Machine Learning for Absorption Cross Sections - Archive ouverte HAL
Article Dans Une Revue Journal of Physical Chemistry A Année : 2020

Machine Learning for Absorption Cross Sections

Bao-Xin Xue
  • Fonction : Auteur
Mario Barbatti
Pavlo O. Dral
  • Fonction : Auteur

Résumé

We present a machine learning (ML) method to accelerate the nuclear ensemble approach (NEA) for computing absorption cross sections. ML-NEA is used to calculate cross sections on vast ensembles of nuclear geometries to reduce the error due to insufficient statistical sampling. The electronic propertiesexcitation energies and oscillator strengthsare calculated with a reference electronic structure method only for a relatively few points in the ensemble. The KREG model (kernel-ridge-regression-based ML combined with the RE descriptor) as implemented in MLatom is used to predict these properties for the remaining tens of thousands of points in the ensemble without incurring much of additional computational cost. We demonstrate for two examples, benzene and a 9-dicyanomethylene derivative of acridine, that ML-NEA can produce statistically converged cross sections even for very challenging cases and even with as few as several hundreds of training points.
Fichier principal
Vignette du fichier
p150_xue_ml-nea_jpca_2020.pdf (3.53 Mo) Télécharger le fichier
Origine Publication financée par une institution
Loading...

Dates et versions

hal-02948858 , version 1 (25-09-2020)

Licence

Identifiants

Citer

Bao-Xin Xue, Mario Barbatti, Pavlo O. Dral. Machine Learning for Absorption Cross Sections. Journal of Physical Chemistry A, 2020, ⟨10.1021/acs.jpca.0c05310⟩. ⟨hal-02948858⟩
25 Consultations
42 Téléchargements

Altmetric

Partager

More