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Abstract18

It has been shown that a permutation can uniquely identify the joint set of an initial condition19

and a non-autonomous external force realization added to the deterministic system in given time20

series data. We demonstrate that our results can be applied to time series forecasting as well as21

the estimation of common external forces. Thus, permutations provide a convenient description22

for a time series dataset generated by non-autonomous dynamical systems.23
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The symbolic method is a powerful tool for analyzing time series data by24

coarse-graining. When the underlying dynamics is deterministic, a generating25

partition and symbolic dynamics may be used to convert an initial condition26

to an infinitely long symbolic sequence in a one-to-one manner. However, this27

method fails for non-autonomous dynamics, e.g. deterministic dynamical sys-28

tems in the presence of dynamical noise or external forces, because a partition29

cannot remove the uncertainty in specifying an initial condition. Here, we show30

that, unlike a generating partition for symbolic dynamics, permutations (ordinal31

patterns) can represent a real-valued time series generated by non-autonomous32

dynamical systems. We show that a permutation establishes a one-to-one cor-33

respondence with a realized orbit based on the joint set of an initial condition34

and external force realization added to the deterministic system, if the dynam-35

ics under dynamical noise is topologically transitive. Thus, our results explain36

why permutations, in some cases, can distinguish deterministic systems from37

stochastic systems. In addition, we demonstrate that our findings can be ap-38

plied to forecasting behavior as well as estimating common dynamical noise in39

random dynamical systems.40

I. INTRODUCTION41

In the analysis of time series data generated by dynamical systems, coarse-graining a42

state is one of the conventional approaches to describe dynamical systems [1–7]. This proce-43

dure is the cornerstone of statistical mechanics and provides a framework to describe several44

complex physical phenomena such as turbulent flow [8], molecular dynamics [9] among oth-45

ers. For example, in a deterministic dynamical system, a generating partition helps us to46

establish one-to-one correspondence between an initial condition and the orbit of symbolic47

dynamics. Subsequently, we can provide rigorous foundations and/or calculations [3, 7] as48

well as bridge the ideas coming from dynamical systems theory and information theory [10–49

12]. However, this method fails for stochastic dynamics because any partition cannot remove50

the uncertainty for a state in the system due to externally added noise [13, 14]. Recently,51

stochastic chaos in random dynamical systems has been studied theoretically and experi-52
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mentally [15, 16]. The main finding is the possibility to describe the behavior of complex53

systems such as turbulent forced flows with simple dynamical systems where non-essential54

degrees of freedom are lumped in the random dynamics. These studies clearly show the55

existence of open problems on nonlinear time series analysis for random / non-autonomous56

dynamical systems.57

Permutations (or ordinal patterns) or topological methods in nonlinear time series analy-58

sis, have been studied as an alternative analysis to coarse-grained dynamics [17]. It is known59

that we can estimate the Kolmogorov-Sinai entropy not only by generating partitions but60

also by permutations [18]. Distinguishing deterministic systems from stochastic systems is61

a recent trend in permutation studies. [19–25]. In physics, the interest is to understand62

whether a deterministic behavior can be separated from a stochastic dynamics, thus en-63

abling for simpler descriptions of complex systems, as in Ref. [16]. Here, we examine the64

hypothesis that a permutation can achieve a one-to-one correspondence with a joint set of65

an initial condition and a realization of the external force in random and non-autonomous66

dynamical systems, as the length of the permutations tends to infinity. The key idea is that67

the variety of permutations could grow super-exponentially as the size of permutations in-68

creases when the underlying dynamics is stochastic [24, 26]. This super-exponential growth69

can accommodate the information regarding the state space as well as a stochastic input70

series within a permutation.71

II. OUR SETTINGS AND THEORETICAL RESULTS72

We consider a non-autonomous dynamical system f : X × P → X73

xt+1 = f(xt, pt), xt ∈ X, pt ∈ P, (1)

Here xt is a model of the state of the dynamical system, and pt is a model of external force74

or noise, which drives the dynamical system at time t. Here we adopt both X and P as75

one-dimensional intervals.76

We assume the following [27]:77

1. The sequence {pt}t=0,...,n−1 is given beforehand as a hidden parameter to be estimated.78

2. The function f(x, p) is a continuous map and an embedding in terms of arbitrary p;79
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Namely, under xt+1 = f(xt, p), the parameter p corresponds to xt+1 in a one-to-one80

manner when we fix xt.81

Our goal is to estimate both x0 and {pt}t=0,...,n−1, based on the given time series data82

{xt}t=1,...,n. Here, as a shorthand, we write xt+1 = fpt(xt) and83

xt+1 = fpt(fpt−1(· · · fp0(x0) · · · ) = fpt0(x0), (2)

where pt0 = {pτ}τ=0,...,t.84

We now introduce the permutations [17, 18]. Suppose that a scalar time series st (t =85

1, 2, . . . , N) is given. Now, consider n consecutive measurements st, st+1, . . . , st+n−1 starting86

from time t. If we sort these measurements in the ascending order, we have87

st+t1 ≤ st+t2 ≤ · · · ≤ st+tn , (3)

where we define st+ti ≤ st+tj , if st+ti = st+tj and ti < tj. Then, the obtained series88

πt(n) = (t1, t2, . . . , tn) (4)

is called the permutation for time t with length n. It is known that the Kolmogorov-Sinai89

entropy can be obtained using permutations if the underlying dynamics is ergodic [18].90

We especially consider the dynamics in a one-dimensional spaceX and introduce a natural91

measure µ if for all test functions h : X → R, we have92

lim
N→∞

1

N

N−1∑
t=0

h(fpt0(x))→
∫
A

hdµ (5)

for almost all x ∈ A ⊂ X and for almost all pt0 [28]. We further assume that the non-93

autonomous dynamical system (2) has a natural measure.94

We refer to xt+1 = fpt0(xt) as topologically transitive if {xt} is dense in A ⊂ X. This95

definition can be equivalent to that if there exists t > 0 such that fpt0(U) ∩ V 6= φ for any96

pair of open sets U, V ⊂ A ⊂ X. Approximately, when one starts from an open set U ,97

we can visit the neighborhood of another open set V after finite iterations of f . Note that98

in general, the topological transitivity in random and non-autonomous dynamical systems99

depends on the given pt0. In other words, here we exclude the case where fpt0(x) only forms100

a finite periodic orbit because such an orbit is not dense on A. Our theoretical result is101

summarized as the following main theorem:102
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Theorem 1. Suppose f on X has a natural measure. Let [xin0−1, xin0+1] be an interval for103

an initial condition x0 specified by a permutation of length n. Similarly, [pt,n, p̄t,n] be an104

interval for the external force at time t specified by the same permutation. Then, each of105

[xin0−1, xin0+1] and [pt,n, p̄t,n] for each t converges to a single point when the length n of the106

permutation tends to infinity if and only if the dynamics f on X is topologically transitive.107

The following Lemma 1 and the contraposition of Lemma 2 lead to the above main108

theorem.109

Lemma 1. Suppose that the dynamics f on X is topologically transitive and has a natural110

measure. Then, a permutation can specify a joint set of an initial condition x0 and a real-111

ization of the external force {pt} as the length of the permutation goes to infinity. Namely,112

[xin0−1, xin0+1] and [pt,n, p̄t,n] for each t converge to single points, respectively.113

Proof. Suppose that the current length of permutations is n. Additionally, let us assume114

initially that x0 is neither the minimum nor the maximum of x ∈ X. Then, if x0 is the115

in0 -th point from below, the initial value x0 is sandwiched between the in0 − 1-th point xin0−1116

and the in0 + 1-th point xin0+1, namely, we have xin0−1 ≤ x0 ≤ xin0+1, which is an interval117

between the minimum and the maximum of x. Let us consider xin0−1 and xin0+1, separately.118

First, we consider xin0−1. Because we assume that the dynamics is topologically transitive,119

there is mL(1) > n such that x
i
mL(1)
0 −1 ∈ (xin0−1, x0), implying that xin0−1 < x

i
mL(1)
0 −1 < x0.120

By applying the same logic repeatedly, we can choose a sequence {mL(k) : k = 1, 2, . . .}121

such that x
i
mL(k)
0

< x
i
mL(l)
0

< x0 for 0 < k < l. Since the sequence of x
i
mL(k)
0

is always less122

than x0 and increasing monotonically, we have x
i
mL(k)
0

→ x0 when k → ∞. By using the123

similar logic, there is a sequence {mR(k) : k = 1, 2, . . .} such that x
i
mR(k)
0

> x
i
mR(l)
0

> x0 for124

0 < k < l. Thus, x
i
mR(k)
0

→ x0 when k →∞.125

Both limits mean that the interval [xin0−1, xin0+1] gets smaller and smaller, and converges126

to a single point x0 when the length of permutations tends to infinity. In addition, since127

the in0 -th point among n points can be rephrased as a certain percentile point on µ as a128

natural measure, the initial condition x0 can be specified on X. Therefore, the theorem has129

been proven. When x0 is either the minimum or the maximum of x ∈ X, we can make130

x0 a sandwich within [minx∈I x, xin0+1] or [xin0−1,maxx∈I x], respectively. Thus, the similar131

monotonic convergence argument discussed above holds for both cases.132
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As it has been found that a series of states {xt} is identified by the corresponding per-133

mutation, each pt can be inferred because now we assume that f(xt, p) is an embedding in134

terms of the arbitrary non-autonomous force p given xt. Therefore, if f is known, we can135

identify the joint set of {xt} and {pt} by the corresponding permutation as the length of136

permutations tending to infinity.137

Lemma 2. Suppose that the dynamics f on a one-dimensional space X is not topologically138

transitive. Then, a permutation cannot specify all the initial conditions and realization of139

the external force {pt} when the length of the permutation tends to infinity.140

Proof. Assume that the underlying dynamics on a one-dimensional interval is not topo-141

logically transitive. Then, there is some interval (a, b) ⊂ X such that any point for the142

underlying dynamics will not visit the interval (a, b) after any number of iterations, where a143

and b are some of the time points of the currently given time series up to some length n > 2.144

Therefore, if an initial condition starts within this interval, we cannot refine the uncertainty145

for such an initial condition even if we prolong the length for the permutation. Since {xt}146

is not identified, there is no clue for identifying {pt} using the permutation.147

Our theoretical foundation is based on topological transitivity, namely the denseness of148

orbits: If there is an interval within X, this interval is divided by future points obtained149

from the underlying dynamics. Thus, this interval is eventually narrowed to a point when150

the length of the permutations tends to infinity. Once each state is identified, we can also151

learn the value for dynamical noise because of the property of the embedding between pt152

and xt+1.153

Moreover, we note that, using the same logic, we can also uniquely specify a point xk for154

k (0 < k < n), which is demonstrated in numerical experiments in the next section.155

III. NUMERICAL RESULTS156

Here, we demonstrate how to use permutations for inferring a state as well as external157

noise. Our focus is on inferring information regarding the external force. For quantifying158

the external noise at a particular time, there are two approaches: (i) When we can access a159

time series of the external noise and (ii) when we cannot access a time series of the external160

noise.161
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When we can access a time series {pt} of the external noise p, we can estimate the mean162

state Mp
π(κ) for the κ-th relative point of the external noise p by using time segments sharing163

the same permutation π obtained by time series x in the modelling part of the time series.164

When we encounter a permutation π in the validating part of the time series, we just need165

to recall the corresponding mean state Mp
π(κ).166

When we cannot access a time series of the external noise, we try to reproduce the167

underlying metric space from the generated permutations. We can subdivide this case into168

two sub-cases. If we assume that the external force is slow, we can directly apply the idea169

of Ref. [29] to remove the state space information and reproduce the information of the slow170

external force. If we cannot assume that the external force is slow, then we need to have171

multiple observation nodes [30, 31] which are subject to the same external force to remove172

the information of state spaces and reproduce this sudden external force. In either case, we173

use a recurrence plot [32, 33], which helps us to transform the binary information of whether174

the two states for the corresponding times are neighbors to a metric space, or a distance175

matrix.176

A. Estimation of states177

In addition to the theoretical proofs provided above, we tested our hypothesis numerically.178

For testing our idea, we used the logistic map [34] and the Hénon map [35] subject to179

dynamical noise. The logistic map we used is defined as follows:180

xt+1 = (3.7 + εt)xt (1− xt) , (6)

where εt is a source of independent uniform noise on [−0.1, 0.1]. We chose the initial condition181

x0 from a uniform distribution on [0, 1] and observed the time evolution of the variable xt.182

Similarly, the Hénon map we used is defined as follows:183

xt+1 = 1− (1.2 + ηt)xt
2 + 0.3yt,

yt+1 = xt, (7)

where ηt independently follows a uniform distribution on [−0.05, 0.05]. In addition, we184

choose the initial conditions x0 and y0 from the uniform distribution on [0, 1]. Therefore,185

here we are considering dynamical systems subject to dynamical noise and discuss whether186

we can specify a state xt by a permutation.187
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Although our theorem is restricted to one-dimensional interval dynamics, we use the188

Hénon map to observe whether our claim holds for higher dimensional dynamical systems.189

We adopt xt as the observed time series. Our numerical approach aims to represent a time190

series using a series of permutations (see Fig. 1 for the intuitive illustration). Thus, by spec-191

ifying a permutation, we can eventually specify both series of states as well as stochastic192

inputs, simultaneously. Since a permutation eventually specifies a state in the limit for the193

length of permutation approaching infinity, representing points sharing the same permuta-194

tion with a point becomes a reasonable approximation. We generated two time series x195

and x′ of the length N from the same system. Here we set N = 1 000 000. For each time196

series x and x′, we also obtained a series of permutations {πt(n)} and {π′t(n)} by using197

permutations of length n. Then, we use the first time series x and its series of permutations198

{πt(n)} to compute the mean state199

Mx
π (κ) =

1

|#{πt = π|t = 1, 2, . . . , N}|
∑
t:πt=π

xt+κ (8)

for the κ-th point of each appearing permutation π. This step is similar to a step of the k-200

means algorithm [36]. Especially, we define the middle point K = bn/2c of the permutation.201

These mean states become our estimates for states corresponding to a permutation π since202

each permutation corresponds to a single initial condition as well as a single series of the203

external noise in the limit of the size of the permutation approaching to infinity. These means204

enable us to represent the second time series x′ by replacing each permutation π′t(n) with205

the corresponding mean Mx
π′t(n)

(κ) state of the κ-th point of permutation π′t(n) obtained206

from the first time series x. (If κ ≥ n, then such an estimation becomes a time series207

forecast.) Lastly, we evaluate the estimation error208

εx(κ− n+1) = Et
[∣∣x′t+κ −Mx

π′t(n)(κ)
∣∣] (9)

by comparing the second time series x′ and its representation {Mπ′t(n)(κ)|t = 1, 2, . . . , N −209

n+ 1} constructed by permutations. This approach is called the mean representation [6].210

We first estimated states using the mean representation method (Fig. 2). We found that211

states corresponding to the time period of permutations were estimated more accurately212

than the cases where we just used the mean states for all over the points of the entire time213

series.214

Moreover, we found a general tendency in the estimation error convergence to 0 with215

increasing length of permutations (Figs. 3 (a) and (b), for the logistic map [34] and the Hénon216
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FIG. 1. Schematic for explaining the first numerical approach, the mean representation.
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FIG. 2. Estimation errors for the current and future states. Panels (a) and (b) correspond to the

cases for the logistic map and Hénon map subject to dynamical noise, respectively. For control,

we showed the estimation errors by the overall means that do not depend on the position of the

corresponding attractor. Each error bar is obtained from the mean and the standard deviation for

ten simulations. Estimations for the future states can be rephrased as “forecasts” of the second

time series given the first time series.

map [35], respectively). When we rigorously compared the model of exponential decrease217

converging to a constant in the limit of n → ∞ with the model of exponential decrease218

converging to zero using the Akaike information criterion [37], the model of exponential219

decrease converging to zero was selected for both cases (see Fig. 4). Thus, these results220
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FIG. 3. Estimation error convergence by permutations in (a) the logistic map and (b) the Hénon

map. For panels (a) and (b), we used 10 time series of length 1 000 000 to obtain the means for the

estimation errors shown by +. The solid lines were obtained by fitting the model of exponential

decrease.

imply that a permutation corresponds to an initial condition, or a state, for these models.221

Furthermore, the mean representation method was extended so that we considered the222

means for q steps ahead by defining κ = n − 1 + q in Eqs. (8) and (9) to make them223

“forecasts”. Then, we found that we could forecast short-term prediction horizons up to 10224

and 4 steps ahead better, in the noisy logistic map (Fig. 2(a)) and the noisy Hénon map225

(Fig. 2(b)), respectively, than the method of control where we considered the simple means226

over all the points of the attractor. The accuracy of these forecasts was achieved because the227

permutations could specify the past states and noise realization, even though uncertainty228

was generated due to the current and future parts of dynamical noise as well as the sensitive229

dependence on the initial conditions.230

B. Estimation of realization of external force231

Theorem 1 implies that we can estimate the realization of the external force when there232

is a mathematical model for the dynamical system. However, our results imply that even233

if such a model f is not available, we can estimate the realization of external force in the234

following two cases:235
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FIG. 4. Comparison of Akaike information criterion between the exponential convergence model

without a constant term and with a constant term. Panels (a) and (b) correspond to the logistic

map and the Hénon map, respectively. For the exponential convergence model without a constant

term, we fitted the error model of b exp(−al), where l is the length of time series and b > 0. For the

exponential convergence model with a constant term, we fitted the error model of b exp(−al) + c,

where b, c > 0.

1. Dynamics of the external force is gradual compared with the driven intrinsic dynamics;236

2. We observe multiple time series whose intrinsic dynamics is governed by identical237

dynamics and are subject to a common external force.238

Therefore, Theorem 1 provides a way of obtaining the distribution of external noise as well.239

To evaluate this possibility, we have estimated the dynamical noise by using the mean240

representation method and recurrence plot [32, 33] (See Appendix A). We found that the241

mean representation method achieved lower estimation errors than merely using the same242

means over all the permutations when the time steps are those corresponding to the positions243

of permutations (Fig. 5). In addition, the estimation errors for the noise realization also tend244
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FIG. 5. Estimation errors for the current and future dynamical noise. See the caption of Fig. 2 to

interpret the results.

to decrease as the length of permutations increases (Fig. 6). Although we assumed here that245

a time series of noise realization for modeling is available, this result implies that we could246

narrow down the possible realization of dynamical noise using permutations. This direction247

enables us to construct a random dynamical system model.248
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FIG. 6. Estimation error for noise realization in (a) the logistic map and (b) the Hénon map.

The error bars show the means and standard deviations for the estimation errors obtained from 10

realizations of time series for each model. The rest of the conditions is the same as Fig. 3.
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When we used recurrence plots, we tested with three systems: the logistic maps with the249

common dynamical noise ηt: For an additive noise case, we use250

xi,t+1 = 3.7xi,t(1− xi,t) + ηt, (10)

for ηt ∈ [0, 0.05]; for a multiplicative noise case, we use251

xi,t+1 = (3.7 + ηt)xi,t(1− xi,t), (11)

for ηt ∈ [−0.2, 0.2].252

In the Hénon maps, we use253

yi,t+1 = 1− 1.2y2i,t + 0.3zi,t + ζt, (12)

zi,t+1 = yi,t, (13)

for the common additive dynamical noise ζt ∈ [−0.1, 0.1], or254

yi,t+1 = 1− (1.2 + ζt)y
2
i,t + 0.3zi,t, (14)

zi,t+1 = yi,t, (15)

for the common multiplicative dynamical noise ζt ∈ [−0.1, 0.1].255

Here, we also use a chaotic neuron model [38] to examine a more complicated situation.256

A chaotic neuron model is an extension of the Nagumo and Sato’s neuron model [39] by257

replacing the Heaviside function with the sigmoid function, which defines whether or not a258

neuron fires. In a chaotic neuron model [38], we use259

wi,t+1 = 0.5wi,t −
1

1 + e−wi,t/0.04
+ 0.24 + 0.02σt, (16)

for the common additive dynamical noise σt ∈ [−0.02, 0.02], or260

wi,t+1 = 0.5wi,t −
1

1 + e−wi,t/(0.04+0.01σt)
+ 0.24, (17)

for the common multiplicative dynamical noise σt ∈ [−0.01, 0.01]. Namely, states wi,t for261

multiple neurons at time t are forced by the common dynamical noise σt. Here, we assume262

that each of ηt, ζt and σt follows the independent and identical uniform noise, respectively.263

The number L of the maps were decided as the minimum number in the form of 10 × 2n264

with whose corresponding network, each time point is connected with all the other time265

points within 10 steps. We assigned each of the initial conditions xi,0, yi,0, zi,0, wi,0 by the266

13



FIG. 7. Estimating the common additive dynamical noise. Panels (a), (c), and (e) show the means

and standard deviations for the correlation coefficients between the estimated dynamical noise and

its truth calculated over 30 time series, while panels (b), (d), and (f) are examples of estimated

dynamical noise estimated for permutations of length 13. In each of the panels (b), (d), and (f),

the blue solid line corresponds to the true dynamical noise, while the red dashed line corresponds

to one of the reconstructed dynamical noise. Panels (a) and (b) show the examples for the logistic

maps, Panels (c) and (d) show the examples for the Hénon maps, and Panels (e) and (f) show

the examples for the chaotic neurons. In each simulation, we adjusted the minimum number L of

maps as 10 × 2n that each time point is connected with all the other time points within 10 steps

when we regard the final recurrence plot as a network [31]. Note that there is a degree of freedom

for the scaling the estimated dynamical noise. Thus, in Panels (b) ,(d), and (f), we adjusted the

reconstructed dynamical noise so that the mean and standard deviation were the same as the actual

truth as well as the direction for the reconstructed dynamical noise matches the truth.
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FIG. 8. Same as Fig. 7 but for multiplicative dynamical noise.

uniform distribution between 0 and 1, and generated a time series of length 500 each. We267

repeated this simulation 30 times to examine the robustness of our findings. We identified the268

tendency for longer permutations to perform more effectively in estimating the underlying269

dynamical noise (see panels (a), (c), and (e) of Figs. 7-8) for the additive dynamical noise270

and multiplicative dynamical noise, respectively. Examples shown in panels (b), (d), and (f)271

demonstrate that the dynamical noise reconstructed via recurrence plots agreed well with272

the true dynamical noise.273

Overall, these numerical simulations confirmed that a permutation can specify a realiza-274

tion of the external forces, especially dynamical noise, which can be fast in its time scale.275
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IV. DISCUSSIONS276

The goal of this study was to show theoretically and numerically that permutations can277

uniquely characterize the dynamics and the external forcings in non-autonomous dynamical278

systems. There are several related studies, and modeling of nonlinear stochastic systems is279

not new, for example, [40]. Güttler et al. [41] reconstructed the parameter space from the280

measured time series observed for fixed or slowly varying parameters. Recently, Hamilton281

et al. [42] proposed a filtering technique with dynamical noise without explicitly modeling282

the underlying system. The closest study is the one by Seifert et al. [43], where a Langevin283

equation is assumed for inferring external forces from a measured time series. However,284

because this work assumes a Langevin equation, the underlying dynamics should be a flow285

and thus, this technique cannot be applied to a time-discontinuous system. In this sense,286

the current results could work in a more general setting and provide a rigorous approach for287

analyzing a non-autonomous system, while its target system could be a map.288

Since the number of possible states in permutations increases in a combinatorial manner289

rather than in an exponential manner, a typical example of which is symbolic dynamics290

obtained by a generating partition, permutations can overcome dynamical noise by their291

redundancy [44]. This super-exponential growth is important in enabling a permutation to292

retain the information regarding both the state space as well as a stochastic input series.293

If we consider this kind of redundancy, recurrence plots [31–33, 45, 46] can also provide294

one-to-one correspondence between a time series generated from a stochastic system and its295

representations.296

The current work can be regarded as related to the fundamentals of the mechanism297

by which permutations can distinguish deterministic systems from stochastic systems [19–298

25, 47], and validate the analysis of transition matrices [23, 48] induced by a permutation299

for a stochastic system.300

In summary, a permutation can uniquely identify a state for the underlying dynamics301

even if the dynamics is subject to realization of external force. We provided the mathemat-302

ical proof (Theorem 1) that the unique specification of a joint set of an initial condition and303

a realization of the external force by a permutation is equivalent to the condition for the304

topological transitivity of the given dynamics. We also presented numerical demonstrations305

using the mean representation as well as the recurrence plots to show that estimating the306
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realization of the unknown external force is possible. By specifying a permutation, we can307

ultimately uniquely identify series of states as well as stochastic inputs. Thus, a permu-308

tation can be used for time series forecasts of random dynamical systems. From another309

viewpoint, topological transitivity is a good criterion for evaluating the chaotic nature for310

the underlying dynamics even when it is generated by random and non-autonomous dy-311

namical systems. Although this point will be further examined in our upcoming research,312

permutations are certainly expected to provide a rigorous platform for analyzing random as313

well as deterministic dynamical systems.314

SUPPLEMENTARY MATERIAL315

The supplementary material includes codes for reproducing numerical calculations and316

plots presented in Figs. 2-8. Once you unzip the supplementary material, such codes for317

each figure can be found separated into each folder.318
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Appendix A: Estimation of realization of external force327

We estimate dynamical noise from observations from multiple maps by extending the328

method of Ref. [31] (see Fig. 9). First, we obtained an order recurrence plot [49] using329

permutations of the same length l (Each permutation πi,t(l) corresponds to the information330

for the joint set (xi,t, pt, pt+1, . . . , pt+l−2)). An order recurrence plot is a two-dimensional331
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figure and can be defined as follow:332

Ri(j, k) =

 1, if πi,j(l) = πi,k(l),

0, otherwise.
(A1)

Then, we applied the OR operations for the order recurrence plots to obtain the resulting333

recurrence plot [31], which corresponds to the information of pt, pt+1, . . . , pt+l−2. Namely,334

we define335

R(j, k) =

 1, if Ri(j, k) = 1 for some i = 1, 2, . . . , I,

0, otherwise.
(A2)

Furthermore, we took the AND operations for R(j+m, k+m) components for each (j, k) for336

m = 0, 1, . . . , l− 2 by duplicating the resulting recurrence plots and applying time delays to337

obtain the final components R̃(j, k) for the final recurrence plot. In mathematical language,338

we define339

R̃(j, k) =

 1, if R(j +m, k +m) = 1 for all m = 0, 1, 2, . . . , l − 2,

0, otherwise.
(A3)

With these AND operations, we could narrow down the information for pt represented in340

the final recurrence plot. Lastly, we converted the final recurrence plot to a time series by341

the method of Ref. [31], which has mathematical support [45, 46]. On this process, first we342

regard a recurrence plot as a graph. In this graph, a time point corresponds to a node, and343

points plotted (j, k) and (k, j) correspond to an edge between j and k. Then, we assign to344

each edge the following local distance d:345

d(j, k) = 1−
∑

l R̃(j, l)R̃(k, l)∑
l R̃(j, l) +

∑
l R̃(k, l)−

∑
l R̃(j, l)R̃(k, l)

. (A4)

Second, we obtain the shortest distance between every pair of nodes on this graph, con-346

structing a distance matrix of global distances. For this procedure, we may use Dijkstra’s347

algorithm or Johnson’s algorithm [50]. Third, we use multidimensional scaling for convert-348

ing the distance matrix to a time series. If we extract the most significant component,349

this component corresponds to the common dynamical noise. Thus, we can transform the350

information of the recurrence matrix, or the adjacency matrix, to that of the corresponding351

metric space, resulting in the estimated time series for the common dynamical noise.352
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[18] J. M. Amigó, M. B. Kennel, and L. Kocarev, Physica D 210, 77-95 (2005).372
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