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INTRODUCTION

Context. Solving a multi-objective optimization problem (MOP) aims at optimizing simultaneously a number of objectives which are often conicting with each other. This means that there is not one optimal solution, but a whole set of solutions oering dierent trade-os between the objectives. Multi-objective evolutionary algorithms (MOEAs) have been proven particularly eective to solve black-box MOPs. However, a major drawback of MOEAs is the amount of solutions that need to be eectively evaluated in order to converge to a high-quality approximation set. In fact, it is very common to observe some MOEAs requiring a budget of few hundred of thousands up to millions of objective function evaluations. While this is acceptable for low-cost objectives, this can cause a serious bottleneck when tackling expensive MOPs, for which one evaluation requires a high computational eort. This drastically restricts the overall number of function evaluations the practitioner can aord for the problem to be solved in a reasonable and manageable amount of time. With respect to expensive MOPs, dierent studies investigate the design of novel MOEAs assisted by surrogate models, considered as a powerful tool to speed up convergence towards high-quality approximation sets. The main idea explored so far with respect to surrogates for MOPs is to build one or many data-driven meta-model(s) oering a cheap alternative to the expensive objective functions. It is hence possible for a standard evolutionary algorithm to perform at its best using the constructed models, thus allowing to pre-screen one or multiple promising solutions that can be evaluated subsequently using the original and expensive objective functions. For a recent survey on state-of-the-art surrogate-assisted approaches, the reader is referred to [START_REF] Berveglieri | Surrogate-Assisted Multiobjective Optimization Based on Decomposition: A Comprehensive Comparative Analysis[END_REF][START_REF] Deb | A Taxonomy for Metamodeling Frameworks for Evolutionary Multiobjective Optimization[END_REF][START_REF] Diaz-Manriquez | A Review of Surrogate Assisted Multiobjective Evolutionary Algorithms[END_REF][START_REF] Horn | Model-Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Benchmark[END_REF][START_REF] Yaochu | Surrogate-assisted evolutionary computation: Recent advances and future challenges[END_REF]. In this paper, we are specically interested in coupling the benets of parallel computing resources with the use of surrogate model for solving expensive MOPs.

Positioning and Related Work. On the one hand, the ever-increasing availability of computing resources, the advent of new computing facilities and of robust large-scale and massively parallel platforms opens tremendous research opportunities for pushing forward the development and uptake of evolutionary algorithms. A huge body of literature exists on the design of parallel and distributed optimization algorithms in general, e.g., [START_REF] Loukil | A Parallel Hybrid Genetic Algorithm-Simulated Annealing for Solving Q3AP on Computational Grid[END_REF][START_REF] Pedrycz | Parallel Evolutionary Algorithms Chapter in the Handbook of Computational Intelligence[END_REF]. Although reviewing the literature is out-of-the-scope of this paper, let us comment that three main classes of parallel approaches are usually distinguished: (i) those exposing problem-dependent parallelism, typically for speeding up the cost of evaluating one single candidate solution, (ii) those exposing low-level parallelism with the goal of providing a substantial parallel speedup when deploying an optimization algorithm, for instance by evaluating multiple solutions in parallel, and (iii) those exposing high-level parallelism, typically referring to the situation where multiple, possibly dierent, search processes are executed in a cooperative and parallel manner, hence possibly improving the search quality and not only the computing time. On the other hand, although being particularly accurate for dealing with expensive problems, it is not clear how the recently proposed surrogate-assisted MOEAs can be adapted and scaled eciently with respect to the available computing resources, while allowing to attain improved approximation quality.

Methodology and Contribution Overview. We are aware of relatively few investigations eliciting, in a comprehensive manner and through a systematic analysis approach, the challenges underlying the parallel design of surrogate-assisted MOEAs, together with the design options one can adopt. This is precisely the general goal we would like to contribute. Consequently, our aim is not to parallelize an existing surrogate-assisted approach nor to speedup a particular algorithm, but rather to investigate the dierent opportunities and design options that can lead to an eective parallel surrogate-assisted MOEA.

More precisely, and in order to focus more deeply on the optimization challenges, we leave behind the scene the characteristics of the intended computing platforms and the corresponding parallel and technological implementation issues. We instead consider an abstract setting where it is simply assumed that some processing units (PUs) are available and can communicate using some abstract communication medium. As such, we focus on enabling parallelism within the state-of-the-art MOEA based on decomposition (MOEA/D) [START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF]. As it will be discussed further in the rest of the paper, decomposition, and more generally aggregation-based MOEAs, are based on a divide-and-conquer principle which is by nature of high degree of parallelism [START_REF] Derbel | A ne-grained message passing MOEA/D[END_REF][START_REF] Trivedi | A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition[END_REF], as well as a high degree of exibility in order to leverage existing surrogate-assisted algorithms from both single-and multi-objective optimization [START_REF] Berveglieri | Surrogate-Assisted Multiobjective Optimization Based on Decomposition: A Comprehensive Comparative Analysis[END_REF]. In this context, our contributions can be summarized as follows:

• In light of the recent taxonomies developed by the MOEA community for surrogate-assisted approaches [START_REF] Deb | A Taxonomy for Metamodeling Frameworks for Evolutionary Multiobjective Optimization[END_REF][START_REF] Horn | Model-Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Benchmark[END_REF], we propose to identify and classify in a high-level manner the different levels of parallelism oered by decomposition approaches. Thereby, we discuss dierent classes of parallel designs for attacking expensive MOPs. This allows us to set up nine algorithm variants instantiated with dierent components and aiming to push a step further for a better understanding of what makes a surrogate-assisted approach eective in terms of approximation quality when enabling parallelism. • Through extensive experiments including a range of biobjective benchmark functions from the well-established bbob-biobj test suite covering dierent problem properties [START_REF] Mersmann | COCO: A platform for Comparing Continuous Optimizers in a Black-Box Setting[END_REF], we focus on the gain in approximation quality when using an increasing number of computing units. • We investigate the convergence prole of the dierent approaches and we report insights into the ability of a parallel methodology to provide novel and improved surrogateassisted algorithm design when tackling expensive MOPs.

For instance, we found that parallelism can lead to an ensemble design allowing to deal in a natural manner with objectives having a dierent degree of diculty.

Outline. In Section 2, we provide the necessary background on surrogate-assisted MOEAs. In Section 3, we discuss key parallel design. In Section 4, we report our empirical ndings

BACKGROUND AND POSITIONING

In this section, we provide an overview of existing surrogate-assisted MOEAs with a focus on those based on decomposition. This will serve in the following section as a baseline for the proposed parallel designs.

Decomposition-based MOEAs

Let us assume a target MOP, dened as a vector function : I R 3 7 ! I R < , with 3 variables and < objectives to be minimized. Given two solutions G, G 0 2 I R 3 , G 0 is dominated by G i, for all 8 2 {1, . . . ,<}, 5 8 (G) 6 5 8 (G 0 ), and there is a 9 2 {1, . . . ,<} such that 5 9 (G) < 5 9 (G 0 ). A solution G ¢ 2 I R 3 is Pareto optimal if there does not exist any G 2 I R 3 such that G ¢ is dominated by G. The set of all nondominated solutions is the Pareto set. Its mapping in the objective space is the Pareto front.

A successful class of MOEAs, that includes MOEA/D [START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF], rely on the decomposition of the original MOP into a number of singleobjective sub-problems that are expected to be easier to solve [START_REF] Trivedi | A Survey of Multiobjective Evolutionary Algorithms Based on Decomposition[END_REF][START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF]. Given a weight vector F 2 I R < , the scalarizing function 6(G | F) assigns a scalar value to any solution G 2 I R 3 . By generating multiple weight vectors for conguring the scalarizing function, multiple sub-problems are dened whose solution targets a dierent region of the Pareto front.

Surrogate-assisted MOEAs

When targeting expensive MOPs, we focus on two main classes of surrogate-assisted MOEA/D (S-MOEA/D) approaches: (i) approaches based on ltering (and to a lesser extent their extensions to substitution) [START_REF] Berveglieri | Surrogate-Assisted Multiobjective Optimization Based on Decomposition: A Comprehensive Comparative Analysis[END_REF][START_REF] Yaochu | Surrogate-assisted evolutionary computation: Recent advances and future challenges[END_REF][START_REF] Siang | Machine Learning Enhanced Multi-Objective Evolutionary Algorithm Based on Decomposition[END_REF], and (ii) approaches based on Gaussian processes [START_REF] Hussein | A Generative Kriging Surrogate Model for Constrained and Unconstrained Multi-objective Optimization[END_REF][START_REF] Jones | Ecient Global Optimization of Expensive Black-Box Functions[END_REF][START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF]. They are briey discussed below.

2.2.1

Filtering-based approaches. Surrogate-assisted approaches based on ltering [START_REF] Siang | Machine Learning Enhanced Multi-Objective Evolutionary Algorithm Based on Decomposition[END_REF] are perhaps the most obvious technique to tackle expensive problems. They are relatively simple and exible enough to be plugged in a wide range of evolutionary algorithms. A ltering approach is usually divided into three sequential steps. Firstly, one or multiple regression models are built in order to t the dierent objective functions using a given training set. This step is repeated regularly, when new solutions are evaluated using the expensive functions, in order to maintain a surrogate model which is as accurate as possible. Secondly, they are based on the generation of a whole set of solutions in an iterative manner, for which the estimate tness values is computed using the underlying surrogate. Thirdly, on the basis of these estimations, the most promising solution is selected and evaluated by means of the real (and costly) evaluation function. Hence, it becomes clear that a ltering approach acts as a pre-screening of ospring solutions and rely on the surrogate model to help for better-informed selection. Filtering methods have been paired with MOEAs and MOEA/D within, e.g., the MOEA/D-SVM algorithm [START_REF] Siang | Machine Learning Enhanced Multi-Objective Evolutionary Algorithm Based on Decomposition[END_REF]. Related approaches are also discussed [START_REF] Berveglieri | Surrogate-Assisted Multiobjective Optimization Based on Decomposition: A Comprehensive Comparative Analysis[END_REF].

Gaussian

Process-based approaches. An alternative strategy for expensive optimization is the Ecient Global Optimization (EGO) approach [START_REF] Jones | Ecient Global Optimization of Expensive Black-Box Functions[END_REF]. EGO uses Gaussian Processes (Kriging) as a surrogate model to estimate the objective values. Gaussian processes are of particular interest since they provide both an estimate of solution quality and an uncertainty around this prediction. Hence, dierent alternative acquisition functions can be considered to sample a promising solution, such as the expected improvement (EI) or the maximum probability of improvement (MPI). As such, EGO does not specically targets the solution with the best prediction, but it rather seeks for the solution that optimizes a particular acquisition function. This enables to balance the search between exploitation, when selected solutions have high expected values, and exploration, when selected solutions have high uncertainty. EGO has been coupled with MOEAs within, e.g., the ParEGO [START_REF] Knowles | ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[END_REF], Multi-EGO [START_REF] Hussein | A Generative Kriging Surrogate Model for Constrained and Unconstrained Multi-objective Optimization[END_REF] and MOEA/D-EGO [START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF] approaches.

Overview of Parallel Approaches

We can basically distinguish between two categories of algorithms: (i) those that were developed to support an eective parallel execution, and (ii) those that were not initially designed with a parallel mindset, but that expose some natural degrees of parallelism. It should also be noted that surveys about parallel surrogate-assisted single-objective optimization can be found in [START_REF] Raphael | Parallel surrogate-assisted global optimization with expensive functions -a survey[END_REF][START_REF] Rehbach | Comparison of Parallel Surrogate-Assisted Optimization Approaches[END_REF] Looking at the rst category, one can nd relatively few specialized parallel surrogate-assisted algorithms. A remarkable approach is the so-called multi-point expected improvement approach (Q-EI) described in [START_REF] Schonlau | Computer experiments and global optimization[END_REF] and developed in [START_REF] Ginsbourger | Kriging Is Well-Suited to Parallelize Optimization[END_REF]. The Q-EI approach is basically an extension of the EI acquisition function where, instead of searching for one single point optimizing the expected improvement in a Gaussian process, a whole set of @ solutions is computed. The Q-EI is specically designed to support the sampling and subsequent parallel evaluation of multiple solutions. This is designed in such a way that a similar exploration/exploitation trade-o than the well-established EI acquisition function can be attained, specically in a parallel environment with a priori any scale, @ being a userdened parameter. We however remark that the Q-EI approach was initially designed for single-objective problems, and leveraging it to MOPs is in its own an open research question.

More recently, a parallel population-based approach is described in [START_REF] Akhtar | Ecient Multi-Objective Optimization through Population-based Parallel Surrogate Search[END_REF], where a classic ltering approach, based on a Radial Basis function (RBF), and a local candidate search around multiple points to balance exploration and exploitation, are combined in parallel with multiple solution evaluations. In [START_REF] Syberfeldt | A Parallel Surrogate-Assisted Multi-Objective Evolutionary Algorithm for Computationally Expensive Optimization Problems[END_REF], a ltering method is used where the ospring selection is adjusted to consider the error of the surrogate predictions. In particular, lters are built asynchronously based on the available computing resources. Despite their skillful design, such focused approaches do not elicit in a systematic manner the dierent degrees of parallelism that can be explored further.

Turning to the second category of approaches, which expose an implicit degree of parallelism, representative algorithms are MOEA/D-RBF [START_REF] Saúl | MOEA/D Assisted by Rbf Networks for Expensive Multi-Objective Optimization Problems[END_REF] and MOEA/D-EGO [START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF]. Therein, a number of models of dierent nature are constructed using dierent data sets and trained in a sequential manner. Hence, a straightforward parallelization is to train the underlying models in parallel. Similarly, most S-MOEA/D approaches, such as [START_REF] Hussein | A Generative Kriging Surrogate Model for Constrained and Unconstrained Multi-objective Optimization[END_REF][START_REF] Siang | Machine Learning Enhanced Multi-Objective Evolutionary Algorithm Based on Decomposition[END_REF][START_REF] Saúl | MOEA/D Assisted by Rbf Networks for Expensive Multi-Objective Optimization Problems[END_REF], and more generally any standard ltering or substitution approach [START_REF] Berveglieri | Surrogate-Assisted Multiobjective Optimization Based on Decomposition: A Comprehensive Comparative Analysis[END_REF], compute a whole set of solutions at each iteration, from which some are selected for expensive evaluation. A standard sequential design choice consists in restricting the number of solutions that are eectively selected for evaluation in order to reduce the budget consumption. Hence, it is clear that parallelism can be supported very naturally by simply evaluating the promising solutions in parallel, in a way that it matches the resources available.

Considering these two examples, it should be clear that either the model training itself or the expensive evaluation step can be parallelized within existing surrogate-assisted approaches. This hence oers two obvious levels of parallelism: (i) constructing and training dierent models in parallel, and (ii) evaluating multiple promising solutions in parallel. Nevertheless, it remains unclear how these two levels can support massive parallelism, and how they inuence solving quality and eciency. For example, the previouslymentioned algorithms such as MOEA/D-RBF [START_REF] Saúl | MOEA/D Assisted by Rbf Networks for Expensive Multi-Objective Optimization Problems[END_REF] and MOEA/D-EGO [START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF] train very few models, so that a typical setting where much more computing cores are available would not fully benet from a straightforward parallel execution. Similarly, it is unclear how existing ltering approaches would manage an increasing number of parallel evaluations without biasing the search process or eectively attaining the best approximation quality. This can be attributed to the fact that, although they expose interesting levels of parallelism, such approaches were not designed nor properly analyzed and congured in order to support eective parallelism.

Interestingly, the class of decomposition-based algorithms, on top of which many of the surrogate-assisted approaches listed above are built, oers a high degree of parallelism. In fact, a number of studies have already investigated the distribution of the computational ow of MOEA/D based on the fact that the underlying sub-problems could be solved cooperatively in parallel given some extra communication eort; see, e.g., [START_REF] Derbel | A ne-grained message passing MOEA/D[END_REF][START_REF] Durillo | Distribution of Computational Eort in Parallel MOEA/D[END_REF][START_REF] Rehbach | Comparison of Parallel Surrogate-Assisted Optimization Approaches[END_REF]. Accordingly, we also investigate the possibility of coupling the two aforementioned levels of parallelism, exposed in existing surrogate-assisted approaches, with the parallel nature of decomposition-based MOEAs.

PARALLEL S-MOEA/D APPROACHES

In the following, we propose a principled parallel design, and accordingly a number of representative surrogate-assisted algorithms. We rst discuss some key design aspects, allowing us to later detail the proposed parallel S-MOEA/Ds as summarized in Table 1. Here we are concerned with both the amount of data (from solutions evaluated so far) to use for training, and how many models are to be used. Firstly, choosing the learning data set is critically important, since it can highly impact the outcome of the learning phase and hence the accuracy of the surrogate(s). A straightforward option is to use all the data available. However, this might lead to the construction of a global surrogate at a high computational cost, which can even dominate the expensive evaluation itself in some cases. This is particularly true when trying to scale the amount of available PUs, given that the amount of evaluated solutions should typically scale accordingly. Interestingly, in an attempt to reduce the computational cost of learning, common algorithms often consider to use a subset of the data available, such as: the most recently evaluated solutions, the best performing solutions, or even simply random solutions. Other algorithms (not necessarily parallel) cluster the data in order to both reduce the training cost and provide not solely one, but an ensemble of models that are jointly used to improve the prediction accuracy and then the candidate solution generation [START_REF] Berveglieri | Surrogate-Assisted Multiobjective Optimization Based on Decomposition: A Comprehensive Comparative Analysis[END_REF][START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF]. Focusing on decomposition approaches, and since the aim is to optimize simultaneously dierent sub-problems, training data can be naturally split following the so-dened sub-problems [START_REF] Berveglieri | Surrogate-Assisted Multiobjective Optimization Based on Decomposition: A Comprehensive Comparative Analysis[END_REF][START_REF] Hussein | A Generative Kriging Surrogate Model for Constrained and Unconstrained Multi-objective Optimization[END_REF]. It should be clear that such considerations provide multiple opportunities when turning into a parallel design. Indeed, as for the evaluation step distributed among multiple PUs, the training phase can occur distributively or not, while clustering or not the learning data and using one or multiple models possibly trained in parallel as well.

3.1.3 Model Type and Response. Provided that multiple models are used, eventually using dierent subset of learning data, the choice of the model type is another important design issue. In most approaches, one model type and one specic kernel, when applicable, are selected before the search starts, and are subsequently used throughout the entire process. Given that we are considering blackbox problems, no specic knowledge about the objective functions is available. As such, the choice of a particular surrogate can be critical, and a better option would be to use dierent model types in order to eventually better t the unknown characteristics of the black-box functions. Furthermore, the objectives might typically expose dierent (unknown) characteristics, hence making a particular model more accurate for some functions. Such considerations are not well documented, and very little studies on the subject exist apart from [START_REF] Saúl | MOEA/D Assisted by Rbf Networks for Expensive Multi-Objective Optimization Problems[END_REF].

Proposed Parallel S-MOEA/D Algorithms

We introduce, in this section, eight parallel S-MOEA/D algorithms based on the dierent components depicted in Table 1. First, let us dene an iteration in the context of parallel S-MOEA/D: a full iteration is completed when all PUs have computed the objective values of one new solution using the true (costly) evaluation function. At each iteration, every algorithm: (1) constructs a training data set, (2) updates its surrogate models, (3) generates a pool of new solutions (ospring) for potential evaluation, and (4) selects ? solutions from this pool for evaluation, ? being the number of PUs.

For selecting the solutions to be evaluated from the pool of ospring, our parallel S-MOEA/D approaches discriminate between two algorithm designs, based on the decomposition strategy:

(Sa) Considering a single sub-problem per iteration: at a given iteration, the entire set of solutions to be evaluated is made of ? promising solutions targeting one specic sub-problem; i.e. one search direction in MOEA/D. (Sb) Considering the whole set of sub-problems at each iteration: at a given iteration, the set of solutions is made of ? promising solutions for all sub-problems, then targeting dierent regions of the objective space. In both cases listed above, a pool of candidate solutions is to be generated and selected based on variation operators and surrogate estimations. Here again, we consider two dierent designs: (Ga) Employing a ltering-based approach where, for a given sub-problem, candidate solutions are generated by means of variation operators, following the standard sub-problems cooperation from MOEA/D. (Gb) Employing an acquisition function from Gaussian processes, where solutions are selected based on a given criterion such as Expected Improvement (EI) and its parallel variants [START_REF] Ginsbourger | Kriging Is Well-Suited to Parallelize Optimization[END_REF][START_REF] Schonlau | Computer experiments and global optimization[END_REF].

Whatever the design choice, the issues of training data and model building remain essential. This is particularly true for the lteringbased approach (Ga), where the algorithm designer is not bound to any specic surrogate, in contrast with EGO which is stuck to Gaussian processes. This allows us to explore a third level of design choices for ltering-based approaches in terms of models and training data clustering. Notice that the baseline model that we consider for prediction in ltering-based approaches is support-vector regression (SVR) with a radial basis function (RBF) kernel [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. At last, in terms of parallelism, we dierentiate between the parallel evaluation, which is inherent to the per-iteration batch evaluation, and parallel model training, where models based on clustering or ensemble methods can be naturally trained on dierent PUs before being dispatched, if necessary.

Based on the aforementioned considerations, we sketch below the proposed parallel S-MOEA/Ds as summarized further in Table 1.

S-MOEA/D-QEI is based on a given number of sub-problems, set independently of the number of PUs available. At each iteration, a single sub-problem is considered (Sa): (1) the master process divides all solutions evaluated so far into 2 groups of similar size using the fuzzy clustering procedure from [START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF];

(2) each cluster is sent to one PU for tting a Gaussian process for one objective, so as to balance the workload among PUs;

(3) the master process runs a single-objective evolutionary algorithm [START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF] for identifying ? solutions optimizing the Q-EI acquisition function (Gb) of the current sub-problem scalarizing function; (4) each PU computes the objective values of one solution identied by the evolutionary algorithm using the (costly) evaluation function, so that ? solutions are evaluated in parallel on the ? PUs, the evaluated solutions are then communicated to the master process.

S-MOEA/D-MEI follows a similar principle than S-MOEA/D-QEI, except that ? sub-problems are considered at each iteration (Sb). The main dierence appears at stage (3) where each PU runs its own single-objective evolutionary algorithm [START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF] for optimizing the EI acquisition function (Gb) of the scalarizing function of its own sub-problem.

S-MOEA/D-LocalBatch considers a single sub-problem per iteration (Sa). At each iteration: (1) the master process runs the weight sub-problem centered procedure from [START_REF] Hussein | A Generative Kriging Surrogate Model for Constrained and Unconstrained Multi-objective Optimization[END_REF] to construct the training set for the current sub-problem; (2) one SVR model is constructed for the current sub-problem scalarizing function and deployed among all PUs; (3) each PU generates a pool of _ ospring by means of variation operator(s), where _ is the lter size, and selects one ospring to be evaluated based on the model estimations (Ga); (4) each PU evaluates the selected solution so that ? solutions are evaluated in parallel on the ? PUs, the evaluated solutions are then communicated to the master process.

S-MOEA/D-GlobalBatch also considers a single sub-problem per iteration (Sa). However, at each iteration: (1) 2 clusters are now constructed by the master process using fuzzy clustering [START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF]; and (2) each cluster is sent to one PU for model tting of one objective based on SVR, so as to balance the workload among PUs, and the models are deployed among all PUs. The remaining steps follow the same mechanisms than S-MOEA/D-LocalBatch (Ga).

S-MOEA/D-Multimodel considers a single sub-problem per iteration (Sa) and employs a ltering-based approach (Ga) as well. The main dierence with S-MOEA/D-GlobalBatch appears at stage [START_REF] Berveglieri | Surrogate-Assisted Multiobjective Optimization Based on Decomposition: A Comprehensive Comparative Analysis[END_REF] where not one, but multiple models are trained for each cluster and each objective; i.e. not only SVR with an RBF kernel is considered for the prediction, but also cubic, multi-quadratic or Gaussian kernels [START_REF] Saúl | MOEA/D Assisted by Rbf Networks for Expensive Multi-Objective Optimization Problems[END_REF], as well as dierent models such as RBF neural networks and kernel ridge regressor (KRR) [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF][START_REF] Saúl | MOEA/D Assisted by Rbf Networks for Expensive Multi-Objective Optimization Problems[END_REF]. Assuming we have < model types and 2 clusters, they are then dispatched among the ? PUs. In case ? < 2 • <, ? models are selected at random, and in case ? > 2 • <, some models are duplicated in order to ll all PUs.

MP-S-MOEA/D-W follows a fully distributed parallel design [START_REF] Derbel | A ne-grained message passing MOEA/D[END_REF] and considers all ? sub-problems at each iteration (Sb). At each iteration: (1) each PU constructs a training set based on all solutions that have been evaluated so far locally, that is on in this particular PU as well as the solutions shared by its neighbor during the algorithm; (2) each PU trains its own SVR models, one for each objective; (3) each PU generates a pool of _ ospring by means of variation operator(s), and selects one ospring to be evaluated based on the model estimations (Ga); (4) each PU evaluates the selected solution so that ? solutions are evaluated in parallel on the ? PUs, the evaluated solutions are then communicated to PUs mapping to its neighboring sub-problems MOEA/D [START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF].

MP-S-MOEA/D-F follows a workow similar to the previous algorithm, by considering all sub-problems at each iteration (Sb) and a ltering-based approach (Ga). However, all solutions evaluated so far are here maintained on a master process that iteratively (1) build 2 clusters using fuzzy clustering [START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF], and

(2) send each cluster to one PU for model tting of one objective, so as to balance the workload among PUs. The models are then deployed among all PUs, and the remaining steps follow the same mechanisms than MP-S-MOEA/D-W. All solutions evaluated at a given iteration are then communicated to the master process.

MP-S-MOEA/D-G is the same than MP-S-MOEA/D-F (Sb, Ga), except that one single global model is trained per objective, using all solutions evaluated so far as the training set.

EXPERIMENTAL ANALYSIS 4.1 Experimental Setup and Methodology

As mentioned in the introduction, we consider an abstract parallel setting, where we simply assume that some processing units (PUs) are available to operate in parallel without targeting a particular computing platform. As such, our results are obtained following a simulation methodology. Thereby, we assume that each evaluation takes the same amount of CPU-intensive time, and we ignore the waiting and communication time between PUs, implying that all parallel algorithms are to be considered as operating synchronously in rounds or iterations. This is motivated by the hypothesis that in an expensive setting, objective evaluation time and learning time For all algorithms, when the initial population size does not depend on the amount of PUs, i.e for all but the MP-MOEA/D variants, it is set to 50 individuals generated by means of Latin Hypercube Sampling [START_REF] Michael | Latin Hypercube Sampling as a Tool in Uncertainty Analysis of Computer Models[END_REF]. We use the Chebyshev scalarizing function [START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF] whose reference point is updated at each iteration with the best objective values found so far. Multiple reference points (one per PU) are used when considering local approaches.

For ltering-based approaches, the number of ospring generated for pre-screening is 8 individuals per PU, among which the solution with the best predicted scalarizing value for the considered weight is evaluated on the current PU by means of the costly objectives. We also investigate the scalability of the parallel design with respect to the number of PUs available ? 2 {1, 5, 20, 100}. All existing algorithms and components are implemented as described in the original papers, including the parameters from MOEA/D [START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF].

For benchmarking, we rely on problems extracted from the biobjective black-box optimization test suite bbob-biobj [START_REF] Mersmann | COCO: A platform for Comparing Continuous Optimizers in a Black-Box Setting[END_REF] Table 2. To observe the impact of problem dimensionality, all functions are considered with 3 2 {2, 5, 10, 20} decision variables. Each algorithm is executed 10 independent times for each function, for a total of 11 520 runs.

Algorithm performance is computed under dierent scenarios in terms of budget, dened as the amount of evaluations performed per PU, from a low budget of 250 evaluations to a relatively high budget (for expensive MOPs) of 1 250 evaluations. The algorithms are compared in terms of hypervolume and hypervolume relative deviation w.r.t. the best-found approximation set.

Overall Algorithm Performance

Our results are summarized in Table 3, considering three main settings from a large panel of scenarios. We rst dierentiate the runs based on the global budget: an extremely tight budget of 250 evaluations, and a more moderate one of 1 250 evaluations per PU. We consider three dierent amount of available PUs, ranging from 5 through 20 up to 100. Finally, we consider two function dimensions: 2 and 10. Given that nine algorithms are compared, each algorithm is assigned a rank from 0 to 8, based on pairwise statistical testing. A lower rank is better and can be interpreted as the number of competing algorithms that signicantly outperform the considered one Table 3: Comparison of the competing algorithms with respect to for 250 (left) and 1 250 (right) calls to the evaluation function. The rank stands for the number of algorithms that statistically outperform the one under consideration w.r.t a Mann-Whitney test with a p-value of 0.05 and a Bonferroni correction (lower is better). Bold values correspond to the best algorithm for the problem under consideration. 
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for a given scenario. A multistart version of the original MOEA/D algorithm is used as a baseline for comparison purposes. We note rst that all the strategies obtain a better rank than this multistart approach, which does not use any surrogate, independently of the parameters considered. Overall, we found that the approaches based on EGO (S-MOEA/D-QEI, S-MOEA/D-MEI) outperform all the others when considering an extremely tight budget, while the remaining ltering-based algorithms obtained similar ranks. By contrast, this observation does not hold when considering a larger budget, as both the rank of EGO-based algorithms increases and the dierent MP-SMOEA/D versions obtain a better average ranking than every other considered algorithm.

Clustering and Local vs Global Models

When considering parallel S-MOEA/D approaches, one should understand that the construction of the models depend on the solutions made available to the PU(s) that will be responsible for the model training. Our comparison here focuses on three algorithms: MP-S-MOEA/D-G, where no clustering is performed and where the training set is made available on a master PU that builds a global model for each objective, MP-S-MOEA/D-F, where local models are built using fuzzy clustering [START_REF] Zhang | Expensive Multiobjective Optimization by MOEA/D With Gaussian Process Model[END_REF], and MP-S-MOEA/D-W, where models are built locally and distributively using the current data available at each PU. This data clustering is actually similar to the one introduced in [START_REF] Hussein | A Generative Kriging Surrogate Model for Constrained and Unconstrained Multi-objective Optimization[END_REF]. As shown in Table 3, we observe a clear dierence in ranking within the dierent techniques, independently of the amount of PUs, the benchmark problem, and the budget. Overall, we see that the two approaches relying on clustering outperform the one building global (non-clustered) models. This kind of results where already highlighted for non-parallel approaches [START_REF] Berveglieri | Surrogate-Assisted Multiobjective Optimization Based on Decomposition: A Comprehensive Comparative Analysis[END_REF], but extending this to the parallel case has a seemingly important implication. In fact, as model building is a critical and computationally-intensive step for any S-MOEA/D, this emphasizes the viability of a distributed approach, where models are built locally in a parallel fashion such as in MP-S-MOEA/D-W.

Empirical Attainment Functions

Empirical attainment functions (EAF) [START_REF] López-Ibáñez | Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization[END_REF] are particularly relevant when comparing dierent algorithms in order to grasp where an algorithm performs better than another one in the objective space.

In this respect, they complement the hypervolume indicator, which alone does not always perfectly express the relative behavior of algorithms. The EAF provides the empirical probability distribution that an arbitrary objective vector is weakly dominated by a solution obtained by a single run. The dierence between the EAFs for two dierent algorithms enables to identify the regions of the objective space where one algorithm outperforms the another. The magnitude of the dierence in favor of one algorithm is plotted within a gray-colored graduation. While S-MOEA/D-Multimodel performs overall very similarly to S-MOEA/D-LocalBatch and S-MOEA/D-GlobalBatch, we can see a specic trend when considering problems using function 5 20 (Schwefel). For those problems, S-MOEA/D-Multimodel performs better in comparison to S-MOEA/D-LocalBatch. However, looking at Fig. 1, we clearly see that the multi-model approach is able to nd a large amount of good-quality solutions toward objective 5 20 , that were not found with the other approach, while still covering relatively well the other area of the Pareto front. One hypothesis is that one model kernels, among multiple ones, is particularly well-suited for tting objective 5 20 in particular. Another possible reason is that one kernel or model is actually performing better overall, and not specically for objective 5 20 . In Fig. 1, we show similar EAF surfaces, but instead of using the described S-MOEA/D-Multimodel approach, we use an algorithm variant, S-MOEA/D-BestModel. The algorithm only uses the model (KRR) that was found to perform better at tting 5 20 . The results are clearly worst compared to the multi-model technique, as a lot of solutions spanning the rst objective are now missing. This allows us to conrm the initial assumption of having dierent kernels being well suited to t dierent functions simultaneously in parallel. In Fig. 2, we show the EAF dierence between the best-performing ltering-based algorithm based on batch evaluation (S-MOEA/D-LocalBatch) and the best performing fully-distributed algorithm, MP-S-MOEA/D-W. The results are shown for problem f8_f14 with 

Convergence Prole and Scalability

When dealing with expensive problems, the convergence prole and thus the anytime performance becomes a critical issue. In note that the maximum hypervolume is dierent depending on the number of PUs, and the convergence proles observed were similar for other problems and dimensions. Even though the convergence rate varies when scaling the amount of PUs, the proles remain the same. On the one hand, we see that EGO-based approaches converge extremely fast, and are often stuck after a number of evaluations per PU ranging from 100 to 250. On the other hand, we see that ltering-based approaches have a similar convergence prole, starting slower than the EGO-based ones, and ultimately ending up outperforming them when the budget grows around a thousand evaluations. In terms of scalability, we show in Table 4 the amount of evaluations per PU needed to reach 60%, 80% and 95% of the maximum hypervolume value for the same three algorithms, using 5 and 100 PUs. While the performance of S-MOEA/D-QEI gets better, the dierence in results between 5 and 100 PUs is mitigated. The rst threshold of 60% is already reached on average for the lowest amount of evaluation considered. The second treshold of 80% is reached 150 evaluations quicker on average. The nal treshold of 95% was never reached when using 5 PUs, it was reached 3 times with 100 PUs but was not reached before 1 250 evaluations on the average run. For both ltering approaches, the results are quite dierent: the number of evaluations needed to reach the rst two thresholds decreases substantially from 400 evaluations to 75 evaluations for the rst threshold and from 1 000 evaluations to 250 for the second. The hardest threshold of 95% is almost never hit for 5 PUs with S-MOEA/D-QEI, whereas it is hit 9 out of 10 times for S-MOEA/D-LocalBatch and in all runs for MP-S-MOEA/D-W. This clearly indicates that, depending on how restricted the budget is per PU, and how many PUs are available to operate in parallel, dierent design options of seemingly dierent nature are to be preferred. 

CONCLUSIONS

In this paper, we investigated parallel surrogate-assisted MOEAs based on decomposition for expensive multi-objective optimization.

Following an extensive research on the current state-of-the art for parallel MOEA/D, surrogate-assisted MOEA/D and the combination of both, we were able to dierentiate and instantiate existing approaches based on key parallel algorithm components. By combining components from non-parallel state-of-the-art algorithms, we built a set of representative parallel algorithms that are subsequently analyzed and benchmarked. Our analysis reveals the following ndings. On the one hand, it was shown that the entire process of model building highly impacts the results of the dierent algorithms. Firstly, local data selection for training, clustering, and multiple model building were found to perform competitively, while oering a natural degree of parallelism compared to approaches based on a centralized model building using the full available data. Secondly, building models based on the aggregation of the objective functions showed to yield better results than model learning the objectives directly. Thirdly, model type and kernel selection have a high impact on algorithm performance. In particular, further investigations focusing on model selection is worth to be considered in the future, and is expected to lead to an improved design and performance. On the other hand, for ltering-based approaches, we found that algorithms evaluating in parallel a pool of solutions based on the entire set of sub-problems provide better results than algorithms performing parallel evaluations of a pool targeting solely one sub-problem. Interestingly, this does not hold when considering Gaussian process-based (EGO) approaches. At last, we were able to conrm that the convergence prole of Gaussian processassisted approaches is appealing when only an extremely restricted budget is allowed. By contrast, when scaling the whole parallel system, the superiority of EGO-based approaches has a tendency to decrease, compared to ltering-based methods. This means that for an increasing number of PUs, and an increasing budget per PU, relatively simple evolutionary ltering methods can outperform pure EGO methods while being exible and easy to deploy.
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 12 Figure 1: EAF on problem f1_f20 for S-MOEA/D-LocalBatch vs S-MOEA/D-Multimodel. d = 10, PUs = 100, eval = 1250
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 3 we show the convergence prole for S-MOEA/D-QEI, S-MOEA/D-LocalBatch and MP-S-MOEAD-W, respectively the best EGO-based, single sub-problem ltering-based, and all sub-problems ltering-based algorithms. Results are shown on a supposedly easy function (f1_f1), and a supposedly dicult function (f14_f20) with a dimension of 3 = 10, and using 5, 20 and 100 PUs. In these graphs,
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 3 Figure 3: Convergence prole on problems f1_f1 (left) and f14_f20 (right) for dierent PUs, budgets and for 3 = 10.

Table 1 :

 1 S-MOEA/D techniques as instances of the general framework (PU is for processing unit).

	Algorithm	Generation and evaluation	Model training set	Model building	Model type and response
		of candidate solutions			
	MOEA/D-Multistart	concurrent algorithm runs	-	-	-
	S-MOEA/D-QEI	MOEA/D on Q-EI	fuzzy clustering	local models built on available PUs Gaussian process for EI
	S-MOEA/D-MEI	MOEA/D on EI	fuzzy clustering	local models built on available PUs Gaussian process for EI
	S-MOEA/D-LocalBatch	per sub-problem parallel evaluation weight-centered clustering	local models built on a single PU	SVR for ltering
	S-MOEA/D-GlobalBatch per sub-problem parallel evaluation fuzzy clustering	local models built on available PUs SVR for ltering
	S-MOEA/D-Multimodel	per sub-problem parallel evaluation fuzzy clustering	local models built on available PUs multiple models/kernels for ltering
	MP-S-MOEA/D-W	parallel sub-problem solving	weight-centered clustering	local models built on sub-problem	SVR for ltering
				specic PU	
	MP-S-MOEA/D-F	parallel sub-problem solving	fuzzy clustering	local models built on available PUs SVR for ltering
	MP-S-MOEA/D-G	parallel sub-problem solving	full data set	global model built on a single PU	SVR for ltering
	3.1 Key Design Issues for Parallel S-MOEA/D		
	3.1.1 Generation and Evaluation of Candidate Solutions. The most		
	straightforward aspect is to enable the parallel evaluation of mul-		

tiple solutions, since this is a priori the most critical and CPUintensive operation. However, this can be achieved in several ways, impacting the algorithm design by itself. In fact, before even evaluating a pool of solutions, it is required to generate them. This can be done either in a sequential manner by one processing unit (PU), or distributively by a set of PUs. Dierent alternatives can be though, ranging from standard variation from evolutionary computation, to multiple models-guided pool generation. 3.1.2 Training Data and Model Building.

Table 2 :

 2 8 considered bi-objective benchmark functions. This allows us to focus on the quality approximation that can be attained by each designed algorithm when the budget aordable for each PU is restricted. In other words, compared to a non parallel setting, where each PU is given an overall budget, our simulation methodology attempt to elicit the impact on approximation quality where, not one but multiple parallel PUs can be aorded the same budget, i.e., we do not look for global speed-up, but for global quality.

		objective 1	objective 2	
				f 1 f 8 f 14 f 20
	f 1	Sphere	separable	X X X	X
	f 8	Rosenbrock	moderate	X X	X
	f 14 Sum of powers ill-conditioned		X
	f 20 Schwefel	weakly-structured		
	are likely to dominate communication time.		

Table 4 :

 4 Bound on the maximum budget to hit a threshold percentage ) of best hypervolume. The parenthesis indicate the ratio of runs where this threshold was hit with the indicated budget. The value 1 indicates that the thredshold is never hit by any run.

	# PUs	T	S-MOEA/D-QEI S-MOEA/D-LocalBatch MP-S-MOEA/D-W
		60%	75	(8/10)	400	(7/10)	400	(9/10)
	5	80%	400	(9/10) 1000	(6/10) 1000	(7/10)
		95% 60%	1 75	(0/10) 1250 (10/10) 75	(1/10) 1250 (9/10) 75	(2/10) (9/10)
	100	80%	250	(10/10)	250	(7/10)	250	(9/10)
		95% 1250	(3/10) 1250	(9/10) 1250	(10/10)
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