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We study the thermally induced depinning process of a single magnetic domain wall (DW) under applied

field when the DW is trapped by a notch made in a nanowire shaped from a spin-valve multilayer with in-plane

magnetization. In such devices depinning is typically a stochastic process and the depinning field distribution

exhibits complex features. By analyzing simultaneously depinning field distributions and relaxation data, we

observe two distinct sources of “complexity” in DW depinning processes: multiplicity in the DW structure and

fundamental complexity in the depinning process.
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Magnetic domain wall (DW) motion in magnetic nanowires

is the focus of much research as it encompasses fundamental

physical phenomena as well as the promise of novel mag-

netoelectronic applications. The motion of the DW can be

initiated either by an external applied magnetic field or by

a flow of current using spin-torque transfer. The position

of the DW can be controlled by introducing pinning sites

such as curved shapes, notches, protrusions, etc.1–7 “Natural”

defects in materials or structures are also a source of pinning

and are of major importance in DW propagation,8,9 and

influence considerably the DW propagation and velocity.

Understanding the phenomena of pinning and depinning of

DW is therefore a key issue for both the study of DW

motion as well as to optimize the design of DW-based

devices.

It is recognized that the DW depinning process displays a

stochastic behavior, highlighted by the observation of depin-

ning field distributions (DFDs), finite depinning probability,

or velocity distribution.4,6,10–15 The observed depinning field

distributions are often complex and contain several peaks.

The stochastic behavior can be observed also in the time

domain, at constant values of the external magnetic field and

nanowire current. Relaxation measurements have character-

ized the distribution of DW depinning time in perpendicularly

magnetized nanowires.16 Telegraph noise owing to oscillations

of a DW between two pinning sites have been reported

also for perpendicular17 and in-plane-magnetized pillars or

nanowires.18,19 These experiments reveal the exponential

distribution of depinning times and are interpreted as resulting

from thermal activation over a single energy barrier. Similarly

to the well-known magnetization reversal of a single magnetic

particle,20 the characteristic activation time is described by

an Arrhenius law, τ = τ0 exp(�E/kBT ). Here the energy

barrier �E is a function of the applied magnetic field and

of the current flowing through the DW. Such a model

should result in a simple DFD with a single peak.21 This

is in contrast with a number of previously cited reports of

complex DFDs.

The complex DFD behavior has been associated previously

with the presence of different types of DWs injected into the

nanowire,7,15 which we will refer to as the “multiple injected

DW” model. Within this model, several types of DW can

be trapped in the notch, each one having its own dynamic

[Fig. 1(b)] and contributing to the DFD. On the other hand,

more complex relaxation dynamics in DW depinning have

been observed by Attané et al.,8 characterized by a depinning

time distribution that is the sum of two exponentials with

different characteristic times. The presence of these two times

is interpreted using an “alternative paths” model schematized

in Fig. 1(c). In this model, the depinning occurs either via

a direct process (state 1 → state 3) or via an intermediate

pinned state (state 2). The latter process is characterized by

two successive transitions: 1 → 2 then 2 → 3. Each of these

transitions is associated with a characteristic time: τ 13, τ 12,

and τ 23. Such a process can in principle result in a complex

(double-peak) distribution of depinning fields, although this

has yet to be demonstrated experimentally. In this Rapid

Communication we will show that a simultaneous analysis

of both the relaxation dynamics and the DFD is necessary to

provide a coherent analysis of complex depinning processes,

and we will distinguish between the multiple injected DW and

alternative paths models.

Samples studied in this Rapid Communication are

identical to those analyzed in Ref. 13. The spin valve

was grown by magnetron sputtering on a glass substrate

with a structure (in nanometers) Ta(3)/Cu(2)/IrMn(6)/Co65

Fe35(2.5)/Cu(3)/Co65Fe35(4)/Ni86Fe14(15)/Ru(6). The spin-

valve film was patterned by electron-beam lithography and

Ar-ion-beam etching in order to define a submicrometer wire

500 nm wide and 20 μm long, in which magnetic DWs can

be created and manipulated. A large nucleation pad is present

on one side of the wire and a sharp notch is positioned along

the wire. Figure 1(a) shows a scanning electron microscopy

picture of a completed device. Measurements of the over-

all giant magnetoresistance (GMR) in the nanowire (two-

contact geometry) at room temperature allow the detection

and precise positioning of the DW between the electrical

contacts, and to study the depinning of the DW from the

notch.

The DW nucleation occurs always in the nucleation pad, and

for moderate values of the magnetic field H the notch acts as a

pinning site and stops the DW propagation. A further increase

in the field H is necessary to depin the DW. The stochastic

behavior of the DW depinning from the notch has been
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FIG. 1. (Color online) (a) Scanning electron microscopy view

of the devices. (b) Scheme of the multiple injected DW model. (c)

Scheme of the alternative paths model. (d)–(f) DFD of three different

devices. Distributions are given for a parallel to antiparallel transition

and vice versa.

studied by recording more than 1000 GMR loops. Histograms

representing the DFD reveal complex features with multiple

peaks of different shapes and widths. Furthermore, the DFD

varies drastically from device to device, showing the extreme

sensitivity to variations in devices (owing to subtle variations

in device fabrication or in the local microstructure of the

film). The analysis shows a systematic difference between

propagation of head-to-head versus tail-to-tail DWs, owing to

the stray magnetic field originating from the pinned magnetic

layer of the spin valve.13 Figures 1(d)–1(f) shows various

examples of the resulting DFDs.

Here, DW depinning properties have been studied by mea-

suring both DFD and relaxation data. In both experiments the

DW is pinned in the notch by saturation of the magnetization,

followed by the application of a reverse magnetic field. The

pinning of the DW in the notch is verified by a nanowire

resistance measurement, which quantifies the existence of

opposite domains (representing the magnetization direction

in the free layer of the spin valve) on each side of the notch.

For depinning field measurements, the field is ramped at a rate

of 2.5 Oe/s until the depinning is detected. For relaxation time

measurement, the field is set to a fixed value and the depinning

time is measured by monitoring the resistance every 100 ms.

The cumulative depinning probability P3(t) (probability for the

wall to be depinned at time t) is deduced from the depinning

time distribution.

These two types of measurements are shown for a device

(device A) in Figs. 2(a) and 2(b). The DFD is relatively simple,

with two peaks [Fig. 2(a)]. Relaxation time measurements have

been performed at fields close to the DFD peak values. At fields

less than 200 Oe, the cumulative depinning probability varies

exponentially with time and seems to saturate at a value of

less than 1. On the other hand, at higher fields (H > 200 Oe), a

high initial cumulative depinning probability is observed with

a slow exponential saturation toward 1 as a function of time.

In fact, the depinning probability can be expressed as a sum

of two exponentials with very different time constants (τ< and

τ>). The proportion of each exponential is quantified by the

proportion ratio r:

P3(t) = 1 − (1 − r)e−tτ< − re−tτ> (with τ> ≫ τ<). (1)

Fitting of the relaxation data gives the evolution of r, τ<, and

τ> as a function of field. Remarkably, the proportion ratio r has

a constant value (0.59). Both τ< and τ> have an exponential

variation in the range of interest [Fig. 2(a)]. Such an evolution

of the depinning probability can be explained by an alternative

paths model, where the characteristic times of each transition

can be deduced directly from experimental data:8
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FIG. 2. (Color online) (a) DFD histogram for device A (column). Time constants deduced from (b) (dots). DFD deduced from the multiple

injected DW model (dashed line). (b) Cumulated depinning probability for device A for different relaxation fields.
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FIG. 3. (Color online) (a) DFD histogram

for device B (column). DFD deduced from

the alternative paths model (dashed line).

(b) Cumulated depinning probability for de-

vice B for different relaxation fields. (c),

(d) Parameters deduced from the fit to cumu-

lated depinning probabilities (symbols). Para

meters deduced from the alternative paths model

(dashed line). (e) Parameters of the alternative

paths model, deduced from relaxation data (sym-

bols) and proposed modelization (dashed lines).

�P (t) is a vector representing the probability for the system

to be in each state (1,2,3). The initial condition is a DW in

configuration 1: �P (0) = (1,0,0).

Extrapolating the exponential field dependence of τ< and

τ> and integrating the previous equation over a linear time

variation of the magnetic field does not reproduce the observed

DFD. On the contrary, the simulated distribution (not shown)

exhibits mostly one peak. Indeed, in the whole field range it

is found that τ12 < τ13 ≪ τ23, so that the DW has a higher

probability to switch to state 2 than to be depinned (state 3).

The DFD contains only one peak associated with the 2 → 3

transition.

Rather than evoking the alternative paths model, the above

behavior can be explained considering the multiple injected

DW model [Fig. 1(b)]. Each type of DW has its own depinning

dynamic, characterized by τ 13 and τ 23. The proportion of each

type of DW depends only on the injection process and is

therefore field independent (it is quantified by η = r).

Figure 2(a) represents the DFD deduced from the integra-

tion of the following equation:

d �P (t)

dt
=




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− 1
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0 0

0 − 1
τ23

0

0 0 1
τ13

+ 1
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





�P (t) , (4)

with �P (0) = (1 − η,η,0).

The simulated DFD agrees well with the experimental data.

The hypothesis of two different characteristic times associated

with two different configurations of the pinned DW thus gives

a coherent view of the depinning process.

Considering that the characteristic times are described by

an Arrhenius law [τ = τ0 exp(�E/kBT )], the variation of

the energy barrier is therefore linear. Such a variation can

be interpreted as an effective Zeeman energy with E(H ) =

E0 − 2MV H (V being the effective volume of reversal). The

slope of ln τ (H) is thus 2MV/kBT . The two DWs have

similar slopes, 1.24 and 1.45 Oe−1, respectively, for τ 13

and τ 23 (these would result in an effective activation surface

of ∼5 nm2).

For device A, it has been shown that the set of experimental

data can be interpreted by the presence of two different types

of DW, together with thermally assisted depinning. Each

type of DW has its own single energy barrier. Note that the

occurrence of different injected magnetic configurations has

been observed in other nominally identical devices.22

Let us consider now another device, device B, nominally

identical to A. In that case the DFD is composed of only

one peak with a broad shoulder extending to low depinning

fields [Fig. 3(a)]. The cumulative distribution function of

the depinning time [Fig. 3(b)] appears to be quite different

from the one corresponding to device A [Fig. 2(b)]. Indeed,

even if the cumulative distribution functions of the depinning

time in Fig. 3(b) could be fitted also using two exponential

decays τ< and τ>, the proportion ratio r parameter in this

case appears to be field dependent, as shown in Fig. 3(c). The

two characteristic times can therefore not be attributed to the

injection of two different DWs (which would imply a constant

r value). Instead, the alternative paths model can in this case

explain the observed depinning relaxation rate. Figure 3(e)

shows the deduced τ 12, τ 13, and τ 23. The two characteristic

times τ 13 and τ 23 corresponding to depinning of the DW from

state 1 and state 2, respectively, logically decrease with the

applied field. By contrast, τ 12 increases with the applied field.

A similar field dependence for τ 12 has also been observed by

Attané et al.8 Such a result makes the model inconsistent with

DFD. Indeed, a simple monotonous variation of τ 12 at lower

fields implies that the 1 → 2 transition is much more probable

than the 1 → 3 transition. Starting at low fields, the system

would thus switch from state 1 to state 2 and the depinning

would occur only by the 2 → 3 transition. This would result in

a single peak in the DFD, and is inconsistent with experimental

data, which show a clear low-field shoulder in the depinning

probability distribution [Fig. 3(a)]. To avoid such discrepancy,

it is necessary to impose a nonmonotonous evolution of τ 12

with the field. As an example, the model of characteristic

times chosen in Fig. 3(e) (linear dependence on the field of
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the barrier height for τ 13 and τ 23, parabolic dependence for

τ 12) gives a reasonable agreement with the experimental data.

It reproduces qualitatively the DFD [dashed line in Fig. 3(a)]

and the relaxation parameters deduced from the fit [dashed

lines in Fig. 3(c)].

The effective Zeeman energy coefficients of the 1 → 3 and

2 → 3 transitions are, respectively, 0.11 and 0.42 Oe−1, values

somehow smaller than for device A. Furthermore, no simple

physical mechanism explains the nonmonotonous variation of

the barrier height for the transition 1 → 2. Nevertheless, pos-

sible explanations include resonant phenomena, fluctuations

between state 1 and state 2, changes in the DW configuration

with the applied field, or dynamical effects. It is also inter-

esting to note that, despite the completely different nature

of the DWs (planar versus perpendicular magnetization),

Attané et al. have observed a similar variation of τ 12. These

two separate observations might be the result of a universal,

complex depinning mechanism.

In conclusion, we have described in this paper two examples

of thermally activated complex mechanisms of DW depinning.

In the first case, the complexity of the DFD arises from

the presence of two different DW configurations at the

notch. In the second case, a more complex scheme has to

be invoked. Overall, a “two alternative paths” model can

account reasonably for the whole data set, even though the

exact mechanism behind the transition between the two paths

remains unclear. This result highlights the fact that analyses of

both the DFD and relaxation times are necessary to adequately

describe thermally activated complex depinning processes.

In particular, considering only relaxation time measurements

might easily lead to misinterpretation.
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