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1. INTRODUCTION 

Urban environments are naturally complex and heterogeneous sources of information. The data they 

generate, these “geospatial” urban data, can take many forms, descriptions, and may follow many 

different standard formats. The data presented in these formats are generally incompatible with each 

other and cannot always be easily queried. This poses a problem for researchers, historians, and city 

planners – among many other stakeholders – as it becomes difficult to take all the available data into 

account without conversion or making several, distinct queries in separate databases. 

It is critical for these groups to understand what this information represents and how it inter-relates among 

itself. Observing these relationships and how they evolved over time can give a more detailed view of 

how the past decisions of city planners impacted cities historically and in the present, which in turn allows 

more informed decision making about planning and developing cities for the future. 

Is there a way to link and query these various forms of urban data side-by-side, and if yes, how can we 

accomplish this? What do we precisely gain from this representation? And what are the limitations of the 

format? 

1.1. General Context 

Geospatial urban data or multi-dimensional urban data, as they contain a locational or spatial context, fall 

under many types of representations and visualizations. Multi-dimensional urban data are sometimes 

referred to as n-D or n-dimensional data, as they can be represented in 2D (floorplans, satellite imagery), 

3D (CAD models, terrain topology), with thematic and additional information such as administrative 

documents, sketches, and articles, and temporally as they change over time. In recent years, many 

different formats have seen a rise in use to model, store, and visualize this broad type of urban 

information. Spatial Data Infrastructures (SDI) can provide standardized frameworks for structuring and 

sharing geospatial data [1], Geographic Information Systems (GIS) and Building Information Models 

(BIM) provide tools and models for the analysis and capture of 3D and geospatial data [2]. The Open 

Geospatial Consortium (OGC) – an international consortium of more than 500 businesses, government 

agencies, research organizations, and universities – provides over 60 unique standardized geospatial 

data formats and frameworks [3]. With such a large volume of methods for serializing urban data, the 

need to inter-relate this information is ever present to create a more complete representation of the urban 

landscape. 

A possible approach to this problem is to implement semantic web technologies and move multi-

dimensional urban data into linked-data models. In order to manipulate an existing body of this data 

alongside other formats, we propose using a conversion tool to transform the data into a linked data, 

supported by an ontology, allowing us to take advantage of existing standards and to permit querying this 

data alongside other linked data. The dataset we propose to convert will be based in CityGML; an XML 

based SDI extension of GML proposed by the OGC for modeling virtual cities in 3D. Its final 

representation will be in OWL/RDF; a graph-based ontology language proposed by the World Wide Web 

Consortium (W3C). 
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1.2. Urban Data Within Graphs and Ontologies 

Resource Description Framework (RDF) is a standard model for linked data interchange information on 

the Web. Its structure consists of sets of assertions called triples. Triples are composed of subjects, 

predicates, and objects (fig. 1) where the subject is the topic of the assertion, the predicate describes the 

relationship between the subject and object, and the object is either another subject or a primitive datum 

such as a string or integer. With this structure, we can create a graph to describe the relationships 

between points of information by using the subjects and objects as nodes and the predicates as the 

edges between the nodes. 

The semantic web builds on the framework laid out with RDF. RDF Schema (RDFS) and the Web 

Ontology Language (OWL) allow us to add context to RDF triples. Categories or types of objects are 

described with Classes, their instances are called Individuals, their characteristics are called Datatypes, 

and the relationships between all these concepts are called Properties (fig. 2). Although research in 

implementing this semantic web stack are still ongoing, several research efforts have already been made 

[1], [2], [4]–[7] in representing geospatial and urban data in linked data and ontological formats. 

Furthermore, there is an official semantic web resources proposed by the OGC for representing this data: 

GeoSPARQL – a geospatial ontology and a functional extension to the RDF query language SPARQL. 

However, none of these approaches provide a semantic representation of CityGML’s features nor a 

method for converting CityGML features into RDF/OWL. 

The SPARQL Protocol and RDF Query Language (SPARQL) is one of, if not, the most common means 

of querying RDF data. Generally, queries are SQL-like as they utilize SELECT-WHERE statements to 

extract data from RDF. Queries are formulated in a triple structure - like RDF - with the intention of 

returning statements that match the patterns denoted in the query. The GeoSPARQL extension to these 

queries adds spatial functions, such as geof:sfIntersects, and geof:sfOverlaps, that return datum which 

Subject Object 
Predicate 

Figure 1. RDF triple structure 

Figure 2. CityGML 2.0 Ontology: Geometry Classes and Properties [8]  
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satisfy the spatial relations described by these functions, giving us a powerful tool for retrieving and 

analyzing the CityGML data after conversion. 

This report will enumerate the work done by exploring the previously mentioned proposal as follows: 

Section 2 proposes the conception and development of a proof of concept tool1 to convert CityGML 

information into linked data and its experimentation during the project. Finally, section 3 will conclude with 

a synthesis of the results and perspectives gained from the project. 

 

2. FROM CITYGML URBAN DATA TO LINKED DATA: A PROPOSED APPROACH 

To create a proof of concept tool for the generation of geospatial data from CityGML, an XSLT-based 

pipeline was created, specifically based on [8]–[12] and proceeds as follows (fig. 3): 

1. The generation of an intermediate XSLT to transform CityGML instances to RDF from the GML 

and CityGML application schema. 

2. Generation of CityGML RDF instances using the previously generated XSLT and CityGML data 

from the metropole of Lyon. 

3. The creation of an OWL ontology to describe the resulting CityGML instances from the GML and 

CityGML application schema. 

During each transformation, the resulting information must be logically consistent and maintain its 

interoperability from CityGML. To ensure this, several challenges need to be overcome. For instance, the 

RDF structure and types generated from the GML instances must conform to the model described by the 

ontology. How can mappings be created to ensure this? CityGML application schema often implements 

elements that do not have a direct equivalent in OWL or RDF. How should these elements be represented 

to best describe CityGML as semantic data? In addition, CityGML schema often draws from elements, 

 
1 https://github.com/VCityTeam/UD-Graph 

Figure 3. General Approach pipeline 
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types, functionality from external schema such as GML, xLinks and xAL addresses. How should these 

imports be addressed to preserve their original functionality? 

The workflow of the processes in this report is broken up into two pipelines: an instance transformation 

pipeline and a model transformation pipeline. Both pipelines are treated as activities in a 3rd “complete” 

pipeline which illustrates the conversion process in its entirety and how the various application schema 

of GML, CityGML, and other imported schema are combined.  

Fig. 4 shows the activity diagram for the instance transformation pipeline. In this workflow, the CityGML 

schema is passed into an XSLT processor to extract the semantic metadata within and create a second, 

domain specific, XML to RDF XSLT stylesheet. This second stylesheet can be used to transform XML 

instance files – that conform to the CityGML application schema – into RDF. The stylesheet implements 

the OWL vocabulary to produce OWL individuals and contains specialized transformations for GML 

elements to integrate GeoSPARQL vocabulary. The resulting RDF output file of the second 

transformation will contain import statements for the CityGML ontology as suggested in [9]. After the 

instance file is produced, a final “postprocessing” activity is performed to validate the generated RDF. 

This activity utilizes a Python script with the lxml library to parse the RDF graph and primarily removes 

any duplicate instances or properties. Note that the output documents shown in Fig. 4 are serialized in 

RDF and use the ‘.rdf’ file suffix, but all outputs still implement the OWL vocabulary whenever necessary. 

The process for converting the CityGML application schema into an OWL starts with a transformation 

activity where the XML Schema model to OWL mapping patterns and strategies proposed in [8], [9], [13], 

[14] are implemented. The mapping patterns used in model and instance transformation are synthesized 

from these works in XML Schema to OWL transformations. Table 1 denotes the general mapping patterns 

used to facilitate these transformations. After the transformation activity, a postprocessing script is run on 

the ontology, like the one utilized in the instance conversion activity. This script imports and integrates 

the GeoSPARQL ontology, and fully qualifies any namespace prefix used in RDF attributes such as 

rdf:resource. This renders an OWL ontology constrained by the CityGML application schema, thus 

providing a model for the OWL individuals created in the instance transformation process. 

Figure 4. Instance Conversion Activity Diagram 
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Due to the large number of schemas used to model GML and the modules of CityGML, these processes 

would have to be run several times per schema document to create a complete CityGML ontology. In 

addition, the elements in CityGML and GML often refer to and rely on information stored in each other 

and in external schema documents and thus the XSLT processor must have access to all referenced 

metadata at the same time. In the XML schema vocabulary, this external information is referenced 

through xs:import and xs:include statements that link to the external document. In order to solve this issue 

for CityGML and GML a “composite” schema made up of all the elements and type declarations of every 

required schema will be created. 

After a composite schema is created, it will be passed to both transformation activities. The schema 

compilation activity must also normalize or fully qualify the namespace prefixes from each schema 

document to match. This is required to maintain consistent naming conventions and to simplify 

namespace resolution during transformations as prefixes may change between schema documents and 

RDF requires fully qualified namespaces anytime a URI is given. This activity will also remove leading 

and trailing whitespace between XML elements and from element text to provide the “cleanest” and most 

compact schema possible. Like the previous activities not powered by an XSLT processor, this XML 

schema compilation activity is manifested by a Python script using the lxml library. 

Table 1. Chosen XML Schema to OWL mapping patterns based on [10]–[12], [14] (contributed pattern in orange) 

XML Schema Element or Attribute OWL Target 

xs:complexType owl:Class 

xs:simpleType rdfs:datatype 

Global xs:element with a type of an xs:complexType owl:Class with an rdfs:subClassOf relationship to the 
type 

Global xs:element with a type of an xs:simpleType rdfs:datatype with an owl:equivalentClass relationship to 
the type 

child xs:element of a xs:complexType with a 
xs:complexType type 

owl:ObjectProperty with an rdfs:domain of the parent 
type and rdfs:range of its own type 

child xs:element of a xs:complexType with a 
xs:simpleType or native xs datatype type 

owl:DatatypeProperty with an rdfs:domain of the parent 
type and rdfs:range of its own type 

xs:attribute owl:DatatypeProperty with an rdfs:domain of the parent 
type and rdfs:range of its own type 

xs:sequence or xs:all owl:restriction composed of owl:intersectionOf 

xs:group owl:Class 

xs:attributeGroup owl:Class 

substitutionGroup attribute rdfs:subClassOf 

base attribute rdfs:subClassOf, owl:DatatypeProperty, or 
owl:ObjectProperty depending on the type of content 

minOccurs attribute owl:minCardinality 

maxOccurs attribute owl:maxCardinality 

xs:choice owl:disjointUnionOf 

 

2.1. Transforming CityGML Instances into RDF 

When generating the CityGML instance to RDF transformation, it is important that the patterns created 

are general enough to be reused and can take advantage of the CityGML vocabulary whenever possible. 

This process will use the general structure of the XML to RDF mappings proposed in [8], [9] in addition 
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to some GML to RDF mapping concepts proposed in [1], [11], [15]. There will also be consideration taken 

so that these mappings work with the ontology to be generated in alongside the RDF data. 

In general, three types of mappings will be created from the schema: 

1. All global xs:element elements that have the type of an xs:complexType create a template for 

generating owl:NamedIndividuals. 

2. All xs:complexType, xs:simpleType, xs:attributeGroup, and xs:group elements create a template 

that compiles the templates for every possible child element, text, and attribute of the element. 

3. All xs:attributes or xs:elements which are children of xs:complexTypes or xs:groups create 

templates for owl:ObjectProperties and owl:DatatypeProperties. 

To illustrate how these mapping types work, we will use an example from the CityGML core module. Fig. 

5 shows the schema for the core:_CityObject element and its type, core:AbstractCityObjectType. The 

initial transformation of these schema elements, as proposed in this report, would yield a transformation 

pattern as shown in Fig. 6. 

To generate this result, three transformations patterns are implemented. First, if a global xs:element is 

found – such as core:_CityObject – and it has a type of an xs:complexType or has a child 

xs:complexType, a template will be generated to create an individual. The template generated will use 

the gml:id attribute of the element it matches as the rdf:ID of the instance as proposed in [11]. If no gml:id 

is available, a unique id will be generated and appended to the local name of the element. Also as 

suggested in [11] the rdf:type of each individual should be generated from its local name and this is well 

implemented here. However, in this proposal the tertiary conversion to GeoSPARQL will be made based 

on this rdf:type and thus the full name will be used to distinguish between a gml geometry element and a 

feature. After the individual is named and typed, the template will call a reusable template generated from 

<xs:complexType name="AbstractCityObjectType" abstract="true"> 

  ... 

 <xs:complexContent> 

  <xs:extension base="gml:AbstractFeatureType"> 

   <xs:sequence> 

    <xs:element name="creationDate" type="xs:date" minOccurs="0"/> 

    <xs:element name="terminationDate" type="xs:date" minOccurs="0"/> 

    <xs:element name="externalReference" type="ExternalReferenceType" 

minOccurs="0" maxOccurs="unbounded"/> 

    <xs:element name="generalizesTo" type="GeneralizationRelationType" 

minOccurs="0" maxOccurs="unbounded"/> 

    <xs:element name="relativeToTerrain" type="RelativeToTerrainType" 

minOccurs="0"/> 

    <xs:element name="relativeToWater" type="RelativeToWaterType" 

minOccurs="0"/> 

    <xs:element ref="_GenericApplicationPropertyOfCityObject" 

minOccurs="0" maxOccurs="unbounded"/> 

   </xs:sequence> 

  </xs:extension> 

 </xs:complexContent> 

</xs:complexType> 

<!-- ================================================================================ --> 

<xs:element name="_CityObject" type="AbstractCityObjectType" abstract="true" 

substitutionGroup="gml:_Feature"/> 

Figure 5. core:AbstractCityObjectType and core:_CityObject application schema 
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the xs:complexType type of the element. This template will contain the CityGML to RDF templates to 

generate the owl:ObjectProperties and owl:DatatypeProperties for the individual.  

The second type of mapping concerns the transformation of the xs:complexType element. It contains 4 

sub-transformations that determine the elements and attributes the type could have and create a template 

that calls additional templates to create the appropriate owl:ObjectProperty and owl:DatatypeProperties. 

The sub-transformations are as follows: 

1. Collect all descendant xs:elements and call the matching templates to generate 

owl:ObjectProperty or owl:DatatypeProperty  templates depending on the content of the element. 

<xsl:template match="//core:_CityObject"> 

  <owl:NamedIndividual rdf:about="{if ( @gml:id ) 

           then @gml:id 

           else concat( local-name(), '_', generate-id() )}"> 

    <rdf:type rdf:resource="core:_CityObject"/> 

    <xsl:call-template name="core:AbstractCityObjectType_Template"/> 

  </owl:NamedIndividual> 

</xsl:template> 

 

<xsl:template name="core:AbstractCityObjectType_Template"> 

  <xsl:for-each select="./core:creationDate"> 

    <xsl:call-template name="core:creationDate_Property"/> 

  </xsl:for-each> 

  <xsl:for-each select="./core:terminationDate"> 

    <xsl:call-template name="core:terminationDate_Property"/> 

  </xsl:for-each> 

  <xsl:for-each select="./core:externalReference"> 

    <xsl:call-template name="core:externalReference_Property"/> 

  </xsl:for-each> 

  <xsl:for-each select="./core:generalizesTo"> 

    <xsl:call-template name="core:generalizesTo_Property"/> 

  </xsl:for-each> 

  <xsl:for-each select="./core:relativeToTerrain"> 

    <xsl:call-template name="core:relativeToTerrain_Property"/> 

  </xsl:for-each> 

  <xsl:for-each select="./core:relativeToWater"> 

    <xsl:call-template name="core:relativeToWater_Property"/> 

  </xsl:for-each> 

  <xsl:for-each select="./core:_GenericApplicationPropertyOfCityObject"> 

    <xsl:call-template name="core:_GenericApplicationPropertyOfCityObject_Property"/> 

  </xsl:for-each> 

  <xsl:call-template name="gml:AbstractFeatureType_Template"/> 

</xsl:template> 

 

<xsl:template name="core:creationDate_Property"> 

  <core:creationDate> 

     <xsl:value-of select="text()"/> 

  </core:creationDate> 

</xsl:template> 

 

<xsl:template name="core:terminationDate_Property"> 

  <core:terminationDate> 

     <xsl:value-of select="text()"/> 

  </core:terminationDate> 

</xsl:template> 

 

<xsl:template name="core:externalReference_Property"> 

  <core:externalReference rdf:resource="{if (./*/@gml:id) 

          then ./*/@gml:id 

          else concat( local-name(./*), '_', 

            generate-id(./*) )}"/> 

</xsl:template> 

... 

Figure 6. Generated CityGML to RDF XSLT  from core:_CityObject and core: AbstractCityObjectType 
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a. If an element belongs to a substitutionGroup the corresponding templates for all 

elements in that group must also be generated. 

2. Collect all descendant xs:attributes and call the matching templates to generate 

owl:DatatypeProperty templates. 

3. If there is an xs:extension or xs:restriction of any other type, the template for that type must be 

generated as well according to the base attribute. 

4. Collect all xs:group and xs:attributeGroup references and call the matching templates for these 

groups. 

Normally the template for core:_CityObject will never be called as it is an abstract xs:element, however 

in the case of the bldg:Building element – which is often used in CityGML instances – both elements are 

in the same substitutionGroup and can be used interchangeably. bldg:Building also has the complex type 

bldg:AbstractBuildingType which inherits the same complex type template as 

core:AbstractCityObjectType. Because of these relationships, whenever a bldg:Building element is 

declared, its transformation pattern will call the template for core:AbstractCityObjectType. 

Another XML transformation proposed is the conversion of xs:complexTypes with xs:simpleContent. 

Transformation mapping patterns of xs:simpleContent and xs:complexContent to OWL are proposed in 

[14] but without a transformations for XML instances of these types. xs:simpleContent proved to be one 

of the more complicated instance transformations to RDF as xs:complexTypes are always transformed 

into owl:classes yet xs:simpleContent constrains the type to only contain attributes and/or text with no 

child elements. This implies that these types can sometimes appear as rdfs:Datatype elements. For 

example, Fig. 7 shows the schema for one such type, gml:MeasureType. In XML this type could be 

instantiated as an element with a text value of a double and an attribute of a URI. 

This report bases the proposed instance transformation of these types off of the approach used in [14] 

with several transformation mappings listed in table 2. In the case that the complex type with a simple 

content has an xs:restriction of a type, a new rdfs:datatype and owl:DatatypeProperty would be declared 

in the ontology according to these restrictions and should be used when transforming the instance data 

into RDF. Note, that when referencing the newly created datatype of an xs:restriction, ‘Datatype’ is 

appended to the name of the type and the property to avoid overlapping identifiers . Otherwise when the 

simple content is based on an xs:extension of datatype or simple type, there is only an 

owl:DatatypeProperty created that links to the datatype value.  

<xs:complexType name="MeasureType"> 

  ... 

<xs:simpleContent> 

  <xs:extension base="xs:double"> 

    <xs:attribute name="uom" type="xs:anyURI" use="required"/> 

  </xs:extension> 

</xs:simpleContent> 

</xs:complexType> 

Figure 7. gml:MeasureType application schema 
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Table 2. XML Schema to RDF intstance mapping patterns 

 

One departure from the previous XML schema to OWL approaches is how xs:group and 

xs:attributeGroup are transformed. In [13], [14] both of these elements are converted into owl:Classes as 

they contain elements and attributes like xs:complexTypes. However, in the context of CityGML and XML 

to RDF data generation these groups serve mostly utility and do not appear in XML instances as individual 

elements. For instance, Fig. 8 shows a GML group and a complex type which references this group and 

Fig. 9 shows a CityGML instance that implements them both. 

XML Schema pattern Target instance pattern 

<xs:complexType name="TypeName"> 
  <xs:simpleContent> 

    <xs:extension base="nativeDatatypeName"> 
      ... 
    </xs:extension> 

  </xs:simpleContent> 
</xs:complexType> 
 

 
<owl:NamedIndividual> 

  <rdf:type rdf:resource="TypeName"/> 
  <hasNativeDatatypeName> 
    someValue 

  </hasNativeDatatypeName> 
  ... 
</owl:NamedIndividual> 

<xs:complexType name="TypeName"> 
  <xs:simpleContent> 
    <xs:extension base="simpleTypeName"> 

      ... 
    </xs:extension> 
  </xs:simpleContent> 

</xs:complexType> 
 

 
<owl:NamedIndividual> 
  <rdf:type rdf:resource="TypeName"/> 

  <hasSimpleTypeName> 
    someValue 
  </hasSimpleTypeName> 

  ... 
</owl:NamedIndividual> 

<xs:complexType name="TypeName"> 
  <xs:simpleContent> 
    <xs:restriction base="nativeOrSimpleDatatype"> 

      ... 
    </xs:restriction> 
  </xs:simpleContent> 

</xs:complexType> 
 

 
<owl:NamedIndividual> 
  <rdf:type rdf:resource="TypeName"/> 

  <hasTypeNameDatatype> 
    someValue 
  </hasTypeNameDatatype> 

  ... 
</owl:NamedIndividual> 

<xs:group name="gml:StandardObjectProperties"> 

  ... 

 <xs:sequence> 

   <xs:element ref="gml:metaDataProperty" minOccurs="0" maxOccurs="unbounded"/> 

   <xs:element ref="gml:description" minOccurs="0"/> 

   <xs:element ref="gml:name" minOccurs="0" maxOccurs="unbounded"> 

      ... 

   </xs:element> 

 </xs:sequence> 

</xs:group> 

 

<xs:complexType name="gml:AbstractGMLType" abstract="true"> 

  ... 

 <xs:sequence> 

   <xs:group ref="gml:StandardObjectProperties"/> 

 </xs:sequence> 

 <xs:attribute ref="gml:id" use="optional"/> 

</xs:complexType> 

Figure 8. gml:StandardObjectProperties and gml:AbstractGMLType application schema 

<bldg:Building gml:id="A23"> 

    <gml:name>Example Building</gml:name> 

    <gml:description>An example of a building</gml:description> 

</bldg:Building> 

Figure 9. Example CityGML bldg:Building using gml:StandardObjectProperties 
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In the instance, the bldg:Building element of the complex type is clearly instantiating child elements from 

the xs:group however there is no actual reference to the group itself. That is to say, the child elements of 

gml:StandardObjectProperties are instantiated but the group itself is not formally instantiated. 

Functionally, xs:groups and xs:attributeGroups serve as a reusable collection elements and attributes. 

This report argues that because of this behavior, they do not represent owl:Classes but are simply 

features of the XML schema vocabulary. Instead, in XML to RDF transformation, these groups can be 

transformed into templates that simply contain references to the templates of their properties (fig. 10). 

Transformations will also map the original GML literal values to an RDF triple using GeoSPARQL’s 

geo:asGML datatype property, if an instance’s type is in the substitution group of gml:_Geometry. This 

process is covered in detail in section 2.3. Once an instance document is transformed, it must be scanned 

for malformed RDF triples and fully qualifies any RDF attributes that contain prefixed URI strings such as 

rdf:resources, rdf:type, and rdf:about. These transformations follow the “garbage in, garbage out” concept 

that poorly formed data input into a program, will produce nonsensical results, and thus assume that the 

GML and CityGML instance documents provided are well structured and conform to their application 

schema. If this assumption is met, the resulting data should conform to the ontology transformation 

discussed in the following section. 

2.2. Generating a CityGML Ontology from XML Schema 

During development, several choices were made to create a transformation of the CityGML application 

schema that respects its original structure while maintaining logical consistency, even when considering 

the inferences of an OWL reasoner. In particular: what should be done with schema elements which have 

no direct representation in OWL? How to standardize and automate namespace and identifier 

generation? And finally, how should all these things be considered under the context of generating RDF 

data from CityGML alongside this ontology? 

The first of these choices that was made was regarding the transformation of schema elements with no 

direct representation in OWL. In the case of xs:choice a combination of owl:intersectionOf, owl:unionOf, 

and owl:complementOf are suggested in several approaches [9], [13], [14], [16]. In description logic, 

unions, intersections, and complements are analogous to logical 'and', 'or', and 'not' relationships, 

<xsl:template name="gml:AbstractGMLType_Template"> 

  <xsl:if test="@gml:id"> 

     <xsl:call-template name="gml:id_Property"/> 

  </xsl:if> 

  <xsl:call-template name="gml:StandardObjectProperties_Template"/> 

</xsl:template> 

 

<xsl:template name="gml:StandardObjectProperties_Template"> 

  <xsl:for-each select="./gml:metaDataProperty"> 

     <xsl:call-template name="gml:metaDataProperty_Property"/> 

  </xsl:for-each> 

  <xsl:for-each select="./gml:description"> 

     <xsl:call-template name="gml:description_Property"/> 

  </xsl:for-each> 

  <xsl:for-each select="./gml:name"> 

     <xsl:call-template name="gml:name_Property"/> 

  </xsl:for-each> 

</xsl:template> 

Figure 10. Generated CityGML2RDF gml:AbstractGMLType and 
gml:StandardObjectProperties XSLT Templates 
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respectively. More precisely, the use of xs:choice is analogous to the description of a class that contains 

the group of 'exclusive or' (XOR) properties. In the case of two properties ‘A’ and ‘B’, a class created from 

an xs:choice statement would have either A or B but not both, as shown in Figure 11 and equation 1. 

 

 (A ∪ B) ∩ (A ∩ B)C (1) 

 

This approach, however, requires an exponentially growing number of statements as more xs:choice 

children are transformed. This is because each intersections of each statement must be declared pairwise 

disjoint as shown in Figure 12 and equation (2). 

 

 (A ∪ B ∪ C) ∩ ((A ∪ B) ∩ (B ∪ C) ∩ (A ∪ C))C (2) 

 

While both of these approaches are logically valid for representing CityGML schema in OWL, an 

approach using OWL-2's owl:disjointUnionOf was experimented with (fig. 14), which provides a more 

concise transformation. The example in Fig. 13 could be converted into the RDF in Fig. 14. This result 

represents the disjoint union of the class that has either has the property #name or #uri but not both. This 

implementation was tested in Protégé2 with the HermiT3 reasoner. An individual ‘someReference’ was 

 
2 https://protege.stanford.edu/ 
3 http://www.hermit-reasoner.com/ 

Figure 11. Description of a class with axioms A XOR B 

A B 

Figure 12. Description of a class with axioms A XOR B XOR C 

A 

B C 
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instantiated with both #name and #uri datatype properties. The reasoner returned the following 

explanation in Fig. 15 and declared the ontology inconsistent, as intended. 

In addition, there a native XML Schema element that is problematic when creating OWL properties, 

xs:anyType. In the CityGML application schema this type is used to allow extensible CityGML types and 

functionality, such as the bldg:_GenericApplicationPropertyOfAbstractBuilding abstract element of type 

xs:anyType. Consequently, to allow these elements to exist, a xs:anyType class is declared and any 

<xs:complexType name="ExternalObjectReferenceType"> 

  <xs:choice> 

    <xs:element name="name" type="xs:string"/> 

    <xs:element name="uri" type="xs:anyURI"/> 

  </xs:choice> 

</xs:complexType> 

Figure 13. Example complexType schema 

<owl:Class rdf:about="#ExternalObjectReferenceType"> 

   <owl:disjointUnionOf rdf:parseType="Collection"> 

      <owl:Restriction> 

         <owl:onProperty rdf:resource="#name"/> 

         <owl:someValuesFrom rdf:resource="xs:string"/> 

      </owl:Restriction> 

      <owl:Restriction> 

         <owl:onProperty rdf:resource="#uri"/> 

         <owl:someValuesFrom rdf:resource="xs:anyURI"/> 

      </owl:Restriction> 

   </owl:disjointUnionOf> 

</owl:Class> 

Figure 14. xs:choice representation with owl:disjointUnionOf 

Figure 15. Reasoner explanation of inconsistent owl:DisjointUnionOf 
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elements of this type are declared as a subclass of it. If an extension to CityGML schema was created, 

their classes could be mapped as the owl:equivalentClasses of these proposed classes in order to 

integrate into the ontology. The usage of these classes is of course optional, as denoted in the application 

schema through the minOccurs=“0” attribute. When mapping axiom restrictions, all mappings use 

owl:someValuesFrom which implies that the instance of the class contains at least one property of this 

type. These are paired with the mappings in [9], [14], to generate owl:minCardinality and 

owl:maxCardinality whenever the minOccurs or maxOccurs attribute is used to define a child element, 

allowing these instances to have an owl:minCardinality of 0 and thus keeping the class description 

conformed to the application schema. 

One final consideration of the transformation process is the naming conventions of classes and 

properties. The transformation itself generates an intermediate identifier of the name of the entity 

appended to its namespace prefix. For example, the schema element in Fig. 13 would result with the 

attribute rdf:about=“gml:ExternalObjectReferenceType”. Like in the XML to RDF pipeline a script is run 

after the transformation to fully qualify names into complete URIs. Similar to the naming conventions 

proposed in [11], the URIs used to name these entities are created from a the following pattern: 

 [domain]/[namespace prefix]#[object identifier] (3) 

The names of transformed elements are appended to a predetermined domain, followed by the filename 

of the schema they were declared in – including each possible CityGML module – and then the name of 

the object itself. In the case of rdf:about=“gml:ExternalObjectReferenceType”, the final output would be: 

 rdf:about=http://domain.uri/gml#ExternalObjectReferenceType (4) 

An exception to this pattern occurs when the descendant xs:elements of xs:complexTypes are  

transformed into owl:ObjectProperties but reference an existing element instead of naming a new one. In 

order to differentiate the property from the referenced class, whenever an object property is created from 

the schema ‘ref’ attribute, ‘has’ is added to the referenced name. In the case of the references to 

gml:name and gml:description made above, in Fig. 14, the final class identifiers would be: 

 rdf:about=http://domain.uri/gml#hasname (5) 

 rdf:about=http://domain.uri/gml#hasdescription (6) 

These proposed strategies for XML schema to OWL transformation are an amalgam of previous 

transformation approaches with several specializations for the CityGML application schema. However, 

they are largely generalized and can be applied to schema outside of the main GML and CityGML 

schema, such as the external xAL addressing schema occasionally used by CityGML. The final step in 

converting CityGML into linked urban data, is the addition of the GeoSPARQL vocabulary and 

functionality into the ontology and converted instances. 

2.3. Integrating GeoSPARQL 

The addition of the official GeoSPARQL’s vocabulary and ontology into these transformations is critical 

for providing interoperability as linked data. Since this approach features two distinct transformations for 

CityGML, the integration takes place in two parts of the pipeline: inside the XML instance to RDF 
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transformation based on the implementations of [11], [12] and in the postprocessing script after the XML 

schema to OWL transformation based on the suggestions in [4]. In these transformations several things 

must be taken into consideration such as the differences between the GML 3.2 ontology and the GML 

3.1 application schema the transformations are based off and creating RDF instances that can be queried 

with GeoSPARQL functions. 

Linking the generated CityGML ontology with GeoSPARQL is as straightforward as declaring two axioms. 

The class generated by gml:_Geometry is declared a subclass of geo:Geometry and the class generated 

by gml:_Feature is declared a subclass of geo:Feature. This allows all subclasses of gml:_Feature and 

gml:_Geometry to use GeoSPARQL properties. Features such as blgd:Building may implement the 

object property geo:hasGeometry to link to their respective geometries and geometries like gml:Solid can 

link to their GML representations with the datatype properties geo:asGML. Since GeoSPARQL endpoints 

can parse geo:gmlLiterals to perform spatial queries, the text stored in the original instance document 

can be reused to retain their geospatial information in OWL. 

The official GeoSPARQL documentation states that: 

Valid geo:gmlLiterals are formed by encoding geometry information as a valid 

element from the GML schema that implements a subtype of GM_Object … In 

GML 3.1.1 and GML 2.1.2 this is every element directly or indirectly in the 

substitution group of the element {http://www.opengis.net/ont/gml}_Geometry. [17] 

According to the resulting CityGML ontology this implies the following classes are either “directly or 

indirectly” in the substitution group of gml:_Geometry as shown in Fig. 16. During CityGML instance to 

RDF transformation, any element that is one of these classes and contains only ancestors of these 

classes, will retain a copy of their GML instance as a geo:gmlLiterals after transformation (fig. 17, 18). 

Additionally, if a particular coordinate system is used, it must be declared in the literal value as a 

gml:srsName attribute in order for GeoSPARQL endpoints to accurately parse the data. The default 

Figure 16. Generated CityGML ontology _Geometry 

classes 
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reference system is <http://www.opengis.net/def/crs/OGC/1.3/CRS84>, thus any GML data that uses a 

different reference system must include it in the GML instances themselves or manually add it to the 

output gml:gmlLiterals after transformation. Through these processes a consistent strategy for generating 

geospatial linked data from CityGML instances can be implemented. 

 

3. CONCLUSION 

N-D geospatial data comes in many forms and can be difficult to analyze alongside other forms of urban 

data. There is a need for researchers and city planners to be able to study different forms of this data to 

understand the inherent relationships between them and how they evolve over time. The semantic web 

<bldg:BuildingPart gml:id="BU_69381AB243_1"> 

  <bldg:boundedBy> 

    <bldg:RoofSurface gml:id="UUID_0ca316be-38cb-4c7f-8db7-723e08565df4"> 

      <bldg:lod2MultiSurface> 

        <gml:MultiSurface gml:id="UUID_d4dad8ec-16ab-486c-ac31-acea2a7db390" srsDimension="3"> 

          <gml:surfaceMember> 

            <gml:Polygon gml:id="UUID_f4ebea88-03cb-4bc7-85f3-645670657403"> 

              <gml:exterior> 

                <gml:LinearRing gml:id="UUID_d5ce4476-b89d-424a-9e70-34ccf6ddc843"> 

                  <gml:posList>1841500.54989500 5175869.09632300 186.75556300 1841497.72348480 

5175869.12983001 186.75556300 1841497.67131100 5175867.80319300 185.87431300 1841500.53329100 

5175867.75429000 185.87431300 1841500.54989500 5175869.09632300 186.75556300 </gml:posList> 

                </gml:LinearRing> 

              </gml:exterior> 

            </gml:Polygon> 

          </gml:surfaceMember> 

        </gml:MultiSurface> 

      </bldg:lod2MultiSurface> 

    </bldg:RoofSurface> 

  </bldg:boundedBy> 

<bldg:BuildingPart gml:id="BU_69381AB243_1"> 

Figure 17. Sample CityGML bldg:Building instance 

<owl:NamedIndividual rdf:about="http://domain.uri/LYON_1ER_BATI_2015#UUID_0ca316be-38cb-4c7f-

8db7-723e08565df4"> 

  <rdf:type rdf:resource="http://domain.uri/bldg#RoofSurface"/> 

  <gml:id>UUID_0ca316be-38cb-4c7f-8db7-723e08565df4</gml:id> 

  <bldg:lod2MultiSurface rdf:resource="http://domain.uri/LYON_1ER_BATI_2015#UUID_d4dad8ec-16ab-

486c-ac31-acea2a7db390"/> 

</owl:NamedIndividual> 

<owl:NamedIndividual rdf:about="http://domain.uri/LYON_1ER_BATI_2015#UUID_d4dad8ec-16ab-486c-

ac31-acea2a7db390"> 

  <rdf:type rdf:resource="http://domain.uri/gml#MultiSurface"/> 

  <gml:id>UUID_d4dad8ec-16ab-486c-ac31-acea2a7db390</gml:id> 

  <gml:srsDimension>3</gml:srsDimension> 

<geo:asGML rdf:datatype="http://www.opengis.net/ont/geosparql#gmlLiteral"> 

&lt;gml:MultiSurface xmlns:gml=http://www.opengis.net/gml 

xmlns="http://www.opengis.net/citygml/2.0" 

xmlns:bldg="http://www.opengis.net/citygml/building/2.0" 

xmlns:core="http://www.opengis.net/citygml/2.0" 

xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" gml:id="UUID_d4dad8ec-16ab-486c-ac31-acea2a7db390" 

srsDimension="3"&gt;&lt;gml:surfaceMember&gt;&lt;gml:Polygon gml:id="UUID_f4ebea88-03cb-

4bc7-85f3-645670657403"&gt;&lt;gml:exterior&gt;&lt;gml:LinearRing gml:id="UUID_d5ce4476-

b89d-424a-9e70-34ccf6ddc843"&gt;&lt;gml:posList&gt;1841500.54989500 5175869.09632300 

186.75556300 1841497.72348480 5175869.12983001 186.75556300 1841497.67131100 

5175867.80319300 185.87431300 1841500.53329100 5175867.75429000 185.87431300 

1841500.54989500 5175869.09632300 186.75556300 

&lt;/gml:posList&gt;&lt;/gml:LinearRing&gt;&lt;/gml:exterior&gt;&lt;/gml:Polygon&gt;&lt;/

gml:surfaceMember&gt;&lt;/gml:MultiSurface&gt; 

</geo:asGML> 

  <gml:hassurfaceMember rdf:resource="http://domain.uri/LYON_1ER_BATI_2015#surfaceMember_14"/> 

</owl:NamedIndividual> 

Figure 18. CityGML to RDF output of example bldg:RoofSurface 
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and linked data directly respond to this problem by making data inherently interoperable through a single 

standard form and using the relationships between points of data as a core feature of the representation. 

This report highlights the major contributions of this effort: firstly, a study, analysis, and comparison of 

several tools and approaches available for the conversion of urban data into linked data formats; 

secondly, the implementation of a proof of concept tool to read and convert CityGML instances into 

multidimensional geospatial RDF data; thirdly, the implementation of a proof of concept tool 

(https://github.com/VCityTeam/UD-Graph) to generate an ontology constrained through cardinality, 

domain, range, and strongly typed class axioms as a semantic model of CityGML; finally, the 

implementation of initial geospatial queries to analyze the generated linked data that consider the 

structure of CityGML features. In addition, these contributions demonstrate the feasibility of integrating 

existing linked data standards such as GeoSPARQL.  

However, there are several limitations of this proof of concept approach ranging from concepts not 

employed to areas that are lacking in performance. The first of which are the elements of XML schema 

not recognized by the transformation mapping patterns. Certain datatype elements such as xs:list and 

xs:element attributes such as optional and abstract, among others, are not taken into consideration during 

these transformations. Developing consistent transformation mappings for these could provide more 

accurate and rich geospatial linked data models and transformations. The model transformations also 

occasionally produce conflicting axioms depending on duplicate names are used to define properties, 

which occasionally occurs in the GML application schema. For instance, the owl:DatatypeProperty 

gml:factor is declared once as having an rdfs:range of xs:integer and again with a range of xs:double. 

When a reasoner is run, any classes that use this property in an owl:someValuesFrom axiom are inferred 

to be equivalent to owl:Nothing, as these ranges conflict. A modification could be made to the model post-

processing script that consolidates these axioms with an owl:UnionOf statement.  

Additionally, the instance post processing activity itself is time-consuming especially when converting a 

breadth heavy XML tree. This means performing “live” data conversion is not feasible and would require 

further optimizations to either the transformations or the scripts themselves. Furthermore, the 

representation in RDF takes up a considerable amount of storage space compared to the original GML 

format. It may be possible to reduce the size of the generated instances and ontology by utilizing a 

different RDF friendly format such as Turtle. Although these issues do not prevent the proof of concept 

results from acting as a valid approach to transforming CityGML into linked data, they should be 

considered in any future work based on this proposed approach. 
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