
HAL Id: hal-02948955
https://hal.science/hal-02948955v1

Submitted on 25 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From CityGML to OWL
Diego Vinasco-Alvarez, John Samuel Samuel, Sylvie Servigne, Gilles Gesquière

To cite this version:
Diego Vinasco-Alvarez, John Samuel Samuel, Sylvie Servigne, Gilles Gesquière. From CityGML to
OWL. [Technical Report] LIRIS UMR 5205. 2020. �hal-02948955�

https://hal.science/hal-02948955v1
https://hal.archives-ouvertes.fr

From CityGML to OWL

Diego Vinasco-Alvarez, John Samuel, Sylvie Servigne, Gilles Gesquière

Technical Report Submitted to LIRIS, UMR 5205

i

TABLE OF CONTENTS

1. Introduction 1

1.1. General Context ... 1

1.2. Urban Data Within Graphs and Ontologies ... 2

2. From CityGML Urban Data to Linked Data: A Proposed Approach 3

2.1. Transforming CityGML Instances into RDF ... 6

2.2. Generating a CityGML Ontology from XML Schema ... 11

2.3. Integrating GeoSPARQL... 14

3. Conclusion 16

4. Acknowledgements .. 18

5. References 19

1

1. INTRODUCTION

Urban environments are naturally complex and heterogeneous sources of information. The data they

generate, these “geospatial” urban data, can take many forms, descriptions, and may follow many

different standard formats. The data presented in these formats are generally incompatible with each

other and cannot always be easily queried. This poses a problem for researchers, historians, and city

planners – among many other stakeholders – as it becomes difficult to take all the available data into

account without conversion or making several, distinct queries in separate databases.

It is critical for these groups to understand what this information represents and how it inter-relates among

itself. Observing these relationships and how they evolved over time can give a more detailed view of

how the past decisions of city planners impacted cities historically and in the present, which in turn allows

more informed decision making about planning and developing cities for the future.

Is there a way to link and query these various forms of urban data side-by-side, and if yes, how can we

accomplish this? What do we precisely gain from this representation? And what are the limitations of the

format?

1.1. General Context

Geospatial urban data or multi-dimensional urban data, as they contain a locational or spatial context, fall

under many types of representations and visualizations. Multi-dimensional urban data are sometimes

referred to as n-D or n-dimensional data, as they can be represented in 2D (floorplans, satellite imagery),

3D (CAD models, terrain topology), with thematic and additional information such as administrative

documents, sketches, and articles, and temporally as they change over time. In recent years, many

different formats have seen a rise in use to model, store, and visualize this broad type of urban

information. Spatial Data Infrastructures (SDI) can provide standardized frameworks for structuring and

sharing geospatial data [1], Geographic Information Systems (GIS) and Building Information Models

(BIM) provide tools and models for the analysis and capture of 3D and geospatial data [2]. The Open

Geospatial Consortium (OGC) – an international consortium of more than 500 businesses, government

agencies, research organizations, and universities – provides over 60 unique standardized geospatial

data formats and frameworks [3]. With such a large volume of methods for serializing urban data, the

need to inter-relate this information is ever present to create a more complete representation of the urban

landscape.

A possible approach to this problem is to implement semantic web technologies and move multi-

dimensional urban data into linked-data models. In order to manipulate an existing body of this data

alongside other formats, we propose using a conversion tool to transform the data into a linked data,

supported by an ontology, allowing us to take advantage of existing standards and to permit querying this

data alongside other linked data. The dataset we propose to convert will be based in CityGML; an XML

based SDI extension of GML proposed by the OGC for modeling virtual cities in 3D. Its final

representation will be in OWL/RDF; a graph-based ontology language proposed by the World Wide Web

Consortium (W3C).

2

1.2. Urban Data Within Graphs and Ontologies

Resource Description Framework (RDF) is a standard model for linked data interchange information on

the Web. Its structure consists of sets of assertions called triples. Triples are composed of subjects,

predicates, and objects (fig. 1) where the subject is the topic of the assertion, the predicate describes the

relationship between the subject and object, and the object is either another subject or a primitive datum

such as a string or integer. With this structure, we can create a graph to describe the relationships

between points of information by using the subjects and objects as nodes and the predicates as the

edges between the nodes.

The semantic web builds on the framework laid out with RDF. RDF Schema (RDFS) and the Web

Ontology Language (OWL) allow us to add context to RDF triples. Categories or types of objects are

described with Classes, their instances are called Individuals, their characteristics are called Datatypes,

and the relationships between all these concepts are called Properties (fig. 2). Although research in

implementing this semantic web stack are still ongoing, several research efforts have already been made

[1], [2], [4]–[7] in representing geospatial and urban data in linked data and ontological formats.

Furthermore, there is an official semantic web resources proposed by the OGC for representing this data:

GeoSPARQL – a geospatial ontology and a functional extension to the RDF query language SPARQL.

However, none of these approaches provide a semantic representation of CityGML’s features nor a

method for converting CityGML features into RDF/OWL.

The SPARQL Protocol and RDF Query Language (SPARQL) is one of, if not, the most common means

of querying RDF data. Generally, queries are SQL-like as they utilize SELECT-WHERE statements to

extract data from RDF. Queries are formulated in a triple structure - like RDF - with the intention of

returning statements that match the patterns denoted in the query. The GeoSPARQL extension to these

queries adds spatial functions, such as geof:sfIntersects, and geof:sfOverlaps, that return datum which

Subject Object
Predicate

Figure 1. RDF triple structure

Figure 2. CityGML 2.0 Ontology: Geometry Classes and Properties [8]

3

satisfy the spatial relations described by these functions, giving us a powerful tool for retrieving and

analyzing the CityGML data after conversion.

This report will enumerate the work done by exploring the previously mentioned proposal as follows:

Section 2 proposes the conception and development of a proof of concept tool1 to convert CityGML

information into linked data and its experimentation during the project. Finally, section 3 will conclude with

a synthesis of the results and perspectives gained from the project.

2. FROM CITYGML URBAN DATA TO LINKED DATA: A PROPOSED APPROACH

To create a proof of concept tool for the generation of geospatial data from CityGML, an XSLT-based

pipeline was created, specifically based on [8]–[12] and proceeds as follows (fig. 3):

1. The generation of an intermediate XSLT to transform CityGML instances to RDF from the GML

and CityGML application schema.

2. Generation of CityGML RDF instances using the previously generated XSLT and CityGML data

from the metropole of Lyon.

3. The creation of an OWL ontology to describe the resulting CityGML instances from the GML and

CityGML application schema.

During each transformation, the resulting information must be logically consistent and maintain its

interoperability from CityGML. To ensure this, several challenges need to be overcome. For instance, the

RDF structure and types generated from the GML instances must conform to the model described by the

ontology. How can mappings be created to ensure this? CityGML application schema often implements

elements that do not have a direct equivalent in OWL or RDF. How should these elements be represented

to best describe CityGML as semantic data? In addition, CityGML schema often draws from elements,

1 https://github.com/VCityTeam/UD-Graph

Figure 3. General Approach pipeline

4

types, functionality from external schema such as GML, xLinks and xAL addresses. How should these

imports be addressed to preserve their original functionality?

The workflow of the processes in this report is broken up into two pipelines: an instance transformation

pipeline and a model transformation pipeline. Both pipelines are treated as activities in a 3rd “complete”

pipeline which illustrates the conversion process in its entirety and how the various application schema

of GML, CityGML, and other imported schema are combined.

Fig. 4 shows the activity diagram for the instance transformation pipeline. In this workflow, the CityGML

schema is passed into an XSLT processor to extract the semantic metadata within and create a second,

domain specific, XML to RDF XSLT stylesheet. This second stylesheet can be used to transform XML

instance files – that conform to the CityGML application schema – into RDF. The stylesheet implements

the OWL vocabulary to produce OWL individuals and contains specialized transformations for GML

elements to integrate GeoSPARQL vocabulary. The resulting RDF output file of the second

transformation will contain import statements for the CityGML ontology as suggested in [9]. After the

instance file is produced, a final “postprocessing” activity is performed to validate the generated RDF.

This activity utilizes a Python script with the lxml library to parse the RDF graph and primarily removes

any duplicate instances or properties. Note that the output documents shown in Fig. 4 are serialized in

RDF and use the ‘.rdf’ file suffix, but all outputs still implement the OWL vocabulary whenever necessary.

The process for converting the CityGML application schema into an OWL starts with a transformation

activity where the XML Schema model to OWL mapping patterns and strategies proposed in [8], [9], [13],

[14] are implemented. The mapping patterns used in model and instance transformation are synthesized

from these works in XML Schema to OWL transformations. Table 1 denotes the general mapping patterns

used to facilitate these transformations. After the transformation activity, a postprocessing script is run on

the ontology, like the one utilized in the instance conversion activity. This script imports and integrates

the GeoSPARQL ontology, and fully qualifies any namespace prefix used in RDF attributes such as

rdf:resource. This renders an OWL ontology constrained by the CityGML application schema, thus

providing a model for the OWL individuals created in the instance transformation process.

Figure 4. Instance Conversion Activity Diagram

5

Due to the large number of schemas used to model GML and the modules of CityGML, these processes

would have to be run several times per schema document to create a complete CityGML ontology. In

addition, the elements in CityGML and GML often refer to and rely on information stored in each other

and in external schema documents and thus the XSLT processor must have access to all referenced

metadata at the same time. In the XML schema vocabulary, this external information is referenced

through xs:import and xs:include statements that link to the external document. In order to solve this issue

for CityGML and GML a “composite” schema made up of all the elements and type declarations of every

required schema will be created.

After a composite schema is created, it will be passed to both transformation activities. The schema

compilation activity must also normalize or fully qualify the namespace prefixes from each schema

document to match. This is required to maintain consistent naming conventions and to simplify

namespace resolution during transformations as prefixes may change between schema documents and

RDF requires fully qualified namespaces anytime a URI is given. This activity will also remove leading

and trailing whitespace between XML elements and from element text to provide the “cleanest” and most

compact schema possible. Like the previous activities not powered by an XSLT processor, this XML

schema compilation activity is manifested by a Python script using the lxml library.

Table 1. Chosen XML Schema to OWL mapping patterns based on [10]–[12], [14] (contributed pattern in orange)

XML Schema Element or Attribute OWL Target

xs:complexType owl:Class

xs:simpleType rdfs:datatype

Global xs:element with a type of an xs:complexType owl:Class with an rdfs:subClassOf relationship to the
type

Global xs:element with a type of an xs:simpleType rdfs:datatype with an owl:equivalentClass relationship to
the type

child xs:element of a xs:complexType with a
xs:complexType type

owl:ObjectProperty with an rdfs:domain of the parent
type and rdfs:range of its own type

child xs:element of a xs:complexType with a
xs:simpleType or native xs datatype type

owl:DatatypeProperty with an rdfs:domain of the parent
type and rdfs:range of its own type

xs:attribute owl:DatatypeProperty with an rdfs:domain of the parent
type and rdfs:range of its own type

xs:sequence or xs:all owl:restriction composed of owl:intersectionOf

xs:group owl:Class

xs:attributeGroup owl:Class

substitutionGroup attribute rdfs:subClassOf

base attribute rdfs:subClassOf, owl:DatatypeProperty, or
owl:ObjectProperty depending on the type of content

minOccurs attribute owl:minCardinality

maxOccurs attribute owl:maxCardinality

xs:choice owl:disjointUnionOf

2.1. Transforming CityGML Instances into RDF

When generating the CityGML instance to RDF transformation, it is important that the patterns created

are general enough to be reused and can take advantage of the CityGML vocabulary whenever possible.

This process will use the general structure of the XML to RDF mappings proposed in [8], [9] in addition

6

to some GML to RDF mapping concepts proposed in [1], [11], [15]. There will also be consideration taken

so that these mappings work with the ontology to be generated in alongside the RDF data.

In general, three types of mappings will be created from the schema:

1. All global xs:element elements that have the type of an xs:complexType create a template for

generating owl:NamedIndividuals.

2. All xs:complexType, xs:simpleType, xs:attributeGroup, and xs:group elements create a template

that compiles the templates for every possible child element, text, and attribute of the element.

3. All xs:attributes or xs:elements which are children of xs:complexTypes or xs:groups create

templates for owl:ObjectProperties and owl:DatatypeProperties.

To illustrate how these mapping types work, we will use an example from the CityGML core module. Fig.

5 shows the schema for the core:_CityObject element and its type, core:AbstractCityObjectType. The

initial transformation of these schema elements, as proposed in this report, would yield a transformation

pattern as shown in Fig. 6.

To generate this result, three transformations patterns are implemented. First, if a global xs:element is

found – such as core:_CityObject – and it has a type of an xs:complexType or has a child

xs:complexType, a template will be generated to create an individual. The template generated will use

the gml:id attribute of the element it matches as the rdf:ID of the instance as proposed in [11]. If no gml:id

is available, a unique id will be generated and appended to the local name of the element. Also as

suggested in [11] the rdf:type of each individual should be generated from its local name and this is well

implemented here. However, in this proposal the tertiary conversion to GeoSPARQL will be made based

on this rdf:type and thus the full name will be used to distinguish between a gml geometry element and a

feature. After the individual is named and typed, the template will call a reusable template generated from

<xs:complexType name="AbstractCityObjectType" abstract="true">

 ...

 <xs:complexContent>

 <xs:extension base="gml:AbstractFeatureType">

 <xs:sequence>

 <xs:element name="creationDate" type="xs:date" minOccurs="0"/>

 <xs:element name="terminationDate" type="xs:date" minOccurs="0"/>

 <xs:element name="externalReference" type="ExternalReferenceType"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="generalizesTo" type="GeneralizationRelationType"

minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="relativeToTerrain" type="RelativeToTerrainType"

minOccurs="0"/>

 <xs:element name="relativeToWater" type="RelativeToWaterType"

minOccurs="0"/>

 <xs:element ref="_GenericApplicationPropertyOfCityObject"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!-- == -->

<xs:element name="_CityObject" type="AbstractCityObjectType" abstract="true"

substitutionGroup="gml:_Feature"/>

Figure 5. core:AbstractCityObjectType and core:_CityObject application schema

7

the xs:complexType type of the element. This template will contain the CityGML to RDF templates to

generate the owl:ObjectProperties and owl:DatatypeProperties for the individual.

The second type of mapping concerns the transformation of the xs:complexType element. It contains 4

sub-transformations that determine the elements and attributes the type could have and create a template

that calls additional templates to create the appropriate owl:ObjectProperty and owl:DatatypeProperties.

The sub-transformations are as follows:

1. Collect all descendant xs:elements and call the matching templates to generate

owl:ObjectProperty or owl:DatatypeProperty templates depending on the content of the element.

<xsl:template match="//core:_CityObject">

 <owl:NamedIndividual rdf:about="{if (@gml:id)

 then @gml:id

 else concat(local-name(), '_', generate-id())}">

 <rdf:type rdf:resource="core:_CityObject"/>

 <xsl:call-template name="core:AbstractCityObjectType_Template"/>

 </owl:NamedIndividual>

</xsl:template>

<xsl:template name="core:AbstractCityObjectType_Template">

 <xsl:for-each select="./core:creationDate">

 <xsl:call-template name="core:creationDate_Property"/>

 </xsl:for-each>

 <xsl:for-each select="./core:terminationDate">

 <xsl:call-template name="core:terminationDate_Property"/>

 </xsl:for-each>

 <xsl:for-each select="./core:externalReference">

 <xsl:call-template name="core:externalReference_Property"/>

 </xsl:for-each>

 <xsl:for-each select="./core:generalizesTo">

 <xsl:call-template name="core:generalizesTo_Property"/>

 </xsl:for-each>

 <xsl:for-each select="./core:relativeToTerrain">

 <xsl:call-template name="core:relativeToTerrain_Property"/>

 </xsl:for-each>

 <xsl:for-each select="./core:relativeToWater">

 <xsl:call-template name="core:relativeToWater_Property"/>

 </xsl:for-each>

 <xsl:for-each select="./core:_GenericApplicationPropertyOfCityObject">

 <xsl:call-template name="core:_GenericApplicationPropertyOfCityObject_Property"/>

 </xsl:for-each>

 <xsl:call-template name="gml:AbstractFeatureType_Template"/>

</xsl:template>

<xsl:template name="core:creationDate_Property">

 <core:creationDate>

 <xsl:value-of select="text()"/>

 </core:creationDate>

</xsl:template>

<xsl:template name="core:terminationDate_Property">

 <core:terminationDate>

 <xsl:value-of select="text()"/>

 </core:terminationDate>

</xsl:template>

<xsl:template name="core:externalReference_Property">

 <core:externalReference rdf:resource="{if (./*/@gml:id)

 then ./*/@gml:id

 else concat(local-name(./*), '_',

 generate-id(./*))}"/>

</xsl:template>

...

Figure 6. Generated CityGML to RDF XSLT from core:_CityObject and core: AbstractCityObjectType

8

a. If an element belongs to a substitutionGroup the corresponding templates for all

elements in that group must also be generated.

2. Collect all descendant xs:attributes and call the matching templates to generate

owl:DatatypeProperty templates.

3. If there is an xs:extension or xs:restriction of any other type, the template for that type must be

generated as well according to the base attribute.

4. Collect all xs:group and xs:attributeGroup references and call the matching templates for these

groups.

Normally the template for core:_CityObject will never be called as it is an abstract xs:element, however

in the case of the bldg:Building element – which is often used in CityGML instances – both elements are

in the same substitutionGroup and can be used interchangeably. bldg:Building also has the complex type

bldg:AbstractBuildingType which inherits the same complex type template as

core:AbstractCityObjectType. Because of these relationships, whenever a bldg:Building element is

declared, its transformation pattern will call the template for core:AbstractCityObjectType.

Another XML transformation proposed is the conversion of xs:complexTypes with xs:simpleContent.

Transformation mapping patterns of xs:simpleContent and xs:complexContent to OWL are proposed in

[14] but without a transformations for XML instances of these types. xs:simpleContent proved to be one

of the more complicated instance transformations to RDF as xs:complexTypes are always transformed

into owl:classes yet xs:simpleContent constrains the type to only contain attributes and/or text with no

child elements. This implies that these types can sometimes appear as rdfs:Datatype elements. For

example, Fig. 7 shows the schema for one such type, gml:MeasureType. In XML this type could be

instantiated as an element with a text value of a double and an attribute of a URI.

This report bases the proposed instance transformation of these types off of the approach used in [14]

with several transformation mappings listed in table 2. In the case that the complex type with a simple

content has an xs:restriction of a type, a new rdfs:datatype and owl:DatatypeProperty would be declared

in the ontology according to these restrictions and should be used when transforming the instance data

into RDF. Note, that when referencing the newly created datatype of an xs:restriction, ‘Datatype’ is

appended to the name of the type and the property to avoid overlapping identifiers . Otherwise when the

simple content is based on an xs:extension of datatype or simple type, there is only an

owl:DatatypeProperty created that links to the datatype value.

<xs:complexType name="MeasureType">

 ...

<xs:simpleContent>

 <xs:extension base="xs:double">

 <xs:attribute name="uom" type="xs:anyURI" use="required"/>

 </xs:extension>

</xs:simpleContent>

</xs:complexType>

Figure 7. gml:MeasureType application schema

9

Table 2. XML Schema to RDF intstance mapping patterns

One departure from the previous XML schema to OWL approaches is how xs:group and

xs:attributeGroup are transformed. In [13], [14] both of these elements are converted into owl:Classes as

they contain elements and attributes like xs:complexTypes. However, in the context of CityGML and XML

to RDF data generation these groups serve mostly utility and do not appear in XML instances as individual

elements. For instance, Fig. 8 shows a GML group and a complex type which references this group and

Fig. 9 shows a CityGML instance that implements them both.

XML Schema pattern Target instance pattern

<xs:complexType name="TypeName">
 <xs:simpleContent>

 <xs:extension base="nativeDatatypeName">
 ...
 </xs:extension>

 </xs:simpleContent>
</xs:complexType>

<owl:NamedIndividual>

 <rdf:type rdf:resource="TypeName"/>
 <hasNativeDatatypeName>
 someValue

 </hasNativeDatatypeName>
 ...
</owl:NamedIndividual>

<xs:complexType name="TypeName">
 <xs:simpleContent>
 <xs:extension base="simpleTypeName">

 ...
 </xs:extension>
 </xs:simpleContent>

</xs:complexType>

<owl:NamedIndividual>
 <rdf:type rdf:resource="TypeName"/>

 <hasSimpleTypeName>
 someValue
 </hasSimpleTypeName>

 ...
</owl:NamedIndividual>

<xs:complexType name="TypeName">
 <xs:simpleContent>
 <xs:restriction base="nativeOrSimpleDatatype">

 ...
 </xs:restriction>
 </xs:simpleContent>

</xs:complexType>

<owl:NamedIndividual>
 <rdf:type rdf:resource="TypeName"/>

 <hasTypeNameDatatype>
 someValue
 </hasTypeNameDatatype>

 ...
</owl:NamedIndividual>

<xs:group name="gml:StandardObjectProperties">

 ...

 <xs:sequence>

 <xs:element ref="gml:metaDataProperty" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element ref="gml:description" minOccurs="0"/>

 <xs:element ref="gml:name" minOccurs="0" maxOccurs="unbounded">

 ...

 </xs:element>

 </xs:sequence>

</xs:group>

<xs:complexType name="gml:AbstractGMLType" abstract="true">

 ...

 <xs:sequence>

 <xs:group ref="gml:StandardObjectProperties"/>

 </xs:sequence>

 <xs:attribute ref="gml:id" use="optional"/>

</xs:complexType>

Figure 8. gml:StandardObjectProperties and gml:AbstractGMLType application schema

<bldg:Building gml:id="A23">

 <gml:name>Example Building</gml:name>

 <gml:description>An example of a building</gml:description>

</bldg:Building>

Figure 9. Example CityGML bldg:Building using gml:StandardObjectProperties

10

In the instance, the bldg:Building element of the complex type is clearly instantiating child elements from

the xs:group however there is no actual reference to the group itself. That is to say, the child elements of

gml:StandardObjectProperties are instantiated but the group itself is not formally instantiated.

Functionally, xs:groups and xs:attributeGroups serve as a reusable collection elements and attributes.

This report argues that because of this behavior, they do not represent owl:Classes but are simply

features of the XML schema vocabulary. Instead, in XML to RDF transformation, these groups can be

transformed into templates that simply contain references to the templates of their properties (fig. 10).

Transformations will also map the original GML literal values to an RDF triple using GeoSPARQL’s

geo:asGML datatype property, if an instance’s type is in the substitution group of gml:_Geometry. This

process is covered in detail in section 2.3. Once an instance document is transformed, it must be scanned

for malformed RDF triples and fully qualifies any RDF attributes that contain prefixed URI strings such as

rdf:resources, rdf:type, and rdf:about. These transformations follow the “garbage in, garbage out” concept

that poorly formed data input into a program, will produce nonsensical results, and thus assume that the

GML and CityGML instance documents provided are well structured and conform to their application

schema. If this assumption is met, the resulting data should conform to the ontology transformation

discussed in the following section.

2.2. Generating a CityGML Ontology from XML Schema

During development, several choices were made to create a transformation of the CityGML application

schema that respects its original structure while maintaining logical consistency, even when considering

the inferences of an OWL reasoner. In particular: what should be done with schema elements which have

no direct representation in OWL? How to standardize and automate namespace and identifier

generation? And finally, how should all these things be considered under the context of generating RDF

data from CityGML alongside this ontology?

The first of these choices that was made was regarding the transformation of schema elements with no

direct representation in OWL. In the case of xs:choice a combination of owl:intersectionOf, owl:unionOf,

and owl:complementOf are suggested in several approaches [9], [13], [14], [16]. In description logic,

unions, intersections, and complements are analogous to logical 'and', 'or', and 'not' relationships,

<xsl:template name="gml:AbstractGMLType_Template">

 <xsl:if test="@gml:id">

 <xsl:call-template name="gml:id_Property"/>

 </xsl:if>

 <xsl:call-template name="gml:StandardObjectProperties_Template"/>

</xsl:template>

<xsl:template name="gml:StandardObjectProperties_Template">

 <xsl:for-each select="./gml:metaDataProperty">

 <xsl:call-template name="gml:metaDataProperty_Property"/>

 </xsl:for-each>

 <xsl:for-each select="./gml:description">

 <xsl:call-template name="gml:description_Property"/>

 </xsl:for-each>

 <xsl:for-each select="./gml:name">

 <xsl:call-template name="gml:name_Property"/>

 </xsl:for-each>

</xsl:template>

Figure 10. Generated CityGML2RDF gml:AbstractGMLType and
gml:StandardObjectProperties XSLT Templates

11

respectively. More precisely, the use of xs:choice is analogous to the description of a class that contains

the group of 'exclusive or' (XOR) properties. In the case of two properties ‘A’ and ‘B’, a class created from

an xs:choice statement would have either A or B but not both, as shown in Figure 11 and equation 1.

 (A ∪ B) ∩ (A ∩ B)C (1)

This approach, however, requires an exponentially growing number of statements as more xs:choice

children are transformed. This is because each intersections of each statement must be declared pairwise

disjoint as shown in Figure 12 and equation (2).

 (A ∪ B ∪ C) ∩ ((A ∪ B) ∩ (B ∪ C) ∩ (A ∪ C))C (2)

While both of these approaches are logically valid for representing CityGML schema in OWL, an

approach using OWL-2's owl:disjointUnionOf was experimented with (fig. 14), which provides a more

concise transformation. The example in Fig. 13 could be converted into the RDF in Fig. 14. This result

represents the disjoint union of the class that has either has the property #name or #uri but not both. This

implementation was tested in Protégé2 with the HermiT3 reasoner. An individual ‘someReference’ was

2 https://protege.stanford.edu/
3 http://www.hermit-reasoner.com/

Figure 11. Description of a class with axioms A XOR B

A B

Figure 12. Description of a class with axioms A XOR B XOR C

A

B C

12

instantiated with both #name and #uri datatype properties. The reasoner returned the following

explanation in Fig. 15 and declared the ontology inconsistent, as intended.

In addition, there a native XML Schema element that is problematic when creating OWL properties,

xs:anyType. In the CityGML application schema this type is used to allow extensible CityGML types and

functionality, such as the bldg:_GenericApplicationPropertyOfAbstractBuilding abstract element of type

xs:anyType. Consequently, to allow these elements to exist, a xs:anyType class is declared and any

<xs:complexType name="ExternalObjectReferenceType">

 <xs:choice>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="uri" type="xs:anyURI"/>

 </xs:choice>

</xs:complexType>

Figure 13. Example complexType schema

<owl:Class rdf:about="#ExternalObjectReferenceType">

 <owl:disjointUnionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty rdf:resource="#name"/>

 <owl:someValuesFrom rdf:resource="xs:string"/>

 </owl:Restriction>

 <owl:Restriction>

 <owl:onProperty rdf:resource="#uri"/>

 <owl:someValuesFrom rdf:resource="xs:anyURI"/>

 </owl:Restriction>

 </owl:disjointUnionOf>

</owl:Class>

Figure 14. xs:choice representation with owl:disjointUnionOf

Figure 15. Reasoner explanation of inconsistent owl:DisjointUnionOf

13

elements of this type are declared as a subclass of it. If an extension to CityGML schema was created,

their classes could be mapped as the owl:equivalentClasses of these proposed classes in order to

integrate into the ontology. The usage of these classes is of course optional, as denoted in the application

schema through the minOccurs=“0” attribute. When mapping axiom restrictions, all mappings use

owl:someValuesFrom which implies that the instance of the class contains at least one property of this

type. These are paired with the mappings in [9], [14], to generate owl:minCardinality and

owl:maxCardinality whenever the minOccurs or maxOccurs attribute is used to define a child element,

allowing these instances to have an owl:minCardinality of 0 and thus keeping the class description

conformed to the application schema.

One final consideration of the transformation process is the naming conventions of classes and

properties. The transformation itself generates an intermediate identifier of the name of the entity

appended to its namespace prefix. For example, the schema element in Fig. 13 would result with the

attribute rdf:about=“gml:ExternalObjectReferenceType”. Like in the XML to RDF pipeline a script is run

after the transformation to fully qualify names into complete URIs. Similar to the naming conventions

proposed in [11], the URIs used to name these entities are created from a the following pattern:

 [domain]/[namespace prefix]#[object identifier] (3)

The names of transformed elements are appended to a predetermined domain, followed by the filename

of the schema they were declared in – including each possible CityGML module – and then the name of

the object itself. In the case of rdf:about=“gml:ExternalObjectReferenceType”, the final output would be:

 rdf:about=http://domain.uri/gml#ExternalObjectReferenceType (4)

An exception to this pattern occurs when the descendant xs:elements of xs:complexTypes are

transformed into owl:ObjectProperties but reference an existing element instead of naming a new one. In

order to differentiate the property from the referenced class, whenever an object property is created from

the schema ‘ref’ attribute, ‘has’ is added to the referenced name. In the case of the references to

gml:name and gml:description made above, in Fig. 14, the final class identifiers would be:

 rdf:about=http://domain.uri/gml#hasname (5)

 rdf:about=http://domain.uri/gml#hasdescription (6)

These proposed strategies for XML schema to OWL transformation are an amalgam of previous

transformation approaches with several specializations for the CityGML application schema. However,

they are largely generalized and can be applied to schema outside of the main GML and CityGML

schema, such as the external xAL addressing schema occasionally used by CityGML. The final step in

converting CityGML into linked urban data, is the addition of the GeoSPARQL vocabulary and

functionality into the ontology and converted instances.

2.3. Integrating GeoSPARQL

The addition of the official GeoSPARQL’s vocabulary and ontology into these transformations is critical

for providing interoperability as linked data. Since this approach features two distinct transformations for

CityGML, the integration takes place in two parts of the pipeline: inside the XML instance to RDF

14

transformation based on the implementations of [11], [12] and in the postprocessing script after the XML

schema to OWL transformation based on the suggestions in [4]. In these transformations several things

must be taken into consideration such as the differences between the GML 3.2 ontology and the GML

3.1 application schema the transformations are based off and creating RDF instances that can be queried

with GeoSPARQL functions.

Linking the generated CityGML ontology with GeoSPARQL is as straightforward as declaring two axioms.

The class generated by gml:_Geometry is declared a subclass of geo:Geometry and the class generated

by gml:_Feature is declared a subclass of geo:Feature. This allows all subclasses of gml:_Feature and

gml:_Geometry to use GeoSPARQL properties. Features such as blgd:Building may implement the

object property geo:hasGeometry to link to their respective geometries and geometries like gml:Solid can

link to their GML representations with the datatype properties geo:asGML. Since GeoSPARQL endpoints

can parse geo:gmlLiterals to perform spatial queries, the text stored in the original instance document

can be reused to retain their geospatial information in OWL.

The official GeoSPARQL documentation states that:

Valid geo:gmlLiterals are formed by encoding geometry information as a valid

element from the GML schema that implements a subtype of GM_Object … In

GML 3.1.1 and GML 2.1.2 this is every element directly or indirectly in the

substitution group of the element {http://www.opengis.net/ont/gml}_Geometry. [17]

According to the resulting CityGML ontology this implies the following classes are either “directly or

indirectly” in the substitution group of gml:_Geometry as shown in Fig. 16. During CityGML instance to

RDF transformation, any element that is one of these classes and contains only ancestors of these

classes, will retain a copy of their GML instance as a geo:gmlLiterals after transformation (fig. 17, 18).

Additionally, if a particular coordinate system is used, it must be declared in the literal value as a

gml:srsName attribute in order for GeoSPARQL endpoints to accurately parse the data. The default

Figure 16. Generated CityGML ontology _Geometry

classes

15

reference system is <http://www.opengis.net/def/crs/OGC/1.3/CRS84>, thus any GML data that uses a

different reference system must include it in the GML instances themselves or manually add it to the

output gml:gmlLiterals after transformation. Through these processes a consistent strategy for generating

geospatial linked data from CityGML instances can be implemented.

3. CONCLUSION

N-D geospatial data comes in many forms and can be difficult to analyze alongside other forms of urban

data. There is a need for researchers and city planners to be able to study different forms of this data to

understand the inherent relationships between them and how they evolve over time. The semantic web

<bldg:BuildingPart gml:id="BU_69381AB243_1">

 <bldg:boundedBy>

 <bldg:RoofSurface gml:id="UUID_0ca316be-38cb-4c7f-8db7-723e08565df4">

 <bldg:lod2MultiSurface>

 <gml:MultiSurface gml:id="UUID_d4dad8ec-16ab-486c-ac31-acea2a7db390" srsDimension="3">

 <gml:surfaceMember>

 <gml:Polygon gml:id="UUID_f4ebea88-03cb-4bc7-85f3-645670657403">

 <gml:exterior>

 <gml:LinearRing gml:id="UUID_d5ce4476-b89d-424a-9e70-34ccf6ddc843">

 <gml:posList>1841500.54989500 5175869.09632300 186.75556300 1841497.72348480

5175869.12983001 186.75556300 1841497.67131100 5175867.80319300 185.87431300 1841500.53329100

5175867.75429000 185.87431300 1841500.54989500 5175869.09632300 186.75556300 </gml:posList>

 </gml:LinearRing>

 </gml:exterior>

 </gml:Polygon>

 </gml:surfaceMember>

 </gml:MultiSurface>

 </bldg:lod2MultiSurface>

 </bldg:RoofSurface>

 </bldg:boundedBy>

<bldg:BuildingPart gml:id="BU_69381AB243_1">

Figure 17. Sample CityGML bldg:Building instance

<owl:NamedIndividual rdf:about="http://domain.uri/LYON_1ER_BATI_2015#UUID_0ca316be-38cb-4c7f-

8db7-723e08565df4">

 <rdf:type rdf:resource="http://domain.uri/bldg#RoofSurface"/>

 <gml:id>UUID_0ca316be-38cb-4c7f-8db7-723e08565df4</gml:id>

 <bldg:lod2MultiSurface rdf:resource="http://domain.uri/LYON_1ER_BATI_2015#UUID_d4dad8ec-16ab-

486c-ac31-acea2a7db390"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://domain.uri/LYON_1ER_BATI_2015#UUID_d4dad8ec-16ab-486c-

ac31-acea2a7db390">

 <rdf:type rdf:resource="http://domain.uri/gml#MultiSurface"/>

 <gml:id>UUID_d4dad8ec-16ab-486c-ac31-acea2a7db390</gml:id>

 <gml:srsDimension>3</gml:srsDimension>

<geo:asGML rdf:datatype="http://www.opengis.net/ont/geosparql#gmlLiteral">

<gml:MultiSurface xmlns:gml=http://www.opengis.net/gml

xmlns="http://www.opengis.net/citygml/2.0"

xmlns:bldg="http://www.opengis.net/citygml/building/2.0"

xmlns:core="http://www.opengis.net/citygml/2.0"

xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" gml:id="UUID_d4dad8ec-16ab-486c-ac31-acea2a7db390"

srsDimension="3"><gml:surfaceMember><gml:Polygon gml:id="UUID_f4ebea88-03cb-

4bc7-85f3-645670657403"><gml:exterior><gml:LinearRing gml:id="UUID_d5ce4476-

b89d-424a-9e70-34ccf6ddc843"><gml:posList>1841500.54989500 5175869.09632300

186.75556300 1841497.72348480 5175869.12983001 186.75556300 1841497.67131100

5175867.80319300 185.87431300 1841500.53329100 5175867.75429000 185.87431300

1841500.54989500 5175869.09632300 186.75556300

</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon></

gml:surfaceMember></gml:MultiSurface>

</geo:asGML>

 <gml:hassurfaceMember rdf:resource="http://domain.uri/LYON_1ER_BATI_2015#surfaceMember_14"/>

</owl:NamedIndividual>

Figure 18. CityGML to RDF output of example bldg:RoofSurface

16

and linked data directly respond to this problem by making data inherently interoperable through a single

standard form and using the relationships between points of data as a core feature of the representation.

This report highlights the major contributions of this effort: firstly, a study, analysis, and comparison of

several tools and approaches available for the conversion of urban data into linked data formats;

secondly, the implementation of a proof of concept tool to read and convert CityGML instances into

multidimensional geospatial RDF data; thirdly, the implementation of a proof of concept tool

(https://github.com/VCityTeam/UD-Graph) to generate an ontology constrained through cardinality,

domain, range, and strongly typed class axioms as a semantic model of CityGML; finally, the

implementation of initial geospatial queries to analyze the generated linked data that consider the

structure of CityGML features. In addition, these contributions demonstrate the feasibility of integrating

existing linked data standards such as GeoSPARQL.

However, there are several limitations of this proof of concept approach ranging from concepts not

employed to areas that are lacking in performance. The first of which are the elements of XML schema

not recognized by the transformation mapping patterns. Certain datatype elements such as xs:list and

xs:element attributes such as optional and abstract, among others, are not taken into consideration during

these transformations. Developing consistent transformation mappings for these could provide more

accurate and rich geospatial linked data models and transformations. The model transformations also

occasionally produce conflicting axioms depending on duplicate names are used to define properties,

which occasionally occurs in the GML application schema. For instance, the owl:DatatypeProperty

gml:factor is declared once as having an rdfs:range of xs:integer and again with a range of xs:double.

When a reasoner is run, any classes that use this property in an owl:someValuesFrom axiom are inferred

to be equivalent to owl:Nothing, as these ranges conflict. A modification could be made to the model post-

processing script that consolidates these axioms with an owl:UnionOf statement.

Additionally, the instance post processing activity itself is time-consuming especially when converting a

breadth heavy XML tree. This means performing “live” data conversion is not feasible and would require

further optimizations to either the transformations or the scripts themselves. Furthermore, the

representation in RDF takes up a considerable amount of storage space compared to the original GML

format. It may be possible to reduce the size of the generated instances and ontology by utilizing a

different RDF friendly format such as Turtle. Although these issues do not prevent the proof of concept

results from acting as a valid approach to transforming CityGML into linked data, they should be

considered in any future work based on this proposed approach.

ACKNOWLEDGEMENTS

We would like to thank LIRIS UMR 5205 for funding through the action transversale (LIRIS AT 2019-

2021). We would also like to thank Hamida Seba of the GOAL team for this fruitful collaboration among

the BD, GOAL, and Origami teams within LIRIS. In addition, we thank the members of the Virtual City

Project for their valued advice and support.

17

REFERENCES

[1] L. Brink, “Geospatial Data on the Web,” Oct. 2018.
https://www.ncgeo.nl/index.php/en/publicatiesgb/publications-on-geodesy/item/2789-geospatial-
data-on-the-web (accessed Jul. 23, 2020).

[2] A.-H. Hor, M. Jadidi, and G. Sohn, “BIM-GIS INTEGRATED GEOSPATIAL INFORMATION
MODEL USING SEMANTIC WEB AND RDF GRAPHS,” Jul. 2016, vol. III–4, pp. 73–79, doi:
10.5194/isprs-annals-III-4-73-2016.

[3] “About OGC | OGC.” https://www.ogc.org/about (accessed Jul. 23, 2020).
[4] R. Battle and D. Kolas, “Enabling the geospatial Semantic Web with Parliament and

GeoSPARQL,” Semantic Web, vol. 3, no. 4, pp. 355–370, Jan. 2012, doi: 10.3233/SW-2012-
0065.

[5] E. Hietanen, L. Lehto, and P. Latvala, “PROVIDING GEOGRAPHIC DATASETS AS LINKED
DATA IN SDI,” ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XLI-B2, pp.
583–586, Jun. 2016, doi: 10.5194/isprs-archives-XLI-B2-583-2016.

[6] R. L. G. Lemmens, G. Falquet, and C. Métral, “Towards Linked Data and ontology development
for the semantic enrichment of volunteered geo-information.,” Proc. Link-VGI Link. Anal. Volunt.
Geogr. Inf. VGI Differ. Platf. Workshop AGILE 2016 Conf., 2016, Accessed: Jul. 23, 2020.
[Online]. Available: https://research.utwente.nl/en/publications/towards-linked-data-and-ontology-
development-for-the-semantic-enr.

[7] O. Zalamea, J. Orshoven, and S. Thérèse, “From a CityGML to an ontology-based approach to
support preventive conservation of built cultural heritage.,” Jun. 2016.

[8] T. R. Kramer, B. H. Marks, C. I. Schlenoff, S. B. Balakirsky, Z. Kootbally, and A. Pietromartire,
“Software Tools for XML to OWL Translation,” Jul. 2015, Accessed: Jul. 23, 2020. [Online].
Available: https://www.nist.gov/publications/software-tools-xml-owl-translation.

[9] H. Bohring and S. Auer, “Mapping XML to OWL ontologies,” Jan. 2005, pp. 147–156.
[10] C. Métral and G. Falquet, “EXTENSION AND CONTEXTUALISATION FOR LINKED SEMANTIC

3D GEODATA,” in ISPRS - International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, Sep. 2018, vol. XLII-4-W10, pp. 113–118, doi:
https://doi.org/10.5194/isprs-archives-XLII-4-W10-113-2018.

[11] L. Brink, P. Janssen, W. Quak, and J. Stoter, “Linking spatial data: automated conversion of geo-
information models and GML data to RDF,” Int. J. Spat. Data Infrastruct. Res., vol. 9, pp. 59–85,
Oct. 2014, doi: 10.2902/1725-0463.2014.09.art3.

[12] M. S. Bekatoros and M. Koubarakis, “A web-based GML to stRDF / GeoSPARQL conversion
tool,” p. 99, Feb. 2015.

[13] M. Ferdinand, C. Zirpins, and D. Trastour, “Lifting XML schema to OWL,” Jul. 2004, vol. 3140,
pp. 354–358, doi: 10.1007/978-3-540-27834-4_44.

[14] I. Bedini, C. Matheus, P. F. Patel-Schneider, A. Boran, and B. Nguyen, “Transforming XML
Schema to OWL Using Patterns,” in 2011 IEEE Fifth International Conference on Semantic
Computing, Sep. 2011, pp. 102–109, doi: 10.1109/ICSC.2011.77.

[15] L. Brink, P. Janssen, and W. Quak, “From Geo-data to Linked Data: Automated Transformation
from GML to RDF,” Linked Open Data - Pilot Linked Open Data Ned. Deel 2 - Verdieping
Geonovum 2013 Pp 249-261, 2013, Accessed: Jul. 23, 2020. [Online]. Available:
https://repository.tudelft.nl/islandora/object/uuid%3A8ec77e83-8406-47d3-8705-32633619ba1f.

[16] C. Tsinaraki and S. Christodoulakis, “XS2OWL: A Formal Model and a System for Enabling XML
Schema Applications to Interoperate with OWL-DL Domain Knowledge and Semantic Web
Tools,” Jan. 2007, vol. 4877, pp. 124–136, doi: 10.1007/978-3-540-77088-6_12.

[17] M. Perry and J. Herring, “OGC GeoSPARQL - A Geographic Query Language for RDF Data,” p.
75, 2012.

