaluated from the pool of
o�spring, our parallel S-MOEA/D approaches discriminate between
two algorithm designs, based on the decomposition strategy:
(Sa) Considering a single sub-problem per iteration: at a given

iteration, the entire set of solutions to be evaluated is made
of ? promising solutions targeting one speci�c sub-problem;
i.e. one search direction in MOEA/D.

(Sb) Considering the whole set of sub-problems at each iteration:
at a given iteration, the set of solutions is made of ? promis-
ing solutions for all sub-problems, then targeting di�erent
regions of the objective space.

In both cases listed above, a pool of candidate solutions is to be
generated and selected based on variation operators and surrogate
estimations. Here again, we consider two di�erent designs:
(Ga) Employing a �ltering-based approach where, for a given

sub-problem, candidate solutions are generated by means
of variation operators, following the standard sub-problems
cooperation from MOEA/D.

(Gb) Employing an acquisition function from Gaussian processes,
where solutions are selected based on a given criterion such
as Expected Improvement (EI) and its parallel variants [7, 22].
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Whatever the design choice, the issues of training data and model
building remain essential. This is particularly true for the �ltering-
based approach (Ga), where the algorithm designer is not bound
to any speci�c surrogate, in contrast with EGO which is stuck to
Gaussian processes. This allows us to explore a third level of design
choices for �ltering-based approaches in terms of models and train-
ing data clustering. Notice that the baseline model that we consider
for prediction in �ltering-based approaches is support-vector re-
gression (SVR) with a radial basis function (RBF) kernel [19]. At
last, in terms of parallelism, we di�erentiate between the parallel
evaluation, which is inherent to the per-iteration batch evaluation,
and parallel model training, where models based on clustering or
ensemble methods can be naturally trained on di�erent PUs before
being dispatched, if necessary.

Based on the aforementioned considerations, we sketch below
the proposed parallel S-MOEA/Ds as summarized further in Table 1.

S-MOEA/D-QEI is based on a given number of sub-problems, set
independently of the number of PUs available. At each itera-
tion, a single sub-problem is considered (Sa): (1) the master
process divides all solutions evaluated so far into 2 groups of
similar size using the fuzzy clustering procedure from [27];
(2) each cluster is sent to one PU for �tting a Gaussian pro-
cess for one objective, so as to balance the workload among
PUs; (3) the master process runs a single-objective evolution-
ary algorithm [27] for identifying ? solutions optimizing the
Q-EI acquisition function (Gb) of the current sub-problem
scalarizing function; (4) each PU computes the objective val-
ues of one solution identi�ed by the evolutionary algorithm
using the (costly) evaluation function, so that ? solutions are
evaluated in parallel on the ? PUs, the evaluated solutions
are then communicated to the master process.

S-MOEA/D-MEI follows a similar principle than S-MOEA/D-QEI,
except that ? sub-problems are considered at each iteration
(Sb). The main di�erence appears at stage (3) where each PU
runs its own single-objective evolutionary algorithm [27] for
optimizing the EI acquisition function (Gb) of the scalarizing
function of its own sub-problem.

S-MOEA/D-LocalBatch considers a single sub-problem per iter-
ation (Sa). At each iteration: (1) the master process runs the
weight sub-problem centered procedure from [10] to con-
struct the training set for the current sub-problem; (2) one
SVR model is constructed for the current sub-problem scalar-
izing function and deployed among all PUs; (3) each PU
generates a pool of _ o�spring by means of variation opera-
tor(s), where _ is the �lter size, and selects one o�spring to
be evaluated based on the model estimations (Ga); (4) each
PU evaluates the selected solution so that ? solutions are
evaluated in parallel on the ? PUs, the evaluated solutions
are then communicated to the master process.

S-MOEA/D-GlobalBatch also considers a single sub-problem per
iteration (Sa). However, at each iteration: (1) 2 clusters are
now constructed by the master process using fuzzy cluster-
ing [27]; and (2) each cluster is sent to one PU for model
�tting of one objective based on SVR, so as to balance the
workload among PUs, and the models are deployed among

all PUs. The remaining steps follow the same mechanisms
than S-MOEA/D-LocalBatch (Ga).

S-MOEA/D-Multimodel considers a single sub-problem per it-
eration (Sa) and employs a �ltering-based approach (Ga)
as well. The main di�erence with S-MOEA/D-GlobalBatch
appears at stage (2) where not one, but multiple models are
trained for each cluster and each objective; i.e. not only SVR
with an RBF kernel is considered for the prediction, but also
cubic, multi-quadratic or Gaussian kernels [25], as well as
di�erent models such as RBF neural networks and kernel
ridge regressor (KRR) [19, 25]. Assuming we have< model
types and 2 clusters, they are then dispatched among the ?
PUs. In case ? < 2 ·<, ? models are selected at random, and
in case ? > 2 ·<, some models are duplicated in order to �ll
all PUs.

MP-S-MOEA/D-W follows a fully distributed parallel design [4]
and considers all ? sub-problems at each iteration (Sb). At
each iteration: (1) each PU constructs a training set based
on all solutions that have been evaluated so far locally, that
is on in this particular PU as well as the solutions shared by
its neighbor during the algorithm; (2) each PU trains its own
SVR models, one for each objective; (3) each PU generates
a pool of _ o�spring by means of variation operator(s), and
selects one o�spring to be evaluated based on the model
estimations (Ga); (4) each PU evaluates the selected solution
so that ? solutions are evaluated in parallel on the ? PUs, the
evaluated solutions are then communicated to PUs mapping
to its neighboring sub-problems MOEA/D [26].

MP-S-MOEA/D-F follows a work�ow similar to the previous algo-
rithm, by considering all sub-problems at each iteration (Sb)
and a �ltering-based approach (Ga). However, all solutions
evaluated so far are here maintained on a master process that
iteratively (1) build 2 clusters using fuzzy clustering [27], and
(2) send each cluster to one PU for model �tting of one objec-
tive, so as to balance the workload among PUs. The models
are then deployed among all PUs, and the remaining steps
follow the same mechanisms than MP-S-MOEA/D-W. All so-
lutions evaluated at a given iteration are then communicated
to the master process.

MP-S-MOEA/D-G is the same than MP-S-MOEA/D-F (Sb, Ga),
except that one single global model is trained per objective,
using all solutions evaluated so far as the training set.

4 EXPERIMENTAL ANALYSIS
4.1 Experimental Setup and Methodology
As mentioned in the introduction, we consider an abstract parallel
setting, where we simply assume that some processing units (PUs)
are available to operate in parallel without targeting a particular
computing platform. As such, our results are obtained following a
simulation methodology. Thereby, we assume that each evaluation
takes the same amount of CPU-intensive time, and we ignore the
waiting and communication time between PUs, implying that all
parallel algorithms are to be considered as operating synchronously
in rounds or iterations. This is motivated by the hypothesis that in
an expensive setting, objective evaluation time and learning time
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Table 2: 8 considered bi-objective benchmark functions.

objective 1 objective 2
f1 f8 f14 f20

f1 Sphere separable X X X X
f8 Rosenbrock moderate X X X
f14 Sum of powers ill-conditioned X
f20 Schwefel weakly-structured

are likely to dominate communication time. This allows us to focus
on the quality approximation that can be attained by each designed
algorithm when the budget a�ordable for each PU is restricted. In
other words, compared to a non parallel setting, where each PU
is given an overall budget, our simulation methodology attempt
to elicit the impact on approximation quality where, not one but
multiple parallel PUs can be a�orded the same budget, i.e., we do
not look for global speed-up, but for global quality.

For all algorithms, when the initial population size does not de-
pend on the amount of PUs, i.e for all but the MP-MOEA/D variants,
it is set to 50 individuals generated by means of Latin Hypercube
Sampling [17]. We use the Chebyshev scalarizing function [26]
whose reference point is updated at each iteration with the best
objective values found so far. Multiple reference points (one per
PU) are used when considering local approaches.

For �ltering-based approaches, the number of o�spring gener-
ated for pre-screening is 8 individuals per PU, among which the
solution with the best predicted scalarizing value for the consid-
ered weight is evaluated on the current PU by means of the costly
objectives. We also investigate the scalability of the parallel design
with respect to the number of PUs available ? 2 {1, 5, 20, 100}. All
existing algorithms and components are implemented as described
in the original papers, including the parameters fromMOEA/D [26].

For benchmarking, we rely on problems extracted from the bi-
objective black-box optimization test suite bbob-biobj [18] Table 2.
To observe the impact of problem dimensionality, all functions are
considered with 3 2 {2, 5, 10, 20} decision variables. Each algorithm
is executed 10 independent times for each function, for a total of
11 520 runs.

Algorithm performance is computed under di�erent scenarios
in terms of budget, de�ned as the amount of evaluations performed
per PU, from a low budget of 250 evaluations to a relatively high
budget (for expensive MOPs) of 1 250 evaluations. The algorithms
are compared in terms of hypervolume and hypervolume relative
deviation w.r.t. the best-found approximation set.

4.2 Overall Algorithm Performance
Our results are summarized in Table 3, considering three main
settings from a large panel of scenarios. We �rst di�erentiate the
runs based on the global budget: an extremely tight budget of 250
evaluations, and a more moderate one of 1 250 evaluations per PU.
We consider three di�erent amount of available PUs, ranging from 5
through 20 up to 100. Finally, we consider two function dimensions:
2 and 10. Given that nine algorithms are compared, each algorithm
is assigned a rank from 0 to 8, based on pairwise statistical testing.
A lower rank is better and can be interpreted as the number of com-
peting algorithms that signi�cantly outperform the considered one

Table 3: Comparison of the competing algorithms with re-
spect to for 250 (left) and 1 250 (right) calls to the evaluation
function. The rank stands for the number of algorithms that
statistically outperform the one under consideration w.r.t a
Mann-Whitney test with a p-value of 0.05 and a Bonferroni
correction (lower is better). Bold values correspond to the
best algorithm for the problem under consideration.
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d = 2 #eval = 250 #eval = 1250

#P
U
s
=
5

f1-f1 5 0 0 2 2 2 2 2 2 2 1 1 0 0 0 1 1 1
f1-f8 7 0 1 2 2 2 2 2 2 3 2 2 0 0 0 0 0 0
f1-f14 6 0 0 3 3 3 2 3 3 3 0 1 0 0 0 0 0 0
f1-f20 6 0 1 2 1 3 2 2 2 4 2 1 1 0 0 0 0 0
f8-f8 7 0 1 2 1 2 2 2 3 4 1 2 0 1 1 0 0 1
f8-f14 7 1 0 2 2 1 2 2 3 5 3 4 2 1 2 0 0 1
f8-f20 7 0 1 2 1 1 1 2 2 3 2 2 2 1 2 0 0 0
f14-f20 6 0 1 2 2 1 3 3 3 4 1 1 1 0 1 0 0 0

#P
U
s
=
20

f1-f1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
f1-f8 5 0 0 1 1 2 1 2 2 2 1 1 0 0 0 0 0 0
f1-f14 6 0 0 3 3 1 2 2 3 2 1 1 0 0 0 1 0 1
f1-f20 4 0 1 4 3 2 3 3 4 4 3 2 0 2 0 0 1 1
f8-f8 2 0 0 2 2 1 1 1 2 4 2 3 0 1 0 0 0 2
f8-f14 5 0 1 3 3 1 3 3 4 4 2 2 1 1 1 1 0 0
f8-f20 4 0 0 2 2 1 2 2 3 4 2 2 0 1 0 0 0 1
f14-f20 4 0 1 3 2 1 2 2 2 3 1 1 0 0 0 0 1 1

#P
U
s
=
10
0

f1-f1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f1-f8 3 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
f1-f14 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
f1-f20 1 0 0 0 1 0 0 1 2 4 0 1 0 0 0 0 0 0
f8-f8 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
f8-f14 3 0 0 1 0 0 0 0 0 1 1 2 1 0 0 0 0 1
f8-f20 4 0 1 1 2 0 1 1 2 3 1 1 0 1 0 0 0 1
f14-f20 3 0 0 1 2 1 2 3 2 3 1 0 0 0 0 0 0 0

d = 10 #eval = 250 #eval = 1250

#P
U
s
=
5

f1-f1 5 0 0 3 4 3 2 3 3 8 5 6 2 2 4 0 0 2
f1-f8 6 0 0 3 3 3 3 2 3 7 5 5 2 2 3 1 0 1
f1-f14 4 0 1 4 3 3 2 2 3 8 4 5 0 0 1 0 0 1
f1-f20 3 1 1 3 4 0 3 4 4 8 5 6 1 1 0 0 1 1
f8-f8 5 0 0 2 3 2 2 2 3 6 3 3 2 2 3 1 0 1
f8-f14 4 0 0 4 4 3 2 3 4 8 5 4 2 2 2 0 0 2
f8-f20 6 0 1 3 3 1 3 3 3 8 4 5 3 2 1 0 2 2
f14-f20 4 1 1 3 4 0 3 4 4 8 3 5 1 1 0 0 0 1

#P
U
s
=
20

f1-f1 5 0 0 2 2 3 1 2 2 6 4 4 2 1 3 0 0 1
f1-f8 6 0 0 2 2 2 2 2 3 8 3 4 2 2 3 0 1 1
f1-f14 8 0 0 3 4 4 2 2 3 7 5 5 1 2 3 0 0 1
f1-f20 8 0 1 4 4 2 2 3 3 8 4 3 2 2 1 0 0 0
f8-f8 6 0 0 2 2 2 1 1 2 6 2 3 0 0 1 0 0 1
f8-f14 8 1 0 5 5 5 2 3 3 8 4 4 2 1 3 0 1 2
f8-f20 8 0 2 4 5 1 3 3 4 8 3 4 3 3 0 1 1 2
f14-f20 8 1 1 3 3 0 3 3 3 8 4 4 2 3 1 1 0 1

#P
U
s
=
10
0

f1-f1 4 0 0 2 2 2 0 0 1 8 1 1 0 0 1 0 0 0
f1-f8 5 0 0 3 3 4 1 2 3 8 3 3 2 2 3 0 0 1
f1-f14 7 0 0 3 3 3 2 3 3 8 2 3 0 1 1 0 1 1
f1-f20 8 1 0 3 3 2 3 3 3 8 3 2 2 2 0 0 1 1
f8-f8 8 0 0 2 4 3 0 0 2 8 0 0 0 1 0 0 0 1
f8-f14 8 0 1 2 3 3 1 1 2 8 4 4 2 2 2 1 0 1
f8-f20 7 0 0 3 3 3 0 2 2 8 4 3 3 3 0 0 0 1
f14-f20 8 1 2 3 3 0 2 1 3 8 3 4 2 2 0 1 0 1

for a given scenario. A multistart version of the original MOEA/D
algorithm is used as a baseline for comparison purposes. We note
�rst that all the strategies obtain a better rank than this multi-
start approach, which does not use any surrogate, independently of
the parameters considered. Overall, we found that the approaches
based on EGO (S-MOEA/D-QEI, S-MOEA/D-MEI) outperform all
the others when considering an extremely tight budget, while the
remaining �ltering-based algorithms obtained similar ranks. By
contrast, this observation does not hold when considering a larger
budget, as both the rank of EGO-based algorithms increases and the
di�erent MP-SMOEA/D versions obtain a better average ranking
than every other considered algorithm.

4.3 Clustering and Local vs Global Models
When considering parallel S-MOEA/D approaches, one should un-
derstand that the construction of the models depend on the so-
lutions made available to the PU(s) that will be responsible for
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the model training. Our comparison here focuses on three algo-
rithms: MP-S-MOEA/D-G, where no clustering is performed and
where the training set is made available on a master PU that builds
a global model for each objective, MP-S-MOEA/D-F, where local
models are built using fuzzy clustering [27], and MP-S-MOEA/D-W,
where models are built locally and distributively using the current
data available at each PU. This data clustering is actually similar
to the one introduced in [10]. As shown in Table 3, we observe a
clear di�erence in ranking within the di�erent techniques, inde-
pendently of the amount of PUs, the benchmark problem, and the
budget. Overall, we see that the two approaches relying on clus-
tering outperform the one building global (non-clustered) models.
This kind of results where already highlighted for non-parallel ap-
proaches [2], but extending this to the parallel case has a seemingly
important implication. In fact, as model building is a critical and
computationally-intensive step for any S-MOEA/D, this empha-
sizes the viability of a distributed approach, where models are built
locally in a parallel fashion such as in MP-S-MOEA/D-W.

4.4 Empirical Attainment Functions
Empirical attainment functions (EAF) [16] are particularly relevant
when comparing di�erent algorithms in order to grasp where an
algorithm performs better than another one in the objective space.
In this respect, they complement the hypervolume indicator, which
alone does not always perfectly express the relative behavior of
algorithms. The EAF provides the empirical probability distribu-
tion that an arbitrary objective vector is weakly dominated by a
solution obtained by a single run. The di�erence between the EAFs
for two di�erent algorithms enables to identify the regions of the
objective space where one algorithm outperforms the another. The
magnitude of the di�erence in favor of one algorithm is plotted
within a gray-colored graduation. While S-MOEA/D-Multimodel
performs overall very similarly to S-MOEA/D-LocalBatch and S-
MOEA/D-GlobalBatch, we can see a speci�c trend when consider-
ing problems using function 520 (Schwefel). For those problems, S-
MOEA/D-Multimodel performs better in comparison to S-MOEA/D-
LocalBatch. However, looking at Fig. 1, we clearly see that the
multi-model approach is able to �nd a large amount of good-quality
solutions toward objective 520, that were not found with the other
approach, while still covering relatively well the other area of the
Pareto front. One hypothesis is that one model kernels, among
multiple ones, is particularly well-suited for �tting objective 520
in particular. Another possible reason is that one kernel or model
is actually performing better overall, and not speci�cally for ob-
jective 520. In Fig. 1, we show similar EAF surfaces, but instead of
using the described S-MOEA/D-Multimodel approach, we use an
algorithm variant, S-MOEA/D-BestModel. The algorithm only uses
the model (KRR) that was found to perform better at �tting 520. The
results are clearly worst compared to the multi-model technique,
as a lot of solutions spanning the �rst objective are now missing.
This allows us to con�rm the initial assumption of having di�erent
kernels being well suited to �t di�erent functions simultaneously
in parallel.

In Fig. 2, we show the EAF di�erence between the best-performing
�ltering-based algorithm based on batch evaluation (S-MOEA/D-
LocalBatch) and the best performing fully-distributed algorithm,
MP-S-MOEA/D-W. The results are shown for problem f8_f14 with
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Figure 1: EAF on problem f1_f20 for S-MOEA/D-LocalBatch
vs S-MOEA/D-Multimodel. d = 10, PUs = 100, eval = 1250
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Figure 2: EAF on problem f8_f14 for S-MOEA/D-LocalBatch
vs MP-S-MOEA/DW. d = 10, PUs = 100, eval = 1250

3 = 10 and 100 PUs and a budget of 1250 evaluations per PU. Let
us remind �rst that, as shown in Table 3, MP-S-MOEA/D-W ob-
tains a better average ranking than S-MOEA/D-LocalBatch. On
the one hand, We see in Fig. 2 that MP-S-MOEA/D-W is able to
reach on the boundaries of the Pareto front that are not reached
by S-MOEA/D-LocalBatch, while still covering the other regions
of the Pareto front to a certain degree. On the other hand, we see
that S-MOEA/D-LocalBatch focuses heavily on exploiting solutions
converging toward the center of the Pareto front.

4.5 Convergence Pro�le and Scalability
When dealing with expensive problems, the convergence pro�le
and thus the anytime performance becomes a critical issue. In
Fig. 3, we show the convergence pro�le for S-MOEA/D-QEI, S-
MOEA/D-LocalBatch and MP-S-MOEAD-W, respectively the best
EGO-based, single sub-problem �ltering-based, and all sub-problems
�ltering-based algorithms. Results are shown on a supposedly easy
function (f1_f1), and a supposedly di�cult function (f14_f20) with
a dimension of 3 = 10, and using 5, 20 and 100 PUs. In these graphs,
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Figure 3: Convergence pro�le on problems f1_f1 (left) and
f14_f20 (right) for di�erent PUs, budgets and for 3 = 10.

note that the maximum hypervolume is di�erent depending on the
number of PUs, and the convergence pro�les observed were similar
for other problems and dimensions. Even though the convergence
rate varies when scaling the amount of PUs, the pro�les remain
the same. On the one hand, we see that EGO-based approaches
converge extremely fast, and are often stuck after a number of
evaluations per PU ranging from 100 to 250. On the other hand,
we see that �ltering-based approaches have a similar convergence
pro�le, starting slower than the EGO-based ones, and ultimately
ending up outperforming them when the budget grows around a
thousand evaluations. In terms of scalability, we show in Table 4 the
amount of evaluations per PU needed to reach 60%, 80% and 95% of
the maximum hypervolume value for the same three algorithms,
using 5 and 100 PUs.While the performance of S-MOEA/D-QEI gets
better, the di�erence in results between 5 and 100 PUs is mitigated.
The �rst threshold of 60% is already reached on average for the
lowest amount of evaluation considered. The second treshold of 80%
is reached 150 evaluations quicker on average. The �nal treshold
of 95% was never reached when using 5 PUs, it was reached 3
times with 100 PUs but was not reached before 1 250 evaluations
on the average run. For both �ltering approaches, the results are
quite di�erent: the number of evaluations needed to reach the �rst
two thresholds decreases substantially from 400 evaluations to 75
evaluations for the �rst threshold and from 1 000 evaluations to 250
for the second. The hardest threshold of 95% is almost never hit for
5 PUs with S-MOEA/D-QEI, whereas it is hit 9 out of 10 times for
S-MOEA/D-LocalBatch and in all runs for MP-S-MOEA/D-W. This
clearly indicates that, depending on how restricted the budget is per
PU, and how many PUs are available to operate in parallel, di�erent
design options of seemingly di�erent nature are to be preferred.

Table 4: Bound on the maximum budget to hit a threshold
percentage) of best hypervolume. The parenthesis indicate
the ratio of runs where this threshold was hit with the in-
dicated budget. The value1 indicates that the thredshold is
never hit by any run.

# PUs T S-MOEA/D-QEI S-MOEA/D-LocalBatch MP-S-MOEA/D-W

5
60% 75 (8/10) 400 (7/10) 400 (9/10)
80% 400 (9/10) 1000 (6/10) 1000 (7/10)
95% 1 (0/10) 1250 (1/10) 1250 (2/10)

100
60% 75 (10/10) 75 (9/10) 75 (9/10)
80% 250 (10/10) 250 (7/10) 250 (9/10)
95% 1250 (3/10) 1250 (9/10) 1250 (10/10)

5 CONCLUSIONS
In this paper, we investigated parallel surrogate-assisted MOEAs
based on decomposition for expensive multi-objective optimization.
Following an extensive research on the current state-of-the art for
parallel MOEA/D, surrogate-assisted MOEA/D and the combina-
tion of both, we were able to di�erentiate and instantiate existing
approaches based on key parallel algorithm components. By com-
bining components from non-parallel state-of-the-art algorithms,
we built a set of representative parallel algorithms that are sub-
sequently analyzed and benchmarked. Our analysis reveals the
following �ndings. On the one hand, it was shown that the entire
process of model building highly impacts the results of the di�erent
algorithms. Firstly, local data selection for training, clustering, and
multiple model building were found to perform competitively, while
o�ering a natural degree of parallelism compared to approaches
based on a centralized model building using the full available data.
Secondly, building models based on the aggregation of the objective
functions showed to yield better results than model learning the
objectives directly. Thirdly, model type and kernel selection have
a high impact on algorithm performance. In particular, further in-
vestigations focusing on model selection is worth to be considered
in the future, and is expected to lead to an improved design and
performance. On the other hand, for �ltering-based approaches,
we found that algorithms evaluating in parallel a pool of solutions
based on the entire set of sub-problems provide better results than
algorithms performing parallel evaluations of a pool targeting solely
one sub-problem. Interestingly, this does not hold when consider-
ing Gaussian process-based (EGO) approaches. At last, we were
able to con�rm that the convergence pro�le of Gaussian process-
assisted approaches is appealing when only an extremely restricted
budget is allowed. By contrast, when scaling the whole parallel
system, the superiority of EGO-based approaches has a tendency
to decrease, compared to �ltering-based methods. This means that
for an increasing number of PUs, and an increasing budget per PU,
relatively simple evolutionary �ltering methods can outperform
pure EGO methods while being �exible and easy to deploy.
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