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Abstract

In the transportation domain such as automotive turbochargers and aircraft turbines, the vibrations of on-board
rotors are induced not only by the mass unbalance excitation but also by various movements of their support. The
dynamics of an on-board rotor mounted on hydrodynamic finite-length bearings is investigated in the presence of support
motions which create multi-frequency parametric excitations. The developed on-board rotor model is based on the gyro-
scopic Timoshenko beam finite element with two nodes and six degrees of freedom per node for 3D motions (transverse
and axial displacements as well as rotations due to the bending and to the torsion). The equations of motion highlight
time-varying parametric terms due to the mass unbalance, the support rotations, the coupling between both phenomena
and the combination of mass unbalance and support translations. These parametric terms can yield a dynamic instability
because they contribute as generators of internal excitation. In the presented applications, single-frequency and multi-
frequency parametric excitations are used. Namely, the rotor is excited either by simple and combined sinusoidal support
rotations or by a rotating mass unbalance combined with sinusoidal support translations to examine the stability of the
static equilibrium point through the Floquet theory.

Keywords: Rotordynamics, on-board rotor, finite element method, hydrodynamic journal bearing, support motions,
parametric excitation, dynamic instability.

1. Introduction

In numerous modern industrial applications, the rotating machines possess a major role. Indeed, most of
them can be considered as on-board machines subject to both mass unbalance and several excitations of the support.
The following examples are considered as on-board rotating machines (rotors with a mobile support): a naval ship
turbine subject to the roll or pitch motions due to the sea waves, an automotive turbocharger excited by the road
imperfections, an aircraft turbine engine excited by the wing vibration, etc. The undesirable and unavoidable mass
unbalance is created due to the eccentricity of the mass center all along the rotor axis. It is conventionally caused
by the geometry of the rotating parts (manufacturing defaults), the material non-homogeneities, the assembly of the
rotating parts and the service conditions. The aim of the rotor balancing is to minimize the mass unbalance but the
balancing generally is not able to implement a whole elimination (for example, see Kang et al. [1] and Levecque et
al. [2]). The support movements can increase the vibrations of the rotor and lead to phenomena of dynamic instability.
Therefore the prediction of dynamic behavior of the rotors must be carried out more and more carefully at the design
stage which has to take into account multi-source excitations in order to fabricate rotating machines as reliable as
possible and to avert a disastrous failure during the operation phase.

Rotordynamics has been extensively treated in the case of a fixed support. In this context, the literature involves
several books studying a large assortment of phenomena linked with the dynamic behavior of symmetric/asymmetric
rigid/elastic rotor systems supported by rigid bearings or linear/nonlinear flexible ones. Only few of them can be cited
in the current paper (see Lalanne and Ferraris [3], Genta [4]). Numerous studies contributed to the finite element
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method and applied it to the rotor modeling. Nelson and McVaugh [5] developed the major breakthrough in the finite
element modeling of a rotor and concentrated on a model called “Rayleigh beam”, which takes into consideration
the gyroscopic effects depending on the speed of rotation of the rotor and the rotatory inertia of the shaft. Some
works were interested by the instability of parametrically excited systems. Dufour and Berlioz [6] established the
time-varying parametric equations of motion of the system and evaluated the stability of pinned-pinned, clamped-
pinned and clamped-clamped beams excited by periodic axial forces and torques by employing the Rayleigh-Ritz
formulation, the Floquet theory and the Friedmann approach [7]. As shown in their paper, the dynamic behavior
instability could occur if the excitation frequency was close to a combination of two natural frequencies of the system,
already formulated by Hsu [8].

Owing to the diverse exploitations of rotors in the daily industries since the past century, on-board rotordynamics
was an attractive scientific subject for a lot of authors and researchers in the last decade. The article of Lin and
Meng [9] is considered as one of the first studies concerning the on-board rotor systems in aircrafts. In their work,
they predicted the influence of the translational motions with a constant speed as well as a constant acceleration
and of the sinusoidal translation of the support on the time history responses of a Jeffcott rotor in the presence of
a mass unbalance excitation. Lee et al. [10] proposed a finite element rotor model based on the Timoshenko beam
theory and subject to a shock excitation of the support and discussed the experimental behavior of a rotor under this
excitation. Duchemin et al. [11] investigated analytically the motion stability of a rotor excited by a periodic rotational
motion of the rigid support using the Rayleigh-Ritz and multiple scales methods. In order to validate the theoretical
results, they provided also experimental tests. Depending on the model presented in [11], the work of Driot et al. [12]
highlighted numerical orbits of the rotor and compared them with an experimental study. El-Saeidy and Sticher [13]
derived the equations of vibratory motion of a rigid rotor-linear/nonlinear bearing system in the presence of a mass
unbalance and harmonic movements of the support around or along transverse directions. They calculated analytical
frequency responses of the rotor mounted on linear bearings, while they interpreted numerical results regarding the
time domain, the fast Fourier transform and the Poincaré map in the presence of a bearing cubic nonlinearity. Using
an electromagnetic actuator, Das et al. [14,15] proposed an active vibration control strategy for a flexible rotor-bearing
system modeled with Rayleigh beam finite elements and subject to a mass unbalance as well as to a sinusoidal rotation
of the support.

In this decade, the utilization of advanced computer softwares and more robust techniques opened effectively the
possibility for more accurate developments to be applied to on-board rotor systems and numerous studies contributed
to this topic. Dakel et al. examined the influence of the rotational and translational motions of the support on the
lateral dynamic behavior of a finite element rotor model based on the Timoshenko beam theory and mounted either
on rigid ones [16] or on linearized/nonlinear hydrodynamic journal ones [17]. In addition, these authors observed
instability regions due to parametric excitations associated with the geometric asymmetry of the rotor [16] and with
the support rotations [17]. On the other hand, they obtained sub-harmonic, quasi-periodic and chaotic responses of the
on-board rotor because of the hydrodynamic bearing nonlinearity [17]. Recently, Han and Chu published some papers
on the support-excited rotor systems. First, the authors studied a finite element cracked rotor model founded on the
Euler beam theory and excited by sinusoidal rotations of the support and introduced an improved harmonic balance
method to obtain the linear stabilized responses and to discuss the influence of the amplitude and the frequency of the
support excitations as well as that of the crack depth [18]. In the second paper [19], they predicted the dynamics of spur
gear-rotor systems subject to sinusoidal rotations of the support around one of the transverse directions and showed
that the corresponding response amplitudes were slightly affected even if the excitation frequencies and their multiples
were found in the responses. Later, Han and Chu [20] applied the discrete state transition matrix method (Floquet
theory) for an on-board rotor system modeled in the same way as in [18] to attain the parametric instability regions
induced by the periodic rotations of the support. Sousa et al. introduced a finite element rotor model depending on
the theoretical approach proposed by Duchemin et al. [11] to discuss some numerical results regarding rotational and
translational excitations of the support [21] and to emphasize an experimental validation of this model regarding the
impact and sinusoidal translations of the support [22].

Very recently, some works were interested by the nonlinear dynamics of on-board rotors mounted on hydrody-
namic journal bearings after the appearance of the study of Dakel et al. [17]. In the case of sinusoidal translations
of the support, time history responses, spectral analysis, Poincaré maps and bifurcation diagrams were the analysis
tools to observe nonlinear phenomena (such as quasi-periodic and chaotic motions) for a centrifugal pump [23], a
turbocharger rotor system [24], a rigid rotor [25], a flexible rotor modeled by Euler beam finite elements [26]. On the
other hand, researchers concentrated on the dynamic behavior of the on-board rotor in the presence of nonlinearities
which were caused by the support rotations [27] or by the highly flexible shaft [28]. On-board rotordynamics under
support excitations was exploited by some works to investigate the vibrations of rotors with fibre reinforced blades
(composite material) [29], to study the transient regime in the presence of a non-stationary speed of rotation [30], to
deal with the geometric asymmetry of disk and shaft [31] and to examine a new control law using active magnetic
bearings [32].

Although most of the researches stated previously deal with support-harmonically excited rotor systems, few
articles focus on the stability analysis of the parametrically excited on-board rotors especially in the case of multi-
frequency parametric excitations. Moreover, these researches focus either on constructing simplified models or on
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predicting only the dynamics of on-board rotors in bending. Even if the adoption of simplified models facilitates the
investigation and the understanding of the dynamic behavior of such mechanical systems, it remains restricted in the
practical applications and weakens the ability to produce the desirable accuracy between the theoretical and realistic
rotor models under the operating conditions. Indeed, the most common restrictions and simplifications are relevant
either to the geometric characteristics of the rotor (for example, rigid rotor [13,25]), to the use of the Rayleigh-Ritz
approach (for example, see [11,12]) as well as the finite element method based on four flexural degrees of freedom (for
example, see [16–18,20,21,26]) for the spatial discretization of the rotor model, to the constant damping and stiffness
coefficients of flexible bearings supporting the rotor (for example, see [13,15]) or to the type of rotor support excitation
(single translation or rotation).

In order to enhance the ability of an on-board rotor model, an original contribution is proposed in the current
paper. Namely, a flexible rotor running at a time-varying speed of rotation is discretized using the finite element method
based on the Timoshenko beam theory as well as on six degrees of freedom per node (flexural, axial and torsional
ones), mounted on hydrodynamic finite-length bearings (for which the external forces are computed using the Reynolds
equation [33]), and excited by combined deterministic movements (three rotations and three translations) of the rigid
support. Eulerian angles are utilized to describe the orientation of the disk and the shaft with respect to the moving
support in the case of bending and torsion of the flexible rotor. The kinetic and strain energies as well as the virtual work
of the rotating rotor components are calculated. Timoshenko beam finite elements containing the effects of the rotatory
inertia, the gyroscopic inertia and the shear deformation of shaft due to the bending are considered for the dynamic
modeling of the on-board rotor. Using the finite difference method to treat the Reynolds equation, a linearized model
with damping and stiffness coefficients is considered for the hydrodynamic journal bearings. The linear second-order
differential equations of vibratory motion of the rotor with respect to the rigid support (which constitutes a non-inertial
frame of reference) are established by applying Lagrange’s equations. They include time-varying parametric coefficients
corresponding to the mass unbalance inclination, to the support rotations, to the coupling between both phenomena
and to the combination of mass unbalance and support translations. These time-varying coefficients are a source of
dynamic instability because they create single-frequency and multi-frequency parametric excitations during sinusoidal
movements of the support. In the proposed numerical examples, a symmetric rotor-hydrodynamic journal bearing
system is subject either to simple and combined sinusoidal rotations of the support or to rotating mass unbalance
correlated with sinusoidal translations of the support. Its dynamic behavior is investigated by discussing mainly the
influence of the support motions on the stability charts.

2. Problem formulation and assumptions adopted for the on-board rotor

The basic mechanical components of the on-board rotor are sketched in Fig. 1. The distribution of the mass
unbalance is continuous and arbitrary all along the rotor. Therefore the mass unbalance cannot perfectly be eliminated.
The residual mass unbalance and the different imposed motions of the support represent the excitations taken into
account. The transverse deflections, the axial displacement and the torsional rotation of the shaft are studied and
evaluated here to understand the dynamic behavior of the rotor.

The following assumptions are retained in the current investigation: the symmetric disk is infinitely rigid, the
symmetric shaft is deformable and modeled with elastic isotropic homogeneous Timoshenko beam elements of constant
cross-section, the mass unbalance is modeled as lumped masses, the hydrodynamic journal bearings supporting the
shaft are of finite-length type, the support is absolutely rigid and mobile, the rotor runs at a time-varying speed of
rotation φ̇ (t). The latter brings additional stiffness matrices in the equations of motion compared to those obtained
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Fig. 1. Basic mechanical components and coordinate systems of the on-board rotor model.
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with a constant speed of rotation.
Taking into account the support movement modifies the equations of motion of a rotor when compared to those

produced in the case of a fixed support. The approach proposed by Duchemin et al. [11] is adopted in order to ensure a
straightforward modeling. Three coordinate systems are employed to consider the motion of the support with respect
to the ground and that of the rotor with respect to the support.

The derivation of the equations of motion is inspired from the theory described by Lalanne and Ferraris [3] as
well as Dakel et al. [16]. First of all, the frames of reference necessary to characterize the movement of an on-board
rotor are defined and the vectors expressing the rotations between them are computed. Then, the kinetic energies
for the disk, the shaft element and the concentrated mass unbalance, the strain energy for the shaft element and the
virtual works for the gravity loads due to the disk and to the shaft as well as the hydrodynamic bearing forces are
calculated. Moreover, the rotating flexible rotor is discretized by means of the Timoshenko beam finite elements for
which each node is built with six degrees of freedom (transverse and axial translations as well as rotations due to the
bending and to the torsion). Finally, the differential equations of motion of an on-board rotor-hydrodynamic bearing
system are deduced from Lagrange’s equations applied with respect to the generalized coordinates qi by the following
form:

d
dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂U

∂qi
= Fqi

, (1)

with ndof (1 ≤ i ≤ ndof ) the number of degrees of freedom, T and U the kinetic and strain energies respectively and
Fqi

the external forces corresponding to qi. The symbol “•” refers to the differentiation with respect to time t.

3. Basic calculations of the kinematics

The utilization of more than one frame of reference requires establishing carefully the relationships between
the different defined coordinate systems. Fig. 1 shows three principal Cartesian frames of reference introduced to take
into account the mobility of the rotor support: Rg (xg, yg, zg) is the Galilean frame of reference fixed to the ground,
R (x, y, z) is the non-inertial frame of reference connected to the moving rigid support, Rl

(
xl, yl, zl

)
is the non-inertial

local frame of reference (moving with the rotor during its operation) attached to the center of mass of the rigid disk
or to the geometric center of a section of the deformable shaft. Let Og, O and Ol be the origins of the frames of
reference Rg, R and Rl respectively. The origin Og of the frame Rg represents the center of rotation of the support
R with respect to the ground.

The elastic line of the undeformed shaft is along the Oy axis on which the disk mass center is located. Moreover,
xOy and yOz are both planes of symmetry for the disk and the undeformed shaft. Thus Ox, Oy and Oz are principal
axes of inertia.

Let us consider an arbitrary point Cinit along the elastic line, i.e., it represents the geometric center of the
undeformed shaft. Its coordinates in the frame R are (0, y, 0). Let its time-dependent dynamic lateral displacements
along the Ox and Oz axes be u (y, t) and w (y, t), see Fig. 2(a). On the other hand, its coordinate along the Oy
longitudinal axis is not a constant with respect to the rotor support R. Thus the axial displacement v (y, t) along Oy
is taken into account.

According to the classical rotordynamics theory, the transformation between the frames R and Rl presented
in Fig. 2(a) and (b) is carried out by the Euler angles ψ (y, t), θ (y, t), ϕ (y, t) = φ (t) + λ (y, t) (where ψ, θ, ϕ,
λ are respectively the precession, nutation, spinning as well as torsional angles, while φ is the nominal rotation
of the shaft without deformation) and two intermediate frames of reference Ri1

(
xi1 , yi1 , zi1

)
and Ri2

(
xi2 , yi2 , zi2

)
.

The relationship between the components of any vector V projected in R and those projected in Rl is expressed as
follows [16]:

V|Rl = RR
RlV|R with RR

Rl =

cosψ cosϕ− sinψ sin θ sinϕ sinψ cosϕ+ cosψ sin θ sinϕ − cos θ sinϕ
− sinψ cos θ cosψ cos θ sin θ

cosψ sinϕ+ sinψ sin θ cosϕ sinψ sinϕ− cosψ sin θ cosϕ cos θ cosϕ

 , (2)

where RR
Rl is the rotation matrix of the rotor Rl with respect to its support R.

Introducing the intermediate reference frames Ri3
(
xi3 , yi3 , zi3

)
and Ri4

(
xi4 , yi4 , zi4

)
as well as the Euler angles

α (t), β (t) and γ (t), see Fig. 3, the relationship between the components of any vector V expressed in Rg and those
expressed in R is described by the following [16]:
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Fig. 2. (a) Transformation between the coordinate system linked with the rotor support R and the local coordinate
system Rl. (b) Euler angles for the change of basis.

V|R = RRg

R V|Rg with RRg

R =

cosα cos γ − sinα sin β sin γ sinα cos γ + cosα sin β sin γ − cosβ sin γ
− sinα cosβ cosα cosβ sin β

cosα sin γ + sinα sin β cos γ sinα sin γ − cosα sin β cos γ cosβ cos γ

 , (3)

where RRg

R is the rotation matrix of the rotor support R with respect to the ground Rg.
The calculation of the energies of the rotor components necessitates establishing the angular velocity vectors

of the frames of reference R as well as Rl and the position vector for the origin O of R. The instantaneous angular
velocity vector ωRRl of the coordinate system Rl with respect to R is defined by

ωRRl = θ̇xi1 + ϕ̇yl + ψ̇z, (4)

where xi1 , yl and z represent unit vectors along the Olxi1 , Olyl and Olz axes. Let the components of the angular
velocity vector ωRRl projected in the local frame Rl be ωxl

1 , ωy
l

1 and ωzl

1 . Their expression is written in the following
form [3,16]:

ωRRl =


ωx

l

1

ωy
l

1
ωz

l

1


Rl

=


−ψ̇ cos θ sinϕ+ θ̇ cosϕ

ψ̇ sin θ + ϕ̇

ψ̇ cos θ cosϕ+ θ̇ sinϕ


Rl

. (5)

In the same way as previously, the instantaneous angular velocity vector ωRg

R , which achieves the orientation
of the frame linked with the rotor support R with respect to the Galilean frame Rg, is described in the frame R by

ωR
g

R =

ω
x

ωy

ωz


R

=

−α̇ cosβ sin γ + β̇ cos γ
α̇ sin β + γ̇

α̇ cosβ cos γ + β̇ sin γ


R

, (6)
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Fig. 3. Transformation between the Galilean coordinate system Rg and the coordinate system attached to the rotor
support R.

where ωx, ωy and ωz are defined as the components of the angular velocity vector ωRg

R projected in the coordinate
system fixed to the support R. Let the components of the angular velocity vector ωRg

R of the rigid support R with
respect to the ground Rg expressed in the local frame Rl be ωxl

2 , ωy
l

2 and ωz
l

2 . Their expressions are obtained by
Eq. (2) defining the relationship between the reference frames R and Rl, i.e.,

ωR
g

R =


ωx

l

2

ωy
l

2
ωz

l

2


Rl

= RR
Rl

ω
x

ωy

ωz


R

=
{(ωx cosψ + ωy sinψ) cosϕ− ((ωx sinψ − ωy cosψ) sin θ + ωz cos θ) sinϕ

− (ωx sinψ − ωy cosψ) cos θ + ωz sin θ
((ωx sinψ − ωy cosψ) sin θ + ωz cos θ) cosϕ+ (ωx cosψ + ωy sinψ) sinϕ

}
Rl

. (7)

Finally, the instantaneous angular velocity vector ωRg

Rl of the rotor Rl with respect to the ground Rg projected
in the local frame of reference Rl represents the sum of the vectors ωRRl and ωRg

R defined in Eqs. (5) and (7), then

ωR
g

Rl = ωRRl + ωR
g

R =


ωx

l

1

ωy
l

1
ωz

l

1


Rl

+


ωx

l

2

ωy
l

2
ωz

l

2


Rl

=


ωx

l

ωy
l

ωz
l


Rl

. (8)

The absolute position vector OgO of the origin O of the coordinate system attached to the support R projected
in the Galilean coordinate system Rg is given as follows:

OgO =

x
g
O

ygO
zgO


Rg

. (9)

Inserting Eq. (3) defining the relationship between the frames Rg and R, the position vector OgO expressed in
the frame R becomes

OgO =

xOyO
zO


R

= RRg

R

x
g
O

ygO
zgO


Rg

=
{(xg

O cosα+ yg
O sinα) cos γ − ((xg

O sinα− yg
O cosα) sin β + zg

O cosβ) sin γ
− (xg

O sinα− yg
O cosα) cosβ + zg

O sin β
((xg

O sinα− yg
O cosα) sin β + zg

O cosβ) cos γ + (xg
O cosα+ yg

O sinα) sin γ

}
R

. (10)

Subsequently, the computations are accomplished by employing the rotational ωx (t), ωy (t), ωz (t) and trans-
lational xO (t), yO (t), zO (t) components of the support motions (see Fig. 4) as well as their derivatives with respect
to time t.
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4. Finite element modeling of the on-board rotor-bearing system

In this section, mechanical formulations for the disk, the shaft, the mass unbalance and the hydrodynamic
journal bearings are proposed. The kinetic and strain energies of the rotor components are measured by an observer
positioned at the ground Rg and their terms are written with respect to the coordinate system connected to the mobile
rigid support R. In order to model the on-board rotor, the finite element method based on six degrees of freedom
containing the flexural, axial and torsional motions is chosen.

4.1. Disk

The disk is assumed to be rigid according to the assumptions presented in Section 2. As a consequence, only
its kinetic energy and the virtual work of its weight are computed. The kinetic energy Td is composed of the scalar
sum of the absolute translational kinetic energy and the absolute rotational kinetic energy about the disk mass center
situated at the arbitrary abscissa yd along the Oy axis [10,11,16,17,20], i.e.,

Td = md

2

(
vR

g

Ol
d

)T
vR

g

Ol
d

+ 1
2

(
ωR

g

Rl

)T
Imd

ωR
g

Rl ; with Imd
= diag

[
Ixmd

Iymd
Izmd

]
, (11)

where the superscript T is the matrix transposition symbol, md is the mass of the disk, vRg

Ol
d

is the translational velocity
vector of its center Old and Imd

is its principal inertia tensor. Ixmd
, Iymd

and Izmd
are the principal moments of inertia

of the disk mass about the Ox, Oy and Oz axes respectively. In addition, Imomd
is utilized to define the mean moment

of inertia of the disk mass. Since the disk is symmetric according to the assumptions highlighted in Section 2, Ixmd

and Izmd
are equal to the mean moment of inertia Imomd

.
The translational velocity vector vRg

Ol
d

is determined by means of the absolute position vector OgOl
d of the disk

mass center situated at the arbitrary abscissa yd related to the frame R. The latter is observed from the ground and
expressed in the coordinate system attached to the rotor support R by

OgOl
d = OgO + OOl

d =

xOyO
zO


R

+

 ud
vd + yd
wd


R

=

 ud + xO
vd + yd + yO
wd + zO


R

. (12)

Employing the transport theorem expressing the relationship between the time derivative of a vector measured
from a fixed frame of reference and that of the same vector but measured from a moving frame of reference, the
derivation of the position vector OgOl

d yields the following formulation:

dRg OgOl
d

dt = dROgOl
d

dt + ωR
g

R ∧OgOl
d = vR

g

Ol
d
; then vR

g

Ol
d

=
{
u̇d + ẋO + (wd + zO)ωy − (vd + yd + yO)ωz

v̇d + ẏO − (wd + zO)ωx + (ud + xO)ωz

ẇd + żO + (vd + yd + yO)ωx − (ud + xO)ωy

}
R

. (13)

Let u̇Ol
d
, v̇Ol

d
and ẇOl

d
represent the three components of the translational velocity vector vRg

Ol
d

of the disk center.

The components of the vector ωRg

Rl are given by ωxl

d , ωy
l

d and ωzl

d . Thus the following expression of the disk kinetic
energy is obtained:
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Td = md

2

(
u̇2
Ol

d
+ v̇2

Ol
d

+ ẇ2
Ol

d

)
+ 1

2

(
Imomd

ωx
l2
d + Iymd

ωy
l2
d + Imomd

ωz
l2
d

)
. (14)

The assumptions found in Section 2 state that the rotor runs at a time-varying speed of rotation φ̇ (t). Thus
the spinning angle ϕ and its time derivative ϕ̇ are replaced by φ+λ and φ̇+ λ̇ respectively. The angles of rotation (θ,
) and their time derivatives are very small. The trigonometric functions of these angles are consequently replaced by

their Taylor series expansion limited at the order 2 and are expressed as sin θd ' θd, cos θd ' 1− θ2
d

2 , sinψd ' d and
cosψd ' 1− ψ2

d

2 . On the other hand, the disk weight (effects of gravity) is taken into account and can be defined by

FWr

d = RRg

R

 0
0

−md g


Rg

= −md g

− cosβ sin γ
sin β

cosβ cos γ


R

. (15)

The above equation confirms that even if the gravity force of the disk is a constant with respect to the Galilean
frame Rg, this force becomes time-variable when it is projected in the frame connected to the support R. Such a
change occurs only in the case of rotational motions of the support according to Eq. (15).

The disk is modeled by one-node finite element situated at the geometric center of the shaft cross-sectional area.
The node of nodal interpolation corresponds to that ni of the undeformed shaft finite element eshi (where i is the shaft
finite element number). It is associated with six degrees of freedom uni

ed, v
ni

ed , w
ni

ed , θ
ni

ed , λ
ni

ed and ψni

ed , i.e., transverse
and axial translations as well as rotations due to the bending and to the torsion. Thus the nodal displacement vector
of the disk finite element expressed in the coordinate system fixed to the rigid support R is given by

δned =
[
uni

ed, v
ni

ed , w
ni

ed , θ
ni

ed , λ
ni

ed, ψ
ni

ed

]T
R
. (16)

After substituting Eq. (16) into Eq. (14), the application of Lagrange’s equations to the obtained kinetic energy
leads to the following differential equations:

d
dt

∂Ted

∂δ̇
n

ed

)
− ∂Ted
∂δned

= Medδ̈
n

ed + Ced (t) δ̇ned + Ked (t) δned − Fλed (t)− Fed,su (t) , (17)

with

Med = Mtr
ed + Mro

ed, (18)

Ced (t) = Cg
ed φ̇+ Cωx

ed,su ω
x + Cωy

ed,su ω
y + Cωz

ed,su ω
z, (19)

Ked (t) = Kg
ed φ̈+ Kω̇x

ed,su ω̇
x + Kω̇y

ed,su ω̇
y + Kω̇z

ed,su ω̇
z + Kφ̇ ωy

ed,su φ̇ ω
y + Kωx2

ed,su ω
x2

+ Kωy2

ed,su ω
y2 + Kωz2

ed,su ω
z2 + Kωx ωy

ed,su ω
x ωy + Kωx ωz

ed,su ω
x ωz + Kωy ωz

ed,su ω
y ωz,

(20)

Fλed (t) = −Vλ
ed φ̈;

Fed,su (t) = −Vu
ed,su

(
ẍO + 2 żO ωy − 2 ẏO ωz + zO (ω̇y + ωx ωz)− yO (ω̇z − ωx ωy)− xO

(
ωy2 + ωz2

))
−Vv

ed,su

(
ÿO − 2 żO ωx + 2 ẋO ωz − zO (ω̇x − ωy ωz) + xO (ω̇z + ωx ωy)− yO

(
ωx2 + ωz2

))
−Vw

ed,su

(
z̈O + 2 ẏO ωx − 2 ẋO ωy + yO (ω̇x + ωy ωz)− xO (ω̇y − ωx ωz)− zO

(
ωx2 + ωy2))

−Vy w
ed,su (ω̇x + ωy ωz) + Vy u

ed,su (ω̇z − ωx ωy) + Vy v
ed,su

(
ωx2 + ωz2

)
−Vθ

ed,su (ω̇x + ωy ωz)

−Vλ
ed,su ω̇

y −Vψ
ed,su (ω̇z − ωx ωy)−Vy ψ

ed,su

(
φ̇ ωx + ωx ωy

)
+ Vy θ

ed,su

(
φ̇ ωz + ωy ωz

)
.

(21)

The elementary matrices and vectors of the disk finite element are presented in Appendix A. Finally, the virtual
work for the disk weight is formulated and thus the nodal gravity force is obtained as follows:

δWed =
(
FWr

ed

)T
δδned; with FWr

ed = −md g
[
− cosβ sin γ, sin β, cosβ cos γ, 0, 0, 0

]T
. (22)
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4.2. Shaft

The shaft is assumed to be flexible according to the assumptions presented in Section 2. As a consequence,
its kinetic and strain energies and the virtual work of its weight are computed. The kinetic energy of the symmetric
shaft element can be determined by taking a shaft elementary volume which can be considered as a symmetric disk of
very small thickness dy. Let u̇Ol , v̇Ol , ẇOl be the components of the translational velocity vector vRg

Ol and ωxl , ωyl ,
ωz

l be the components of the instantaneous angular velocity vector ωRg

Rl . As a consequence, the expression for the
kinetic energy Tsh of the shaft element, whose end-points have the abscissas y1 and y2 along the Oy axis, is written
hereafter [11,16,17]

Tsh = ρshSsh
2

∫ y2

y1

(
u̇2
Ol + v̇2

Ol + ẇ2
Ol

)
dy +

ρshI
mo
Ssh

2

(∫ y2

y1

ωx
l2dy + 2

∫ y2

y1

ωy
l2dy +

∫ y2

y1

ωz
l2dy

)
, (23)

where ρsh, Ssh and lsh = y2− y1 represent respectively the density, the cross-sectional area and the length of the shaft
element. ImoSsh

= IxSsh
= IzSsh

is the mean moment of inertia of the cross-sectional area. The rigid support motion with
respect to the ground has no influence on the strain energy of the shaft because the latter is related only to the stresses
and therefore to the bending, axial and torsional deformations of the shaft with respect to the rotor support R. In
addition to the classical linear terms in the strain field due to the bending deformation, another aspect obtained by
the bending is taken into account, i.e., the shear effects highlighted by Timoshenko. Thus the expression of the strain
energy Ush for the shaft element is of the following form:

Ush =
EshI

mo
Ssh

2

∫ y2

y1

((
∂ψ

∂y

)2
+
(
∂θ

∂y

)2
)

dy + Gshκ
mo
sh Ssh
2

∫ y2

y1

((
∂u

∂y
+ ψ

)2
+
(
∂w

∂y
− θ
)2
)

dy

+ EshSsh
2

∫ y2

y1

(
∂v

∂y

)2
dy +GshI

mo
Ssh

∫ y2

y1

(
∂λ

∂y

)2
dy,

(24)

where Esh, Gsh = Esh

2(1+νsh) and νsh are respectively Young’s modulus, the shear modulus and Poisson’s ratio of the
isotropic homogeneous shaft material. κmosh = κxsh = κzsh represents the mean shear correction factor of the cross-
sectional area of the shaft. Moreover, the shaft weight can be obtained by considering a shaft elementary volume
equivalent to a disk of very small thickness dy. It is described by

FWr

sh =
∫ y2

y1

RRg

R

 0
0

−ρshSsh g


Rg

dy = −ρshSsh g
∫ y2

y1

− cosβ sin γ
sin β

cosβ cos γ


R

dy. (25)

The shaft is modeled with nesh two-node beam finite elements and thus possesses nesh+1 nodes. Let us consider
an undeformed shaft finite element eshi which consists of two nodes ni and ni+1 of coordinates yni

sh and yni+1
sh along

the Oy axis. This finite element is of density ρeshi
, cross-sectional area Seshi

, length leshi
, moment of inertia ImoSeshi

,
Young’s modulus Eeshi , Poisson’s ratio νeshi as well as shear correction factor κmoeshi

where i (1 ≤ i ≤ nesh) is the shaft
finite element number. Considering six degrees of freedom for each node, the nodal displacement vector of this finite
element projected in the reference frame fixed to the rigid support R is given as

δneshi
=
[
uni

eshi
, vni

eshi
, wni

eshi
, θni

eshi
, λni

eshi
, ψni

eshi
, u
ni+1
eshi

, v
ni+1
eshi

, w
ni+1
eshi

, θ
ni+1
eshi

, λ
ni+1
eshi+1

, ψ
ni+1
eshi

]T
R
. (26)

The dynamic transverse displacements ueshi , weshi and the axial displacement veshi of any point Cinit respec-
tively along the Ox, Oz and Oy axes of the frame R as well as the rotations θeshi , ψeshi , λeshi respectively around the
Ox, Oz and Oy directions due to the bending and to the torsion are formulated as a function of the nodal displacement
vector δneshi

as follows:

ueshi = F̄ueshi
(ȳ) δneshi

; weshi = F̄weshi
(ȳ) δneshi

; veshi = F̄veshi
(ȳ) δneshi

;

θeshi
= F̄θeshi

(ȳ) δneshi
; ψeshi

= F̄ψeshi
(ȳ) δneshi

; λeshi
= F̄λeshi

(ȳ) δneshi
, (27)

where F̄ueshi
, F̄weshi

, F̄θeshi
and F̄ψeshi

are the shape function vectors of a Timoshenko beam finite element regarding the
flexural motions. They involve the shear effects, are described as a function of the dimensionless variable ȳ (ȳ = y

leshi
)

along the Oy axis of the frame R and represent third-degree and second-degree polynomial equations (see Chen and
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Ku [34]). The shape function vectors F̄veshi
and F̄λeshi

for the axial and torsional motions are first-degree polynomial
equations (i.e., the classical linear Lagrange shape function vectors).

After inserting Eq. (27) in Eqs. (23) and (24), the application of Lagrange’s equations to the resulting kinetic
and strain energies yields the differential equations of motion of the shaft finite element described by

d
dt

∂Teshi

∂δ̇
n

eshi

)
− ∂Teshi

∂δneshi

+ ∂Ueshi

∂δneshi

= Meshi δ̈
n

eshi
+ Ceshi (t) δ̇neshi

+ Keshi (t) δneshi
− Fλeshi

(t)− Feshi,su (t) , (28)

with

Meshi
= Mtr

eshi
+ Mro

eshi
, (29)

Ceshi
(t) = Cg

eshi
φ̇+ Cωx

eshi,su ω
x + Cωy

eshi,su ω
y + Cωz

eshi,su ω
z, (30)

Keshi (t) = Ke
eshi

+ Kg
eshi

φ̈+ Kω̇x

eshi,su ω̇
x + Kω̇y

eshi,su ω̇
y + Kω̇z

eshi,su ω̇
z + Kφ̇ ωy

eshi,su
φ̇ ωy

+ Kωx2

eshi,su ω
x2 + Kωy2

eshi,su ω
y2 + Kωz2

eshi,su ω
z2 + Kωx ωy

eshi,su ω
x ωy + Kωx ωz

eshi,su ω
x ωz

+ Kωy ωz

eshi,su ω
y ωz,

(31)

Fλeshi
(t) = −Vλ

eshi
φ̈;

Feshi,su (t) = −Vu
eshi,su

(
ẍO + 2 żO ωy − 2 ẏO ωz + zO (ω̇y + ωx ωz)− yO (ω̇z − ωx ωy)− xO

(
ωy2 + ωz2

))
−Vv

eshi,su

(
ÿO − 2 żO ωx + 2 ẋO ωz − zO (ω̇x − ωy ωz) + xO (ω̇z + ωx ωy)− yO

(
ωx2 + ωz2

))
−Vw

eshi,su

(
z̈O + 2 ẏO ωx − 2 ẋO ωy + yO (ω̇x + ωy ωz)− xO (ω̇y − ωx ωz)− zO

(
ωx2 + ωy2))

−Vy w
eshi,su

(ω̇x + ωy ωz) + Vy u
eshi,su

(ω̇z − ωx ωy) + Vy v
eshi,su

(
ωx2 + ωz2

)
−Vθ

eshi,su (ω̇x + ωy ωz)

−Vλ
eshi,su ω̇

y −Vψ
eshi,su

(ω̇z − ωx ωy)−Vy ψ
eshi,su

(
φ̇ ωx + ωx ωy

)
+ Vy θ

eshi,su

(
φ̇ ωz + ωy ωz

)
.

(32)

As can be seen in Eqs. (28)–(32), the only difference with respect to the disk matrices is the stiffness matrix
due to the shaft elasticity. This matrix comprises the effects related to the streching and torsional motions, to the
linear bending deformation as well as to the shear deformation. Finally, the calculations of the elementary matrices
and vectors for the shaft finite element are provided in Appendix A. Lastly, the virtual work for the gravity load due
to the shaft finite element is constructed and thus the nodal gravity force is deduced as follows:

δWsh =
∫ y2

y1

(
dFWr

sh

)T
δδeshi

⇒ δWeshi
=
(
FWr

eshi

)T
δδneshi

;

with FWr

eshi
= −ρeshi

Seshi
leshi

g

∫ 1

0

(
−
(
F̄ueshi

)T cosβ sin γ +
(
F̄veshi

)T sin β +
(
F̄weshi

)T cosβ cos γ
)

dȳ, (33)

where the displacement vector δeshi
includes ueshi

, veshi
, weshi

, θeshi
, λeshi

and eshi
respectively.

4.3. Mass unbalance

The mass unbalance is modeled by a lumped mass mmu situated at a point Pmu with a distance rmu from
the geometric center of the cross-sectional area of the shaft. Its initial phase angle with the Olzl axis of the local
coordinate system Rl (which coincides with the Oz axis of the frame of reference R at rest) is ηmu. In the existing
literature [3,11,15–17], the mass unbalance is assumed to remain in a plane perpendicular to the Oy axis. Therefore
it is not affected by the rotations θ and ψ around the transverse directions but only by the transverse displacements
u and w. In this work, a more rigorous case is selected and the previous assumption is not kept. When the shaft is
deformed during the operation of the rotor, the angle of the mass unbalance with the Olzl axis remains ηmu and its
coordinates expressed in Rl are given by the vector

[
xlmu = rmu sin ηmu, 0, zlmu = rmu cos ηmu

]T
Rl . The mass unbalance

kinetic energy Tmu is presented as follows:
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Tmu = mmu

2

(
vR

g

Pmu

)T
vR

g

Pmu
. (34)

The translational velocity vector vRg

Pmu
is found through the absolute position vector OgPmu of the mass

unbalance. The latter is measured from the ground and can be written with respect to the coordinate systems R and
Rl by the following expression:

OgPmu = OgOl
mu + Ol

muPmu =

 umu + xO
vmu + ymu + yO

wmu + zO


R

+

x
l
mu

0
zlmu


Rl

. (35)

The time derivative of the absolute position vector OgPmu consists of the sum of the derivatives of the vectors
OgOl

mu as well as Ol
muPmu and is given by

dRg OgPmu

dt = dRg OgOl
mu

dt + dRg Ol
muPmu

dt = vR
g

Pmu
. (36)

Using the transport theorem explained previously in Section 4.1, the time derivative of the absolute position
vector OgOl

mu of the shaft geometric center is described by

dRg OgOl
mu

dt = dROgOl
mu

dt + ωR
g

R ∧OgOl
mu =

u̇mu + ẋO + (wmu + zO)ωy − (vmu + ymu + yO)ωz
v̇mu + ẏO − (wmu + zO)ωx + (umu + xO)ωz

ẇmu + żO + (vmu + ymu + yO)ωx − (umu + xO)ωy


R

. (37)

The time derivative of the vector Ol
muPmu measured from the local coordinate system Rl (i.e., dRl

Ol
muPmu
dt ) is

nil because the coordinates of the mass unbalance are constant with respect to Rl. Thus by means of the transport
theorem, the time derivative of the vector Ol

muPmu measured from the Galilean frame Rg and expressed in the local
frame Rl is obtained, then

dRg Ol
muPmu

dt = ωR
g

Rl ∧Ol
muPmu =

 zlmuω
y

−
(
zlmuω

x − xlmuωz
)

−xlmuωy


Rl

. (38)

Finally, the translational velocity vector vRg

Pmu
projected in the frame R is calculated by introducing Eqs. (2), (37)

and (38) into Eq. (36), i.e.,

vR
g

Pmu
=

u̇mu + ẋO + (wmu + zO)ωy − (vmu + ymu + yO)ωz
v̇mu + ẏO − (wmu + zO)ωx + (umu + xO)ωz

ẇmu + żO + (vmu + ymu + yO)ωx − (umu + xO)ωy


R

+
(
RR
Rl

)T  zlmuω
y

−
(
zlmuω

x − xlmuωz
)

−xlmuωy


Rl

. (39)

The mass unbalance is modeled by one-node finite elements located at the geometric center of the cross-sectional
area of the shaft. The node attached to that ni of the undeformed shaft finite element eshi includes six degrees of
freedom uni

emu, vni
emu, wni

emu, θni
emu, λni

emu and ψni
emu associated with lateral and axial translations as well as with rotations

due to the flexural and torsional motions. Thus the nodal displacement vector of the mass unbalance finite element
expressed in the coordinate system fixed to the mobile rigid support R is defined by

δnemu =
[
uni
emu, v

ni
emu, w

ni
emu, θ

ni
emu, λ

ni
emu, ψ

ni
emu

]T
R
. (40)

After substituting Eq. (40) into Eq. (34), the application of Lagrange’s equations to the obtained kinetic energy
leads to the differential equations of motion of the mass unbalance finite element written in the following form:

d
dt

(
∂Temu

∂δ̇
n

emu

)
− ∂Temu
∂δnemu

= Memu (t) δ̈nemu + Cemu (t) δ̇nemu + Kemu (t) δnemu − Femu (t)− Femu,su (t) , (41)

with

Memu (t) = Mcs
emu; Cemu (t) = Cφ̇

emu φ̇+ Cemu,su, (42)

11



Kemu (t) = Kφ̈
emu φ̈+ Kφ̇2

emu φ̇
2 + Kemu,su, (43)

Femu (t) = Vφ̈
emu φ̈+ Vφ̇2

emu φ̇
2; Femu,su (t) = f (ωx, ωy, ωz, xO, yO, zO) . (44)

It should be clarified that these equations of motion show not only external force vectors (such as centripetal
and centrifugal force vectors obtained classically by the application of Lagrange’s equations to the kinetic energy of the
mass unbalance) but also mass, damping and stiffness matrices. This is because the mass unbalance is not neglected
despite its small value compared to the mass of the disk and the shaft. Furthermore, in the presence of sinusoidal
motions of the support, the excitation due to the mass unbalance combined with the support motions has not only
a frequency equal to the speed of rotation φ̇ of the rotor but also a support motion frequency and a combination of
both frequencies. The original elementary matrices and vectors of the mass unbalance finite element are presented
in Appendix A. They are expressed as a function of x∗ = xlmu cosφ+ zlmu sinφ and z∗ = −xlmu sinφ+ zlmu cosφ which
represent the coordinates projected in the frame R if the mass unbalance is situated in a plane perpendicular to the
Oy axis.

4.4. Hydrodynamic journal bearing

Fig. 5 shows a schematic diagram of a hydrodynamic journal bearing. The latter is usually composed of a fixed
bronze bush containing a rotating shaft and of a lubricant separating these two components. Let rbe, lbe, cbe = rbe−rsh
(where rsh is the shaft radius) and µbe be the radius, length, clearance and fluid film dynamic viscosity of the bearing
respectively. The bearing center and the shaft geometric center are respectively the points Cinit and Ol. For a given
speed of rotation φ̇ of the rotor and a static load Wr created by the rotor weight, the shaft geometric center Ol in the
bearing holds a static equilibrium position C0

be described by the displacement vector δ0
be =

[
u0
be, w

0
be

]T
R

projected in
the frame R or equivalently by the relative static eccentricity ε0

be = e0
be

cbe
= ‖δ0

be‖
cbe

of the shaft center within the bearing
and the attitude angle ϕ0

be between the load direction and the line relating the centers Cinit and Ol.
In the dynamic regime, the transverse displacement vector δbe =

[
ube, wbe

]T
R
of the shaft geometric center in the

bearing is produced due to the variation of forces applied to the rotor (mass unbalance, fluid film forces and support
excitations). Assuming an isothermal and laminar flow of an isoviscous incompressible fluid, the pressure distribution
pbe in the hydrodynamic bearing is governed by the Reynolds equation which can be found in [33] and given by

∂

∂scibe

(
h3
be

∂pbe
∂scibe

)
+ ∂

∂saxbe

(
h3
be

∂pbe
∂saxbe

)
= 6µbe

(
rbe
(
φ̇− 2ϕ̇be

) ∂hbe
∂scibe

+ 2ėbe cos
(
scibe
rbe

))
, (45)
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ta 

ra 
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Fig. 5. Simple representation of a hydrodynamic journal bearing.
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where hbe, scibe and saxbe are respectively the oil film thickness, the circumferential and axial coordinates. In this study,
the hydrodynamic finite-length bearing is considered. The difficulty to obtain a satisfactory solution for this bearing
concerns not only the form of the Reynolds equation to be used but also the boundary conditions. Therefore this
type of bearing has no analytical solution. The classical numerical technique considered as a reference method and
called “finite difference method” [35] is exploited to solve the Reynolds equation and to compute the hydrodynamic
fluid pressure distribution. This technique is a first-order 2D method. The mesh has a discretization with rectangular
elements and a number of nodes equal to 200 and 15 successively in the circumferential and axial directions. The
external hydrodynamic forces Fbe =

[
Fube, F

w
be

]T
R

acting on the shaft can be deduced from the integration of the
fluid film pressure field over the bearing by employing the Gümbel boundary conditions which reject the negative
pressure from the integral. In [33], the Gümbel conditions utilize the positive pressure involved in the classical interval
θbe ∈ [0; π rad]. In [36], these conditions are improved for hydrodynamic short bearings and the positive pressure
appears all along the interval θbe ∈ [βbe; βbe + π rad] (where βbe > 0) instead of the classical one. Here, the positive
pressure may begin to appear at θbe = 0 but the interval length of π rad is not ensured. The fluid film forces Fbe
depend nonlinearly on the dynamic transverse displacement and velocity vectors δbe, δ̇be.

In the present article, the transverse dynamic displacements of the shaft elastic line are supposed to be small
in the vicinity of the static position. Therefore the linear analysis of bearings can be applied by building a first-order
Taylor expansion of the fluid film forces as follows:

Fbe
(
δbe, δ̇be

)
= Fbe

(
δ0
be,0

)
− cbe∆δ̇be − kbe∆δbe, (46)

with

cbe = −
∂Fbe

(
δ0
be,0

)
∂δ̇be

; kbe = −
∂Fbe

(
δ0
be,0

)
∂δbe

; ∆δ̇be = δ̇be; ∆δbe = δbe − δ0
be. (47)

The static hydrodynamic force vector Fbe
(
δ0
be,0

)
is related to the static displacement vector and must equili-

brate the static load Wr imposed by the rotor weight. The damping and stiffness matrices cbe, kbe of the linearized
hydrodynamic bearing depend only on the static position δ0

be. Since the bearing contributes to the rotor as external
forces, the virtual work for the bearing finite element has to be established in order to apply Lagrange’s equations

δWebe = FTebe
(
δnebe, δ̇

n

ebe

)
δδnebe, (48)

where δnebe is the nodal displacement vector of the bearing finite element expressed in the coordinate system attached
to the rigid support R and is similar to that of the disk.

If the short bearing theory is considered (i.e., lbe

dbe
≤ 1

8 where dbe = 2rbe), the circumferential pressure gradient
can be neglected when compared with the axial pressure gradient. This assumption permits obtaining an analytical
solution of the Reynolds equation which yields the fluid film pressure distribution and the nonlinear hydrodynamic
forces (whose formulations can be found in [33]). The hydrodynamic short bearing can be analytically linearized in
order to produce the constant damping and stiffness coefficients as shown in [33].

5. Governing equations and dynamic analysis

5.1. Equations of motion of the on-board rotor

The resulting elementary matrices and vectors for the disk, shaft, mass unbalance and hydrodynamic journal
bearing finite elements are appropriately assembled. The boundary conditions do not exist because of the presence
of hydrodynamic bearings. Thus the global matrices and vectors have dimensions ng × ng and ng × 1 respectively
where the total number of degrees of freedom ng is usually equal to 6 (nesh + 1). The governing linear second-order
differential equations describing the dynamic behavior of the on-board rotor-bearing system running at a time-varying
speed of rotation are written with respect to the non-inertial coordinate system fixed to the support R by the following:

Mr (t) δ̈r + Cr (t) δ̇r + Kr (t) δr = Fr (t) + Fbe
(
δ0
r,0
)

+ Kbeδ
0
r, (49)

where Mr (t), Cr (t) and Kr (t) are the global mass, damping and stiffness matrices of the rotor with time-varying
parametric terms due to the mass unbalance, to the support rotations, to the coupling between both phenomena and
to the combination of mass unbalance and support translations. δr, δ̇r and δ̈r represent the global displacement,
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velocity and acceleration vectors conforming to the connectivity of the finite elements. Fr (t) is defined as the global
linear external force vector containing the excitations due to the influence of the non-stationary speed of rotation of
the rotor, the mass unbalance as well as to that of the rotational and translational motions of the support. When
there are no support rotations, the hydrodynamic force vector Fbe

(
δ0
r,0
)
is a function of the static solution vector δ0

r

caused by the static equilibrium between the rotor weight vector FWr

d,sh and the hydrodynamic bearing reaction. In the
case of rotational motions of the support, the rotor weight vector is no longer a constant with respect to the frame of
reference R and must be projected in this frame. The components of this vector relevant to the translational degrees
of freedom u, v and w comprise (after the projection) the amounts − cosβ sin γ, sin β and cosβ cos γ respectively. This
result is in agreement with that of the work of Chen et al. [27] regarding the bending degrees of freedom. The matrices
Mr (t), Cr (t) and Kr (t) involved in Eq. (49) are expressed as follows:

Mr (t) = Mtr
d,sh + Mro

d,sh + Mcs
mu, (50)

Cr (t) = Cbe + Csd
sh + Cg

d,sh φ̇+ Cφ̇
mu φ̇+ Cωx

d,sh,su ω
x + Cωy

d,sh,su ω
y + Cωz

d,sh,su ω
z + Cmu,su, (51)

Kr (t) = Kbe + Ke
sh + Kg

d,sh φ̈+ Kφ̈
mu φ̈+ Kφ̇2

mu φ̇
2 + Kω̇x

d,sh,su ω̇
x + Kω̇y

d,sh,su ω̇
y + Kω̇z

d,sh,su ω̇
z

+ Kφ̇ ωy

d,sh,su φ̇ ω
y + Kωx2

d,sh,su ω
x2 + Kωy2

d,sh,su ω
y2 + Kωz2

d,sh,su ω
z2 + Kωx ωy

d,sh,su ω
x ωy

+ Kωx ωz

d,sh,su ω
x ωz + Kωy ωz

d,sh,su ω
y ωz + Kmu,su.

(52)

The subscripts “d”, “sh”, “mu”, “be” and “su” are associated respectively with the disk, the shaft, the mass
unbalance, the bearing as well as the support and express the contribution to the phenomena represented by the
corresponding matrix. The superscript “tr” refers to the translational effects of the disk mass center and the shaft
geometric center, “ro” to the rotatory inertia, “cs” to the time-varying trigonometric functions (cosine and sine)
associated with the mass unbalance, “g” to the rotor gyroscopic effect, “e” to the shaft elasticity corresponding to the
different deformations and “sd” to the structural damping. The latter is an additional damping related to the axial
and torsional degrees of freedom because the hydrodynamic journal bearings produce a damping linked only with the
flexural degrees of freedom. The force vector Fr (t) included in Eq. (49) is defined as follows:

Fr (t) = FWr

d,sh + Fλd,sh (t) + Fmu (t) + Fmu,su (t) + Fd,sh,su (t) , (53)

with

FWr

d,sh = VWr

d,shWr; Fλd,sh (t) = −Vλ
d,sh φ̈, (54)

Fmu (t) = Vφ̈
mu φ̈+ Vφ̇2

mu φ̇
2; Fmu,su (t) = f (ωx, ωy, ωz, xO, yO, zO) , (55)

Fd,sh,su (t) = −Vu
d,sh,su

(
ẍO + 2 żO ωy − 2 ẏO ωz + zO (ω̇y + ωx ωz)− yO (ω̇z − ωx ωy)− xO

(
ωy2 + ωz2

))
−Vv

d,sh,su

(
ÿO − 2 żO ωx + 2 ẋO ωz − zO (ω̇x − ωy ωz) + xO (ω̇z + ωx ωy)− yO

(
ωx2 + ωz2

))
−Vw

d,sh,su

(
z̈O + 2 ẏO ωx − 2 ẋO ωy + yO (ω̇x + ωy ωz)− xO (ω̇y − ωx ωz)− zO

(
ωx2 + ωy2))

−Vy w
d,sh,su (ω̇x + ωy ωz) + Vy u

d,sh,su (ω̇z − ωx ωy) + Vy v
d,sh,su

(
ωx2 + ωz2

)
−Vθ

d,sh,su (ω̇x + ωy ωz)

−Vλ
d,sh,su ω̇

y −Vψ
d,sh,su (ω̇z − ωx ωy)−Vy ψ

d,sh,su

(
φ̇ ωx + ωx ωy

)
+ Vy θ

d,sh,su

(
φ̇ ωz + ωy ωz

)
,

(56)

where the load vectors Fmu, Fd,sh,su and Fmu,su stand for the mass unbalance, the inertia force due to support
motions and that due to coupling between both phenomena. The superscripts u, v, w, θ, λ and ψ signify the direction
of the action force components linked with the support motions. Lastly, the superscripts “φ̈” and “φ̇2” denote the
components of the mass unbalance forces expressed in terms of the time derivatives of the trigonometric functions
cosφ and sinφ.
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5.2. Prediction of the stability

Employing the Floquet theory [6,7,37,38] leads to the evaluation of the dynamic behavior stability of the on-
board rotor subject to periodic parametric excitations. In other words, by calculating the so-called “Floquet transition
matrix” (or monodromy matrix) of the system during one period τpe of the parametric excitation and by determining
its eigenvalues, the zones of instability can be identified. First, the utilization of the Floquet theory needs a differential
system represented in the state-space form. Namely, the linear second-order differential equations (i.e., Eq. (49)) of
the rotor should be transformed into a first-order system as follows:

Ẋr = ArXr + Br, (57)

with

Xr =
{
δr
δ̇r

}
; Ar =

[
0 I

−M−1
r Kr −M−1

r Cr

]
; Br =

{
0

M−1
r

(
Fr (t) + Fbe

(
δ0
r,0
)

+ Kbeδ
0
r

)} . (58)

The state-space vector Xr is of dimensions 2ng × 1 where ng is the total number of degrees of freedom of
Eq. (49). Then, the monodromy matrix Ψr (t = τpe) is described by the following:

∂Xr (t = τpe)
∂Xr (0) = Ψr (t = τpe) =

[
Φr (t = τpe)
Φ̇r (t = τpe)

]
; with Φr = ∂δr

∂Xr (0) . (59)

Creating the matrices Φr and Φ̇r necessary to compute the monodromy matrix may be made by the differen-
tiation of the equations of motion of the rotor with respect to initial condition vector Xr (0), then

Mr (t) Φ̈r + Cr (t) Φ̇r + Kr (t) Φr = 0. (60)

The above equation represents a system of homogeneous linear differential equations, i.e., only the linear
equations of motion with no external forces are exploited in the Floquet theory. In order to obtain the matrices
Φr (τpe), Φ̇r (τpe) of dimensions ng×2ng and thereby the monodromy matrix Ψr (t = τpe), a numerical time integration
method is applied over one period τpe of the parametric excitation with the following initial conditions at time t = 0:

Φr (0) = ∂δr (0)
∂Xr (0) =

[
∂δr (0)
∂δr (0)

∂δr (0)
∂δ̇r (0)

]
=
[
I 0

]
and Φ̇r (0) = ∂δ̇r (0)

∂Xr (0) =
[
∂δ̇r (0)
∂δr (0)

∂δ̇r (0)
∂δ̇r (0)

]
=
[
0 I

]
. (61)

As reported in [39], the monodromy matrix can be very efficiently computed using the linear version of the
Newmark time-step integration algorithm. The calculation over one period is accurate in the case of a parametric
excitation which consists of a single frequency. Nevertheless, this calculation is more complicated in the case of
several parametric excitation frequencies especially when one of them cannot be a multiple of the others because it
seems difficult to discover the periodicity of the overall excitation, i.e., it is difficult to find the greatest common
factor of the excitation frequencies. As an illustration, a two-frequency parametric excitation can without a doubt be
analyzed. Also, the principle must be extended to three or more frequencies. In the case of a signal composed of a
linear combination of two frequencies f1 and f2, a periodicity exists certainly when the latters are commensurable,
i.e., when the ratio of the smallest frequency to the other is a rational number n1

n2
where n1 and n2 are respectively

the smallest possible integer numerator and denominator. The inverse of the greatest common factor of two integer
frequencies provides the smallest period of the signal. For a more general case, the latter represents the ratio of the
numerator n1 to the smallest frequency and that of the denominator n2 to the biggest frequency, i.e., τpe = n1

f1
= n2

f2
.

In order to exclude any complication in the construction of the stability charts, integer frequencies of the parametric
excitations are used to adopt a constant basic period τpe = 1 s. Even if this period is not always the smallest one, it
can be easily executed for the Floquet theory and it accounts for the presence of any linear combinations of the two
integer frequencies which appear, for instance, in the case of combined sinusoidal rotations of the support. Finally,
the criterion stipulates that the static equilibrium point of the linear system is asymptotically stable if the greatest
Floquet exponent (i.e., the natural logarithm of the greatest modulus of the monodromy matrix eigenvalues) is less
than or equal to zero, while it is unstable if this exponent is greater than zero.
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5.3. Validation of the proposed on-board rotor model

When the mass unbalance does not exist, the linear/nonlinear equations of motion of the on-board rotor
demonstrate that only the rotational motions of the support have a parametric influence on them, while its translational
motions have only an influence on the external force vectors (see, for example, [11,14–17]). In this section, the
homogeneous linearized equations of motion are taken into consideration (see Eq. (49)) and the stability of the static
equilibrium position for the on-board rotor is examined through the Floquet theory. The instability comes from the
parametric excitation due to sinusoidal rotations of the rotor support around the Ox axis expressed by the angular
velocity ωx = ωx,a cos Ωxt in rad/s (i.e., the corresponding angular displacement is β = βa sin Ωxt = ωx,a

Ωx sin Ωxt in
rad). For a constant speed of rotation φ̇ = Ω, two factors affect the parametric excitations generated in a symmetric
rotor: the amplitude ωx,a of the support rotation and its frequency Ωx. Therefore the stability analysis covers these
two parameters and utilizes τpe = 2π

2Ωx = π
Ωx (Ωx in rad/s) as the period of the parametric excitation. This period

corresponds to ωx2 = (ωx,a)2

2 (1 + cos 2 Ωxt) when only the bending degrees of freedom are considered in the on-board
rotor model, see Eqs. (52) and (A.4).

For validation purposes, a comparison with a stability chart of a symmetric on-board rotor (with one disk) ob-
tained by Dakel et al. [17] and investigated in the presence of the linearized hydrodynamic short bearings is introduced
in Fig. 6(a) and (b). The speed of rotation of the rotor is Ω = 1200 rpm and the frequency of the support rotation is
contained in the range of interest Ωx ∈ [0; 2000 Hz]. In addition, the calculations are performed with ∆Ωx = 10 Hz and
∆
(
ωx,a

Ωx

)
= 0.0167 rad in Fig. 6(a), while with ∆Ωx = 1 Hz and ∆

(
ωx,a

Ωx

)
= 0.05 rad in Fig. 6(b). It is noted that the

size of the instability zones increases for increasing values of the amplitude ωx,a

Ωx of the support angular displacement
and there is a wide region of instability because of the anisotropic components of the damping and stiffness matrices
in the hydrodynamic journal bearings. Moreover, no deviation can be observable in Fig. 6(a) and (b) for the case of
flexural degrees of freedom. In conclusion, the finite element on-board rotor model originally based on six degrees of
freedom and developed in the current research is validated regarding the model developed in [17]. The proposed model
can also be validated against some results of Han and Chu [20]. Fig. 7 depicts the stability charts of an on-board rotor
built by Duchemin et al. [11] and adopted in [20]. The rotor runs at a speed of rotation Ω = 250 rad/s and is subject
to pitch sinusoidal rotations ωx = −ωx,a sin Ωxt of the support in the presence of two values of damping coefficient
(ξd = 0 and 5 × 10−5) defining a damping proportional to the stiffness matrix of the shaft. The results of Fig. 7 are
mostly similar to those seen in [20]. The modest differences between the results may arise from the use of Timoshenko
beam finite elements in this research, while the Euler beam theory is employed in [20].
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Fig. 6. Comparison of stability charts obtained by: (a) the proposed on-board rotor model, and (b) Dakel et al. [17].
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Fig. 7. Stability charts obtained in the case of pitch rotations of the support and two values of damping coefficient:
ξd = (a) 0, (b) 5 × 10−5 for the validation of the proposed on-board rotor model against some results of Han and
Chu [20].
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6. Numerical applications and interpretation of results

6.1. Presentation of an on-board rotor-bearing system with three disks

The investigated symmetric on-board rotor-hydrodynamic bearing system is presented in Fig. 8. It is composed
of a symmetric slender flexible shaft and three identical symmetric rigid disks as well as two identical finite-length
bearings. The flexible shaft of constant circular cross-sectional area is modeled with 12 two-node Timoshenko beam
finite elements. The six degrees of freedom of each node are (u, v, w, θ, λ, ψ) where (u,w) are the two lateral translations
due to bending along the Ox and Oz axes respectively, (θ, ψ) are the corresponding rotations around the Ox and Oz
directions, v is the axial translation along the Oy axis and λ is the torsional angle around the Oy axis. Thus the
total number of degrees of freedom is ng = 78. The rigid disks 1, 2 and 3 are located at nodes 6, 8, 10 and the mass
unbalance is placed on the disks of nodes 6 and 10. The hydrodynamic finite-length bearings #1 and #2 are located
at nodes 4 and 12 respectively. The material characteristics and geometric properties of the rotor and the bearings
are listed in Tables 1 and 2. The origin O of the frame of reference connected to the rotor rigid support R coincides
with the shaft end-point positioned at the left-hand side, while the origin Og of the Galilean frame of reference Rg
(i.e., the center of rotation of the support) coincides with the center of the bearing #1.

Since the hydrodynamic journal bearings provide a damping matrix concerning only the bending degrees of
freedom, an additional damping linked with the axial and torsional degrees of freedom is employed through the
structural damping matrix (Rayleigh damping) defined by Csd

sh = cvKv
sh + cλKλ

sh where cv = 1× 10−5, cλ = 1× 10−4

are constant coefficients, Kv
sh and Kλ

sh are respectively the parts of the stiffness matrix Ke
sh due to the shaft elasticity

corresponding to the degrees of freedom v and λ. This additional matrix does not modify the original dynamic behavior
of the rotor and prevents any round-off error which can occur in the dynamic analysis if the axial and torsional degrees
of freedom are not damped. Furthermore, a coupling placed at node 2 is taken into consideration to simulate the
connection between the motor and the shaft. Its properties are given in Table 3.

The investigated rotor runs at a constant speed of rotation φ̇ = Ω for the majority of results presented in
what follows and is subject to sinusoidal rotational motions (simple or combined rotations) of the rigid support or to
mass unbalance excitation combined with sinusoidal translational motions of the support. The combined excitations
are considered as multi-frequency parametric excitations. For a given speed of rotation, the coordinates of the static
equilibrium position C0

be of the shaft geometric center in the fluid film bearings created by the rotor weight are calculated
and the corresponding damping and stiffness matrices cbe, kbe are determined by applying the finite difference method
(i.e., numerical procedure), which is considered as a reference one, to solve the Reynolds equation because there are
no reliable analytical formulations for the hydrodynamic finite-length bearings.

Owing to the complexity of the motion of an on-board rotor-bearing system, the first step of its dynamic
analysis is to evaluate the stability of the static equilibrium position for a given set of parameters. Thus the obtained
results are mainly represented by stability charts. The latters provide information about the greatest Floquet exponent
computed with the so-called “monodromy matrix” as a function of the parametric excitation frequencies. The system
under study is stable and there is no dot in the stability chart if the greatest Floquet exponent is negative, while
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Fig. 8. Symmetric on-board flexible rotor system with hydrodynamic finite-length bearings.
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Material density of the disks ρd1 = ρd2 = ρd3 = 7778 kg/m3

Radius of the disks rd1 = rd2 = rd3 = 0.063 m
Thickness of the disks ed1 = ed2 = ed3 = 0.0156 m
Location of the disks yd1 = 0.209 m, yd2 = 0.432 m, yd3 = 0.655 m

Material density of the shaft ρsh = 7778 kg/m3

Radius of the shaft rsh = 6.35× 10−3 m
Length of the shaft lsh = 0.851 m

Young’s modulus of the shaft Esh = 2.1× 1011 N/m2

Poisson’s ratio of the shaft ν = 0.3
Shear correction factor of the shaft κxsh = κzsh = 0.9252 [40]

Table 1. Essential characteristics of the symmetric flexible rotor.

Radius of the bearings rbe.#1 = rbe.#2 = 6.3925× 10−3 m
Length of the bearings lbe.#1 = lbe.#2 = 0.0224 m

Locations of the bearings ybe.#1 = 0.07 m, ybe.#2 = 0.796 m
Radial clearance of the bearings cbe.#1 = cbe.#2 = 4.25× 10−5 m

Oil film dynamic viscosity µbe.#1 = µbe.#2 =0.01 Pa s

Table 2. Essential properties of the hydrodynamic finite-length bearings.

Damping coefficients Values Stiffness coefficients Values
cuuco 2.91 N s/m kuuco 30832 N/m
cvvco 17.02 N s/m kvvco 11147 N/m
cwwco 2.91 N s/m kwwco 30832 N/m
cθθco 5.7× 10−4 N m s/rad kθθco 2.36 N m/rad
cλλco 1× 103 N m s/rad kλλco 84.9 N m/rad
cψψco 5.7× 10−4 N m s/rad kψψco 2.36 N m/rad

Table 3. Measured characteristics of the coupling between the motor and the rotor.

it is unstable if this exponent has a positive value. In this case, a dot indicating the value of the Floquet exponent
(i.e., the instability intensity) is placed in the stability chart. The parametric excitation frequencies are chosen to be
included in the range of interest [0; 200 Hz] with a frequency increment of 1 Hz. In the presence of multi-frequency
parametric excitations, the period τpe for the Newmark integration scheme is chosen to be equal to 1 s (for the reason
mentionned in Section 5.2) and the time step is set to be ∆t = 1× 10−4 s which represents a sufficiently tiny value in
order to account for the linear combinations existing in such a case, while τpe is equal to the inverse of the excitation
frequency and ∆t = τpe

50 s in the presence of single-frequency parametric excitations. It is reminded that the stability
analysis does not require any external forces in the equations of motion.

6.2. Natural frequencies of the rotor-hydrodynamic bearing for a fixed support

The natural frequencies fr of the rotor without support motions depend on the speed of rotation Ω and can
be deduced from a preliminary modal analysis (linear complex eigenvalue analysis). They are represented by the
Campbell diagram plotted in Fig. 9. The latter illustrates the critical speeds of rotation obtained by the intersection
of the straight line f = Ω

60 (Ω in rpm), which characterizes the mass unbalance frequency, with the natural frequencies
fr of the rotor. The first ten modes are reported in Table 4 for a speed of rotation Ω = 1200 rpm which is employed
for the majority of next figures. Mode 1 is an axial mode shape (the shaft remains rigid) with a very low frequency
due to the flexibility along the Oy axis provided by the coupling between the motor and the shaft. Modes 2, 5 and
8 are the first three backward whirl (BW) bending modes. Modes 3, 6 and 9 are the first three forward whirl (FW)
bending modes. Mode 4 is a torsion mode composed of mixed suspension and deformed motions since the stiffness
provided by the coupling is of the same order of magnitude as the structural torsional stiffness of the shaft. Modes 7
and 10 are the second and third torsion modes without rigid body component. This spectral content is very useful in
order to interpret finely the results of the dynamic stability analysis. Lastly, it should be mentioned that owing to the
presence of hydrodynamic bearings, the rotor can become unstable when it runs at a speed of rotation greater than
Ω = 1940 rpm, i.e., the behavior stability of the on-board rotor is to be examined for speeds of rotation smaller than
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Fig. 9. Campbell diagram for the first ten natural frequencies of the rotor-hydrodynamic bearing system in the case
of a fixed support (dashed-dotted, solid and dotted lines denote axial, bending and torsion modes respectively).

Mode Category Natural frequency fr (Hz)
1 Axial fa1

r 7.27
2 Flexural fBb1r 17.39
3 Flexural fFb1r 17.87
4 Torsional f t1r 40.45
5 Flexural fBb2r 65.33
6 Flexural fFb2r 66.04
7 Torsional f t2r 112.19
8 Flexural fBb3r 120.17
9 Flexural fFb3r 120.51
10 Torsional f t3r 159.78

Table 4. First ten modes and natural frequencies of the rotor-bearing system running at a speed of rotation Ω = 1200
rpm for a fixed support (B and F stand for backward and forward whirl modes).

this value in order to evaluate the instability produced purely by support excitations.

6.3. Instability due to simple sinusoidal rotation of the support

6.3.1. Influence of the types of degrees of freedom considered in the on-board rotor model
In the presence of a simple sinusoidal rotation of the rigid support around the Ogx axis (pitch rotation) given

by the angular velocity ωx = −ωx,a sin Ωxt in rad/s (i.e., the corresponding angular displacement is β = βa cos Ωxt =
ωx,a

Ωx cos Ωxt in rad), a single-frequency parametric excitation is created. This type of excitation can lead to dynamic
instability as stated previously. The two variables for the stabilty analysis are the amplitude ωx,a and the frequency
x of the parametric excitation. Fig. 10 introduces a comparison between four stability charts of the on-board rotor

running at a constant speed of rotation Ω = 1200 rpm and modeled by taking into account four different sets of
degrees of freedom. The instability frequency fins (in Hz) to be used in what follows for seeking the unstable modes
is described by fins = Ωx ' fi

r±f
j
r

k (already reported by Hsu [8]) where Ωx (in Hz) is the support rotation frequency,
f ir as well as f jr (in Hz) are the i-th and j-th natural frequencies of the rotor and the positive integer k is the order
of the instability. Three narrow tongues of instability corresponding to 17.09 Hz, 63.32 Hz and 119.6 Hz are observed
in Fig. 10(a). This is actually the instabilities of the first three bending modes f b1r , f b2r and f b3r (instability of order
k = 2 because the instability frequency corresponds to fins ' 2fbi

r

2 ) due to the presence of ωx2 in the w and ψ terms
of the stiffness matrix Kωx2

d,sh,su involved in Eq. (52) (for instance, see Eq. (A.4)). The damping matrix Cωx

d,sh,su due
to the support rotation has no influence because its components are nil since only the flexural degrees of freedom are
considered. The anisotropic terms of the damping and stiffness matrices Cbe, Kbe of the linearized hydrodynamic
journal bearings lead to the large region of instability seen in Fig. 10(a). In Fig. 10(b), the flexural and torsional
degrees of freedom are taken into consideration and the instability is the same as found in Fig. 10(a), i.e., the wide
zone of instability and the lines of instability at 17.09 Hz, 63.32 Hz and 119.6 Hz do not change mostly. In addition,
two new primary instabilities (k = 1) at 57.29 Hz and 129.6 Hz appear. They are due to the couplings between

19



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100 120 140 160 180 200

X: 0.172
Y: 119.6
Z: 1.018

Frequency Ω
x (Hz)

X: 0.3621
Y: 63.32
Z: 1.018

X: 0.328
Y: 17.09
Z: 1.018

A
m
p
li
tu

d
e
ω

x
,a
/
Ω

x
(r
a
d
)

50

100

150

200

250

300

350

400

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100 120 140 160 180 200

X: 0.06897
Y: 129.6
Z: 0.3011

Frequency Ω
x (Hz)

X: 0.3448
Y: 57.29
Z: 0.09928

A
m
p
li
tu

d
e
ω

x
,a
/
Ω

x
(r
a
d
)

50

100

150

200

250

300

350

400

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100 120 140 160 180 200

X: 0.03448
Y: 127.6
Z: 5.076

Frequency Ω
x (Hz)

X: 0.06897
Y: 118.6
Z: 5.048

X: 0.3276
Y: 68.34
Z: 3

X: 0.3621
Y: 63.32
Z: 1.092

X: 0.08621
Y: 25.13
Z: 1.745

X: 0.3103
Y: 16.08
Z: 1.958

A
m
p
li
tu

d
e
ω

x
,a
/
Ω

x
(r
a
d
)

20

40

60

80

100

120

140

(c)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20 40 60 80 100 120 140 160 180 200

X: 0.2759
Y: 168.8
Z: 0.2073

X: 0.03448
Y: 127.6
Z: 5.076

X: 0.2069
Y: 112.6
Z: 37.18

Frequency Ω
x (Hz)

X: 0.06897
Y: 119.6
Z: 4.539

X: 0.3276
Y: 68.34
Z: 2.986

X: 0.3621
Y: 64.32
Z: 1.843

X: 0.3276
Y: 58.29
Z: 0.2347

X: 0.08621
Y: 25.13
Z: 1.744

X: 0.3103
Y: 17.09
Z: 3.483

A
m
p
li
tu

d
e
ω

x
,a
/
Ω

x
(r
a
d
)

20

40

60

80

100

120

140

(d)

Fig. 10. Stability charts of the on-board rotor running at Ω = 1200 rpm, excited by pitch rotations of the support
and modeled with: (a) flexural degrees of freedom, (b) flexural and torsional degrees of freedom, (c) flexural and axial
degrees of freedom, (d) flexural, axial and torsional degrees of freedom.

flexural and torsional degrees of freedom (i.e., fins = 57.29 Hz ' f b1r + f t1r and fins = 129.6 Hz ' f b1r + f t2r ) which
come from the presence of ω̇x in the stiffness matrix Kr of the rotor (see Eq. (A.4)). Fig. 10(c) shows that taking
into account the axial degrees of freedom modifies significantly the stability chart when compared to that presented
in Fig. 10(a). The large region of instability is divided into smaller regions. This is explained by the contribution of the
coupling between the motor and the shaft to the dynamic behavior of the on-board rotor-bearing system. The tongues
corresponding to 16.08 Hz, 63.32 Hz and 118.6 Hz are due to the first three bending modes (see Table 4) and the order
of the instability is k = 2. They are much wider and higher than those in Fig. 10(a) because of the new presence
of ω̇x (in the stiffness matrix Kr) which is related to the coupling between flexural and axial degrees of freedom and
which provides parametric excitation amplitudes greater than those of ωx2 (see Eq. (A.4)) since v also responds, i.e.,
since the first axial mode is also excited. Furthermore, some new tongues of the instability zones appear. The tongue
at 68.34 Hz is relevant to the instability of order k = 2 expressed by the above formulation and demonstrates the
interaction between the first and third bending modes. On the other hand, the combination of the axial and bending
modes is mostly recognized by means of the tongues at 25.13 Hz and 127.6 Hz, i.e., fins = 25.13 Hz ' fa1

r + f b1r and
fins = 127.6 Hz ' fa1

r + f b3r ), see Table 4. When the six degrees of freedom expressing the flexural, axial and torsional
motions are taken into consideration, all the tongues found in Fig. 10(b) and (c) are reproduced in Fig. 10(d), i.e.,
the tongues at the frequencies 17.09 Hz, 25.13 Hz, 58.29 Hz, 64.32 Hz, 68.34 Hz, 119.6 Hz and 127.6 Hz. In other
words, the wide zone of instability seen in Fig. 10(a) is divided into narrower zones as mentioned previously and the
stability chart has a wealth of different types of instability including the interaction either between the bending and
axial modes or between the bending and torsion ones. A new narrow tongue of instability can be identified at the
frequency 168.8 Hz which permits detecting the combination of the first axial mode and the third torsion one (i.e.,
fins = 168.8 Hz ' fa1

r + f t3r and k = 1) although there is no direct coupling between the axial and torsional degrees
of freedom in the parametric matrices (see Eqs. (A.3) and (A.4)).

6.3.2. Influence of the support rotation axis
Fig. 11 points out the stability charts when the rotor is excited by simple sinusoidal rotations of the support:

the roll rotation around the Ogy axis is given by the angular velocity ωy = −ωy,a sin Ωyt in rad/s (the corresponding
angular displacement γ = γa cos Ωyt = ωy,a

Ωy cos Ωyt in rad), while the yaw rotation around the Ogz axis is expressed
as ωz = −ωz,a sin Ωzt in rad/s (i.e., α = αa cos Ωzt = ωz,a

Ωz cos Ωzt in rad). In Fig. 11(a), the roll rotation creates
instabilities only for large frequencies and amplitudes. The tongues of the instability zones correspond to 131.7 Hz
and 137.7 Hz. They come from the couplings between the bending degrees of freedom (u,w) and (θ, ψ) in the stiffness
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matrices related to ω̇y (see Eq. (A.4)). In Fig. 11(b), the yaw rotation provides regions of instability very similar to
those obtained by the pitch rotation of the support and presented in Fig. 10(d). This is because the dynamic behavior
of the rotor system is almost symmetric even with the resulting asymmetry of the behaviors of the hydrodynamic
bearings and the coupling. Moreover, the little differences between Figs. 10(d) and 11(b) relevant to the tongues of
the instability zones concern the type of whirl bending modes which can be easier to excite for support rotations
around a certain axis but not around the other.

6.3.3. Influence of the solving method used for the hydrodynamic bearings
Fig. 12(a) presents the stability chart of the rotor excited by sinusoidal rotations of the support around the

pitch axis and mounted on hydrodynamic bearings dealing with the finite difference method (i.e., Figs. 10(d) and 12(a)
are the same), while in Fig. 12(b), the rotor is mounted on hydrodynamic bearings treated as short ones. Namely,
an analytical study is performed in Fig. 12(b) to calculate the damping and stiffness matrices of the bearings (whose
expressions can be found in [33]). The results in this figure are rather similar to those displayed in Fig. 12(a) except
for some additional instabilities associated with the analytical analysis at 179.9 Hz and 184.9 Hz which can be seen
in Fig. 11(b). This similarity is due to the fact that even if the error concerning the position of the shaft geometric
center in the bearings (expressed by the eccentricity and the attitude angle) is relatively high when the analytical
bearing model is considered, the damping and stiffness coefficients still have the same order of magnitude as computed
by the finite difference method. Thus even with an error of 50% or more, the natural frequencies of the rotor, whose
rigid support is fixed, are almost the same because the bearings always represent nodes of vibration and the transverse
deflections of the shaft are slightly modified. This justifies the use of the analytical bearing model for the stability
study.

6.3.4. Influence of the speed of rotation of the rotor
Fig. 13(a)–(d) depicts the stability charts of the on-board rotor running successively at speeds of rotation Ω =

500 rpm, 1000 rpm, 1500 rpm and 1900 rpm in the presence of pitch rotations of the support. This operating speed
range permits getting sufficient restoring forces of the bearings and staying under the threshold of instability due to
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Fig. 11. Stability charts of the rotor for support rotations around: (a) the roll axis, or (b) the yaw axis.
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Fig. 12. Stability charts of the rotor mounted on hydrodynamic journal bearings treated by (a) numerical and (b)
analytical methods for support rotations around the pitch axis.
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the fluid film bearings. It should be clarified that when the speed of rotation increases, the resulting zones of instability
become greater because of the increasing contribution of the hydrodynamic bearings which lead to an unstable rotor
for Ω = 1940 rpm and a fixed support. Looking at the three stability charts highlighted in Figs. 10(d) as well as 13(a)
and (d), a particular point corresponding to the amplitude ωx,a

Ωx = 0.3276 rad and to the frequency Ωx = 194 Hz of
the support rotation is found to be unstable at Ω = 1200 rpm but stable at Ω = 500 rpm and 1900 rpm. This point
will be used in the following simulation concerning the transient dynamic analysis.

6.3.5. Interest of the transient regime
Now, it seems legitimate to know what happens in the transient regime if the rotor runs at a time-varying speed

of rotation φ̇ (t). In this paper, the law of the speed of rotation is assumed to be a linear function of time and varies
from 500 rpm to 1900 rpm. In addition, the transient time integration of the linearized equations of motion with no
external forces except for the rotor weight is performed. Fig. 14(a) exhibits the associated time history response of
the rotor-bearing system at node 13 computed with the Newmark integration scheme for non-zero initial conditions.
According to Fig. 14(b), the displacement tends to increase at the instant t = 10 s (corresponding to φ̇ = 1200
rpm) and the rotor can become unstable. Then the displacement tends to decrease at t = 16 s (corresponding to
φ̇ = 1725 rpm) and the rotor can be stable, see Fig. 14(a). By means of the previous observation, it is concluded
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Fig. 13. Stability charts of the rotor subject to support rotations around the pitch axis and running at four values of
speed of rotation: Ω = (a) 500 rpm, (b) 1000 rpm, (c) 1500 rpm, (d) 1900 rpm.
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Fig. 14. (a) Transient response of the rotor running at a time-varying speed of rotation and excited by a pitch
sinusoidal rotation of the support: ωx = −ωx,a sin Ωxt with Ωx = 194 Hz. (b) Zoom on the transient response for the
time interval t ∈ [7; 11 s].
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that the transient dynamic analysis of the on-board rotor for a non-stationary speed of rotation and given frequency
and amplitude of the support motion permits one to predict the behavior stability without employing the Floquet
theory for each speed of rotation of the rotor contained in the interval φ̇ = Ω ∈ [500; 1900 rpm] because this procedure
may necessitate a huge computational time when compared to the transient analysis. However, a new calculation of
the damping and stiffness matrices of the hydrodynamic bearings is required for each speed of rotation of the rotor
whatever the considered strategy because these matrices depend on the static equilibrium position of the shaft center
within the bearings which is a function of the speed of rotation.

6.4. Instability due to two combined sinusoidal rotations of the support

When the rotor is subject to multi-frequency excitations such as combined sinusoidal rotations of the support
around two different directions, the parametric excitations become more important than the single-frequency ones and
can make the stability charts more complicated by increasing the instability zones. Since the parametric excitations
are periodic, the dynamic stability is predicted by employing the Floquet theory. In order to make the latter applicable
to this type of excitations, integer frequencies can be used to keep a common period τpe of 1 s which will be used for
the Newmark time integration algorithm. In other words, this period may not be the smallest but it always will be
common for any linear combination of integer frequencies of the parametric excitations. Nevertheless, the associated
computational time can be huge, this motivates the use of a modal reduction technique as developed in [41]. Eqs. (49)–
(52) demonstrate that the position of the center of rotation of the support has no influence on the stable and unstable
regions. The stability charts of the on-board rotor excited by two combined rotations of the support around the pitch
and yaw axes are shown in Fig. 15. The support rotations are given by the angular displacements β = βa cos Ωxt and
α = αa cos Ωzt with βa = αa = 0.05 rad, 0.1 rad, 0.2 rad. In this case, the frequencies Ωx and Ωz are used as the
two parameters for the stability analysis. For increasing values of the support rotation amplitudes, it is demonstrated
that the influence of the multi-frequency excitations on the instability regions no longer remains perfectly horizontal
or vertical especially at the intersections of the regions, which tend to become larger than expected. Furthermore,
the highest intensities of the instability at βa = αa = 0.2 rad in Figs. 10(d) and 11(b) are equal to 37.18 and 33.62
for Ωx = Ωz = 112.6 Hz, while the highest intensity in Fig. 15(c) is 41.46 for almost the same amplitudes and
frequencies. Since the greatest modulus e41.46 of the monodromy matrix eigenvalues is much greater than the sum
e37.18 + e33.62 corresponding to two single-frequency parametric excitations (two simple rotations), it can be deduced
that if the multi-frequency parametric excitations are applied, the associated instability is more significant. This
highlights the importance of consideration of combined support motions. On the other hand, several diagonal zones
of instability characterized by linear functions between Ωx and Ωz (such as Ωx = −Ωz + b, Ωx = Ωz + b, Ωx = 2Ωz + b
or Ωx = 1

2Ωz + b where b is the vertical intercept) are observed, see Fig. 15(c). These diagonal instabilities reflect
well the multi-frequency character of the parametric excitations. From all these results, it is well understood that a
multi-frequency stability chart cannot be obtained by superimposing simply single-frequency ones obtained separately
for each type of support rotations. Lastly, a zoom is needed for more details and information about the diagonal
instabilities.

Fig. 16 presents a zoom on a diagonal instability in Fig. 15(c) described by the linear function Ωx = −Ωz +b for
the ranges of interest Ωx ∈ [0; 30 Hz] and Ωz ∈ [0; 30 Hz]. At first sight, this diagonal instability seems to start from
the instability due to the coupling between the first axial and bending modes at the frequency 25.13 Hz ' fa1

r + f b1r
Hz as stated in Section 6.3 and seen in Fig. 10(d). Depending on the stiffness matrix Kr of the rotor involved in

(a) (b) (c)

Fig. 15. Stability charts of the rotor excited by combined sinusoidal rotations of the support around the pitch and
yaw axes: β = βa cos Ωxt and α = αa cos Ωzt with βa = αa = (a) 0.05 rad, (b) 0.1 rad, (c) 0.2 rad.
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Eq. (52) (for example, see Eq. (A.4)), the understanding of the origin of different instabilities can be achieved. The
ωx ωz terms are very small to be responsible for these instabilities as seen with the quadratic term ωx2 which gives
the results in Fig. 10(a). The main horizontal or vertical zones of instability are generated by the ω̇x and ω̇z terms
as in the case of single-frequency excitations, see Figs. 10(d) and 11(b). With regard to the diagonal instability, it
comes actually from the ω̇y term which couples the degrees of freedom u and w. Indeed, the angular velocity ωy of
the support is expressed as ωy = α̇ sin β (see Eq. (6)). As a consequence, there are instability frequencies fins (in Hz)
defined by the relationship fins = |Ωz ± (2q + 1) Ωx| ' fi

r±f
j
r

k where f ir as well as f jr (in Hz) are the i-th and j-th
natural frequencies of the rotor, the positive integer k is the order of the instability, q is a non-negative integer, Ωz
comes from α̇ and (2q + 1) Ωx comes from sin β. For instance, in the case where q = 0, an instability corresponding
to the first bending mode f b1r can be obtained by the sum of the frequencies Ωx and Ωz of the support rotations, i.e.,
fins = |15.2 + 20.2| = 35.4 Hz ' 2f b1r (the order of the instability k = 1). Thus the diagonal instability concerns
only the first bending mode and can be found for all the frequencies produced by the sum Ωx + Ωz such that the
instability frequencies fins ' 2fb1

r

1 are obtained. Namely, this diagonal instability is not the extension of the instability
due to the coupling between the first axial and bending modes at 25.13 Hz, this explains why the intersection between
the diagonal instability and the vertical instability at 25.13 Hz is composed of several stripes. The other diagonal
instabilities of Fig. 15(c), such as Ωx = Ωz + b, Ωx = 2Ωz + b or Ωx = 1

2Ωz + b, can also be explained in a similar way.
Fig. 17 highlights the stability charts of the on-board rotor obtained for combined sinusoidal rotational motions

of the support around the pitch and roll axes, i.e., the angular displacements are β = βa cos Ωxt and γ = γa cos Ωyt
with βa = γa = 0.05 rad, 0.1 rad, 0.2 rad. Unlike the results presented in Fig. 15, the influence of multi-frequency
excitations is very low this time because the instability zones corresponding to the roll rotations of the support are
much smaller than those due to the rotations around the pitch axis (as can be observed in Section 6.3) even with an
amplitude of 0.2 rad for each rotation.

Fig. 16. Zoom on the stability chart in Fig. 15(c) for the ranges of interest Ωx ∈ [0; 30 Hz] and Ωz ∈ [0; 30 Hz].

(a) (b) (c)

Fig. 17. Stability charts of the rotor excited by combined sinusoidal rotations of the support around the pitch and
roll axes: β = βa cos Ωxt and γ = γa cos Ωyt with βa = γa = (a) 0.05 rad, (b) 0.1 rad, (c) 0.2 rad.
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6.5. Instability due to mass unbalance combined with sinusoidal translations of the
support

In the presence of the mass unbalance excitation, the parametric influence on the equations of motion of the
on-board rotor-hydrodynamic bearing system is created not only by the rotational motions of the rigid support (as
can be seen in [11,14–17]) but also by its translational motions (see Eqs. (49), (52), (A.14)–(A.16)). This parametric
influence is considered as a source of internal excitation and can lead to dynamic instability of the rotor. If the
translational motions of the support are sinusoidal, the parametric influence is represented by periodic time-varying
terms in the equations of motion. This type of equations can be once again treated by the Floquet theory in order to
evaluate the dynamic stability of the rotor. The stiffness matrix of the rotor generated by the rotating mass unbalance
combined with the support translations can show couplings between the flexural and torsional degrees of freedom.
Thus it is expected that during the dynamic stability analysis, tongues due to pure bending and torsion (in the case
of the support translations either along Ox or Oz) as well as to coupling between both phenomena (only in the case
of the support translations along the Oy axis) can be encountered.

6.5.1. Influence of the mass unbalance value
Fig. 18 illustrates the stability charts of the on-board rotor running at a constant speed of rotation Ω = 1200

rpm (= 20 Hz = mass unbalance frequency) and subject to mass unbalance excitations combined with sinusoidal
translations of the rigid support defined by zO = ZO cos Ωztrt in m. The two variables involved in the parametric
excitation generated in the rotor and used for the stabilty analysis are based on the amplitude ZO and the frequency
Ωztr. In Fig. 18(a), the mass unbalance has a value mmu1rmu1 = mmu2rmu2 = 3150 g mm, while in Fig. 18(b), its
value is mmu1rmu1 = mmu2rmu2 = 6300 g mm. Its phases are chosen to be ηmu1 = ηmu2 = 0◦. Qualitatively, it can
be observed that the instability zones become much more important for the mass unbalance of 6300 g mm located
on the external disks 1 and 3 (as expected). As can be deduced quantitatively from Fig. 18, the narrow regions of
instability permit writing the relationship fins = |Ω± Ωsu| ' fi

r±f
j
r

k where fins (in Hz) is the instability frequency, Ω
(in Hz) is the mass unbalance frequency, Ωsu (in Hz) is the support motion frequency, f ir as well as f jr (in Hz) are the
i-th and j-th natural frequencies of the rotor and the positive integer k is the order of the instability. Namely, this
relationship proves the interaction between the frequencies of the mass unbalance excitation and the support motions.
For instance, the stability chart displayed in Fig. 18(b) shows four tongues corresponding to the frequencies 57 Hz,
97 Hz, 175 Hz and 194 Hz. The support motion frequency Ωztr = 57 Hz can be relevant either to the first bending
mode or to the first torsion mode because the instability frequency fins = |Ω−Ωztr| = |20− 57| = 37 Hz ' 2f b1r ' f t1r
(see Table 4), i.e., the orders of the instability are k = 1 and 2 respectively. This frequency can also excite either
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Fig. 18. Stability charts of the rotor excited by sinusoidal translations of the support combined with a mass unbalance
excitation: mmu1rmu1 = mmu2rmu2 = (a) 3150 g mm, (b) 6300 g mm.

Instability frequency fins (Hz) Unstable modes
37 2f b1r or f t1r
77 2f t1r or f b1r + f b2r
117 f t2r or f b3r

Table 5. Unstable modes of the rotor subject to sinusoidal translations of the support combined with a mass unbalance
excitation mmu1rmu1 = mmu2rmu2 = 6300 g mm.
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the second torsion mode or the first and second bending modes since fins = |20 + 57| = 77 Hz ' 2f t1r ' f b1r + f b2r ,
i.e., a primary instability (k = 1). On the other hand, an instability of order k = 2 due either to the second torsion
mode or to the third bending mode can be found at the support motion frequency Ωztr = 97 Hz because the instability
frequency fins = |Ω − Ωztr| = |20 + 97| = 117 Hz ' f t2r ' f b3r . The frequency Ωztr = 97 Hz can be associated with
the instability of frequency fins = |20 − 97| = 77 Hz already discussed above. Table 5 presents a summary of the
previous observations. Lastly, in order to determine precisely the unstable modes, the transient dynamic motion of the
rotor should be obtained by solving the equations of motion with an integration algorithm and a modal participation
analysis should be performed.

6.5.2. Influence of the mass unbalance phases

Now, the effects of the mass unbalance phases on the instability zones are investigated and some explanations
are to be given about these effects when two sets of phases (ηmu1 = ηmu2 = 0◦ and ηmu1 = 0◦, ηmu2 = 180◦) are
considered. The results provided in Figs. 19–21 concern the stability charts of the on-board rotor excited by the mass
unbalnce (mmu1rmu1 = mmu2rmu2 = 6300 g mm) combined with sinusoidal translational motions of the support along
the Ox, Oy and Oz axes respectively. The speed of rotation of the rotor is Ω = 1200 rpm (= 20 Hz = mass unbalance
frequency). The support translations are defined by xO = XO cos Ωxtrt in m (see Fig. 19), yO = −ybe.#1 + YO cos Ωytrt
in m (see Fig. 20) and zO = ZO cos Ωztrt in m (see Fig. 21). In the case of support translations along Oy, there is a
constant term −ybe.#1 which comes from the fact that the origin Og of the Galilean frame of reference Rg is positioned
at the center of the bearing #1 but not at the origin O of the frame linked with the support R which is situated at
the shaft end-point in the left-hand side, see Fig. 8. The stiffness matrix of the rotor system produced by the mass
unbalance excitation combined with rotations and/or translations of the support confirms that only the second-order
time derivatives of the coordinates xO, yO and zO are found if rotational excitations of the support are not taken into
consideration. In other words, the constant terms of the support coordinates xO, yO and zO have no influence on the
stability charts and the determination of the position of the origin Og of the Galilean frame Rg is not necessary only
in the case of translational motions of the support combined with the mass unbalance. Qualitatively, it should be
noticed that the mass unbalance phases play a paramount role in the dynamic analysis by affecting significantly the
instability intensity and the sizes of the unstable zones. The latters increase or decrease with the phase as highlighted
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Fig. 19. Stability charts of the rotor excited by sinusoidal translations of the support along the pitch axis and by a
mass unbalance (mmu1rmu1 = mmu2rmu2 = 6300 g mm) of phases: (a) ηmu1 = ηmu2 = 0◦, (b) ηmu1 = 0◦, ηmu2 = 180◦.
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Fig. 20. Stability charts of the rotor excited by sinusoidal translations of the support along the roll axis and by a mass
unbalance (mmu1rmu1 = mmu2rmu2 = 6300 g mm) of phases: (a) ηmu1 = ηmu2 = 0◦, (b) ηmu1 = 0◦, ηmu2 = 180◦.

26



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 100 120 140 160 180 200

 

Frequency Ω
z

tr
(Hz)

 

A
m
p
li
tu

d
e
Z

O
(m

)

5

10

15

20

(a)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 100 120 140 160 180 200

 

Frequency Ω
z

tr
(Hz)

 

A
m
p
li
tu

d
e
Z

O
(m

)

2

4

6

8

10

12

(b)

Fig. 21. Stability charts of the rotor excited by sinusoidal translations of the support along the yaw axis and by a mass
unbalance (mmu1rmu1 = mmu2rmu2 = 6300 g mm) of phases: (a) ηmu1 = ηmu2 = 0◦, (b) ηmu1 = 0◦, ηmu2 = 180◦.

by Han and Chu [20]. For example, the instability tongues at 57 Hz and 97 Hz in Fig. 19(a) corresponding to equal
phases are still present in Fig. 19(b) corresponding to opposite phases but much narrower and smaller. Quantitatively,
the frequencies at the tongues of the instability regions can satisfy the relationship fins = |Ω± Ωsu| ' fi

r±f
j
r

k already
stated above which reflects certainly the multi-frequency feature of the mass unbalance excitation combined with a
sinusoidal translation of the support. For instance, the stability chart exhibited in Fig. 20(b) points out four narrow
zones of instability associated with the frequencies 76 Hz, 150 Hz, 175 Hz and 192 Hz. The support motion frequency
Ωytr = 76 Hz can be attached to the coupling between the first bending mode and the first torsion mode because the
instability frequency fins = |Ω− Ωytr| = |20− 76| = 56 Hz ' f b1r + f t1r (see Table 4), i.e., this result corresponds to a
primary instability (k = 1).

7. Conclusions

A new finite element model is proposed in the current paper in order to assess the role of simple and combined
sinusoidal rotational motions of the support as well as that of a mass unbalance excitation combined with sinusoidal
translations of the support in the behavior stability of an on-board rotor-linearized hydrodynamic journal bearing
system. This model is based on the Timoshenko beam theory and on six degrees of freedom (transverse and axial
translations as well as rotations due to the bending and to the torsion). It involves the effects corresponding to the
time-varying speed of rotation, the rotatory inertia, to the gyroscopic inertia and to the shaft shear deformation due
to the bending as well as six kinds of deterministic movements (rotations and translations) of the rotor support. In
addition, the hydrodynamic finite-length bearings are considered and the finite difference method is employed to solve
the Reynolds equation and thereby to determine the damping and stiffness matrices. The equations of vibratory
motion of the on-board rotor display that in the presence of the mass unbalance excitation, the parametric influence
on them is generated not only by the rotational motions of the support but also by its translational motions. This
parametric influence is considered as a source of internal excitation and can lead to a dynamic instability phenomenon
of the rotor. It is represented by periodic time-varying terms in the equations of motion during sinusoidal motions of
the rigid support. The rotor is examined through the application of the Floquet theory to its homogeneous equations
of motion in order to evaluate its dynamic stability.

In the case of simple sinusoidal rotations of the support, the rotor instability is induced by single-frequency
parametric excitations. The consideration of six degrees of freedom for the finite element model modifies significantly
the stability charts when compared to those obtained with a model based only on the flexural ones. Namely, narrower
regions of instability appear instead of a very wide zone and the instability tongues are produced not only by the pure
bending modes but also by the interaction either between the bending and axial modes or between the bending and
torsion ones. These outcomes can be explained by the low axial stiffness provided by the coupling (between the motor
and the shaft), which permits a high participation of axial motions, and by the low frequencies of the torsion modes,
which arise from the high rotatory inertia relevant to the disks. The pitch and yaw rotations (i.e., around a transverse
axis) lead to instability zones more complex than those due to the roll rotation (i.e., around the longitudinal axis).
The analytical bearing model can yield relatively accurate results for the stability charts because the damping and
stiffness coefficients still have the same order of magnitude and are moderately modified when compared with those
due to the finite difference method. The transient dynamic analysis of the on-board rotor for a non-stationary speed of
rotation and given frequency and amplitude of the support rotation permits predicting the behavior stability without
using the Floquet theory for each speed of rotation of the rotor contained in a certain interval.

In the cases of combined sinusoidal rotations of the support as well as a mass unbalance excitation combined with
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sinusoidal translations of the support, the instability regions of the rotor are created by multi-frequency parametric
excitations which are found to be more important than the single-frequency ones and which can make the stability
charts more complicated by increasing the instability zones. For the combined rotational motions of the support around
the pitch and yaw axes, the stability charts do not show perfectly horizontal or vertical instability zones especially at the
intersections of the zones, which tend to become larger than expected. On the other hand, several diagonal instabilities
characterized by linear functions between the frequencies of the support rotations are observed. Depending on these
results, it is well understood that a multi-frequency stability chart cannot be obtained by superimposing simply single
frequency ones obtained separately for each type of support rotations. For the mass unbalance correlated with support
translations, it is demonstrated that during the dynamic stability analysis, instability tongues due to pure bending
and torsion (in the case of the support translations along a transverse axis) as well as to coupling between both
phenomena (only in the case of the support translations along the longitudinal axis) are encountered. Qualitatively,
the instabilities become much more important for increasing values of the mass unbalance and its phases play a main
role in the dynamic analysis by affecting significantly the instability intensity and the size of the instability zones. In
practice, it can be difficult to meet large values of mass unbalance which have produced the stability charts in this
work.
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Appendix A

The elementary matrices and vectors for the disk finite element are described in Eqs. (A.1)–(A.5) as follows:

Mtr
ed =


md 0 0 0 0 0
0 md 0 0 0 0
0 0 md 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ; Mro
ed =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Imomd

0 0
0 0 0 0 Iymd

0
0 0 0 0 0 Imomd

 , (A.1)

Cg
ed =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −Iymd

0 0 0 0 0 0
0 0 0 Iymd

0 0

 ; Kg
ed =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Iymd

0 0

 , (A.2)

Cωx

ed,su =


0 0 0 0 0 0
0 0 −2md 0 0 0
0 2md 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −Iymd

0 0 0 0 Iymd
0

 ; Cωy

ed,su =


0 0 2md 0 0 0
0 0 0 0 0 0

−2md 0 0 0 0 0
0 0 0 0 0 −

(
Iymd
− 2Imomd

)
0 0 0 0 0 0
0 0 0 Iymd

− 2Imomd
0 0

 ;

Cωz

ed,su =


0 −2md 0 0 0 0

2md 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −Iymd

0
0 0 0 Iymd

0 0
0 0 0 0 0 0

 , (A.3)
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Kω̇x

ed,su =


0 0 0 0 0 0
0 0 −md 0 0 0
0 md 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −Iymd

0 0 0 0 0 0

 ; Kω̇y

ed,su =


0 0 md 0 0 0
0 0 0 0 0 0
−md 0 0 0 0 0

0 0 0 0 0 Imomd

0 0 0 0 0 0
0 0 0 Iymd

− Imomd
0 0

 ;

Kω̇z

ed,su =


0 −md 0 0 0 0
md 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Iymd

0 0
0 0 0 0 0 0

 ; Kφ̇ ωy

ed,su =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Iymd

0 0
0 0 0 0 0 0
0 0 0 0 0 Iymd

 ;

Kωx2

ed,su =


0 0 0 0 0 0
0 −md 0 0 0 0
0 0 −md 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −

(
Iymd
− Imomd

)

 ; Kωy2

ed,su =


−md 0 0 0 0 0

0 0 0 0 0 0
0 0 −md 0 0 0
0 0 0 Iymd

− Imomd
0 0

0 0 0 0 0 0
0 0 0 0 0 Iymd

− Imomd

 ;

Kωz2

ed,su =


−md 0 0 0 0 0

0 −md 0 0 0 0
0 0 0 0 0 0
0 0 0 −

(
Iymd
− Imomd

)
0 0

0 0 0 0 0 0
0 0 0 0 0 0

 ; Kωx ωy

ed,su =


0 md 0 0 0 0
md 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ;

Kωx ωz

ed,su =


0 0 md 0 0 0
0 0 0 0 0 0
md 0 0 0 0 0
0 0 0 0 0 Iymd

− Imomd

0 0 0 0 0 0
0 0 0 Iymd

− Imomd
0 0

 ; Kωy ωz

ed,su =


0 0 0 0 0 0
0 0 md 0 0 0
0 md 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (A.4)

Vλ
ed =

[
0 0 0 0 Iymd

0
]T ; Vu

ed,su =
[
md 0 0 0 0 0

]T ;

Vv
ed,su =

[
0 md 0 0 0 0

]T ; Vw
ed,su =

[
0 0 md 0 0 0

]T ;

Vy w
ed,su = yd

[
0 0 md 0 0 0

]T ; Vy u
ed,su = yd

[
md 0 0 0 0 0

]T ;

Vy v
ed,su = yd

[
0 md 0 0 0 0

]T ; Vθ
ed,su =

[
0 0 0 Imomd

0 0
]T ;

Vλ
ed,su =

[
0 0 0 0 Iymd

0
]T ; Vψ

ed,su =
[
0 0 0 0 0 Imomd

]T ;

Vy ψ
ed,su =

[
0 0 0 0 0 Iymd

]T ; Vy θ
ed,su =

[
0 0 0 Iymd

0 0
]T
. (A.5)

All the expressions calculating the elementary matrices and vectors for the shaft finite element are given in
Eqs. (A.6)–(A.11) as follows:

Mtr
eshi

= ρeshiSeshi leshi

∫ 1

0

((
F̄ueshi

)T F̄ueshi
+
(
F̄veshi

)T F̄veshi
+
(
F̄weshi

)T F̄weshi

)
dȳ;

Mro
eshi

= ρeshiI
mo
Seshi

leshi

∫ 1

0

((
F̄θeshi

)T F̄θeshi
+ 2

(
F̄λeshi

)T F̄λeshi
+
(
F̄ψeshi

)T
F̄ψeshi

)
dȳ, (A.6)

Cg
eshi

= 2ρeshiI
mo
Seshi

leshi

∫ 1

0

((
F̄ψeshi

)T
F̄θeshi

−
(
F̄θeshi

)T F̄ψeshi

)
dȳ;

Kg
eshi

= 2ρeshi
ImoSeshi

leshi

∫ 1

0

(
F̄ψeshi

)T
F̄θeshi

dȳ, (A.7)
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Ke
eshi

= Eeshi
ImoSeshi

leshi

∫ 1

0

(∂F̄θeshi

∂y

)T
∂F̄θeshi

∂y
+

∂F̄eshi

∂y

)T
∂F̄eshi

∂y

dȳ

+Geshiκ
mo
eshi

Seshi leshi

∫ 1

0

(∂F̄ueshi

∂y
+ F̄eshi

)T
∂F̄ueshi

∂y
+ F̄eshi

)dȳ

+Geshiκ
mo
eshi

Seshi leshi

∫ 1

0

(∂F̄weshi

∂y
− F̄θeshi

)T
∂F̄weshi

∂y
− F̄θeshi

)dȳ

+ Eeshi
Seshi

leshi

∫ 1

0

∂F̄veshi

∂y

)T
∂F̄veshi

∂y
dȳ + 2Geshi

ImoSeshi
leshi

∫ 1

0

∂F̄λeshi

∂y

)T
∂F̄λeshi

∂y
dȳ,

(A.8)

Cωx

eshi,su = 2ρeshi
Seshi

leshi

∫ 1

0

((
F̄weshi

)T F̄veshi
−
(
F̄veshi

)T F̄weshi

)
dȳ

+ 2ρeshi
ImoSeshi

leshi

∫ 1

0

((
F̄eshi

)T
F̄λeshi

−
(
F̄λeshi

)T F̄eshi

)
dȳ;

Cωy

eshi,su = 2ρeshi
Seshi

leshi

∫ 1

0

((
F̄ueshi

)T F̄weshi
−
(
F̄weshi

)T F̄ueshi

)
dȳ;

Cωz

eshi,su = 2ρeshi
Seshi

leshi

∫ 1

0

((
F̄veshi

)T F̄ueshi
−
(
F̄ueshi

)T F̄veshi

)
dȳ

+ 2ρeshi
ImoSeshi

leshi

∫ 1

0

((
F̄λeshi

)T F̄θeshi
−
(
F̄θeshi

)T F̄λeshi

)
dȳ,

(A.9)

Kω̇x

eshi,su = ρeshi
Seshi

leshi

∫ 1

0

((
F̄weshi

)T F̄veshi
−
(
F̄veshi

)T F̄weshi

)
dȳ

− 2ρeshiI
mo
Seshi

leshi

∫ 1

0

(
F̄λeshi

)T F̄eshi
dȳ;

Kω̇y

eshi,su = ρeshiSeshi leshi

∫ 1

0

((
F̄ueshi

)T F̄weshi
−
(
F̄weshi

)T F̄ueshi

)
dȳ

+ ρeshi
ImoSeshi

leshi

∫ 1

0

((
F̄θeshi

)T F̄eshi
+
(
F̄eshi

)T
F̄θeshi

)
dȳ;

Kω̇z

eshi,su = ρeshiSeshi leshi

∫ 1

0

((
F̄veshi

)T F̄ueshi
−
(
F̄ueshi

)T F̄veshi

)
dȳ

+ 2ρeshiI
mo
Seshi

leshi

∫ 1

0

(
F̄λeshi

)T F̄θeshi
dȳ;

Kφ̇ ωy

eshi,su
= 2ρeshi

ImoSeshi
leshi

∫ 1

0

((
F̄θeshi

)T F̄θeshi
+
(
F̄eshi

)T
F̄eshi

)
dȳ;

Kωx2

eshi,su = −ρeshiSeshi leshi

∫ 1

0

((
F̄veshi

)T F̄veshi
+
(
F̄weshi

)T F̄weshi

)
dȳ

− ρeshiI
mo
Seshi

leshi

∫ 1

0

(
F̄eshi

)T
F̄eshi

dȳ;

Kωy2

eshi,su = −ρeshi
Seshi

leshi

∫ 1

0

((
F̄ueshi

)T F̄ueshi
+
(
F̄weshi

)T F̄weshi

)
dȳ

+ ρeshi
ImoSeshi

leshi

∫ 1

0

((
F̄θeshi

)T F̄θeshi
+
(
F̄eshi

)T
F̄eshi

)
dȳ;

Kωz2

eshi,su = −ρeshi
Seshi

leshi

∫ 1

0

((
F̄ueshi

)T F̄ueshi
+
(
F̄veshi

)T F̄veshi

)
dȳ

− ρeshi
ImoSeshi

leshi

∫ 1

0

(
F̄θeshi

)T F̄θeshi
dȳ;
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Kωx ωy

eshi,su = ρeshi
Seshi

leshi

∫ 1

0

((
F̄ueshi

)T F̄veshi
+
(
F̄veshi

)T F̄ueshi

)
dȳ;

Kωx ωz

eshi,su = ρeshiSeshi leshi

∫ 1

0

((
F̄ueshi

)T F̄weshi
+
(
F̄weshi

)T F̄ueshi

)
dȳ

+ ρeshiI
mo
Seshi

leshi

∫ 1

0

((
F̄θeshi

)T F̄eshi
+
(
F̄eshi

)T
F̄θeshi

)
dȳ;

Kωy ωz

eshi,su = ρeshi
Seshi

leshi

∫ 1

0

((
F̄veshi

)T F̄weshi
+
(
F̄weshi

)T F̄veshi

)
dȳ, (A.10)

Vλ
eshi

= 2ρeshi
ImoSeshi

leshi

∫ 1

0

(
F̄λeshi

)T dȳ; Vu
eshi,su = ρeshi

Seshi
leshi

∫ 1

0

(
F̄ueshi

)T dȳ;

Vv
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0

(
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)T dȳ; Vw
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∫ 1

0

(
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)T dȳ;
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leshi
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(
F̄λeshi

)T dȳ; Vψ
eshi,su

= ρeshi
ImoSeshi

leshi

∫ 1

0

(
F̄eshi

)T
dȳ;

Vyψ
eshi,su

= 2ρeshi
ImoSeshi

leshi

∫ 1

0

(
F̄eshi

)T
dȳ; Vyθ
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= 2ρeshi

ImoSeshi
leshi

∫ 1

0

(
F̄θeshi

)T dȳ. (A.11)

The original elementary matrices and vectors for the mass unbalance finite element are detailed hereafter

Mcs
emu = mmu


1 0 0 0 z∗ 0
0 1 0 −z∗ 0 x∗

0 0 1 0 −x∗ 0
0 −z∗ 0 z∗2 0 −x∗z∗
z∗ 0 −x∗ 0 r2

mu 0
0 x∗ 0 −x∗z∗ 0 x∗2

 , (A.12)

Cφ̇
emu = 2mmu


0 0 0 0 −x∗ 0
0 0 0 x∗ 0 z∗

0 0 0 0 −z∗ 0
0 0 0 −x∗z∗ 0 −z∗2
0 0 0 0 0 0
0 0 0 x∗2 0 x∗z∗

 ;

Cemu,su = 2mmu


0 −ωz ωy z∗ωz −x∗ωy −x∗ωz

ωz 0 −ωx 0 x∗ωx + z∗ωz 0
−ωy ωx 0 −z∗ωx −z∗ωy x∗ωx

−z∗ωz 0 z∗ωx 0 −z∗ (x∗ωx + z∗ωz) 0
x∗ωy − (x∗ωx + z∗ωz) z∗ωy z∗ (x∗ωx + z∗ωz) 0 −x∗ (x∗ωx + z∗ωz)
x∗ωz 0 −x∗ωx 0 x∗ (x∗ωx + z∗ωz) 0

 , (A.13)

Kφ̈
emu = mmu


0 0 0 0 −x∗ 0
0 0 0 x∗ 0 z∗

0 0 0 0 −z∗ 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 r2

mu 0 0

 ; Kφ̇2

emu = mmu


0 0 0 0 −z∗ 0
0 0 0 z∗ 0 −x∗
0 0 0 0 x∗ 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ;

Kemu,su = mmu


−Kuu Kuv Kuw Kuθ Kuλ Ku

Kvu −Kvv Kvw z∗Kvv Kvλ −x∗Kvv

Kwu Kwv −Kww Kwθ Kwλ Kw

−z∗Kvu z∗Kvv −z∗Kvw z∗Kθθ Kθλ z∗Kψψ

− (x∗Kwu + z∗Kuu) −x∗Kwv + z∗Kuv x∗Kwu + z∗Kuu Kλθ Kλλ Kλψ

x∗Kvu −x∗Kvv x∗Kvw z∗K Kψλ −x∗Kψψ

 , (A.14)
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with

Kuu = ωy2 + ωz2; Kuv = −ω̇z + ωxωy;
Kuw = ω̇y + ωxωz; Kuθ = −2x∗φ̇ ωz − z∗Kuv;
Kuλ = −x∗Kuw − z∗

(
Kuu + 2φ̇ ωy

)
; Kuψ = −2z∗φ̇ ωz + x∗Kuv;

Kvu = ω̇z + ωxωy; Kvv = ωx2 + ωz2;
Kvw = −ω̇x + ωyωz; Kvλ = z∗Kvu − x∗Kvw + 2φ̇ (z∗ωx − x∗ωz) ;
Kwu = −ω̇y + ωxωz; Kwv = ω̇x + ωyωz;
Kww = ωx2 + ωy2; Kwθ = 2x∗φ̇ ωx − z∗Kwv;
Kwλ = z∗Kwu + x∗φ̇ (Kww + 2ωy) ; Kwψ = 2z∗φ̇ ωx + x∗Kwv, (A.15)

Kθθ = z̈O − (x∗ + xO)Kwu − (ymu + yO)Kwv + zOKww + z∗
(
ωy2 − ωz2

)
+ 2 (ẋOωy − ẏOωx) + 2z∗φ̇ωy;

Kθλ = x∗ÿO + 2x∗ (ẋOωz − żOωx) + x∗ (xOω̇z − zOω̇x) +
(
x∗2 − z∗2

) (
ω̇z − 2φ̇ωx

)
− 2x∗z∗

(
ω̇x − 2φ̇ωz

)
− x∗ (ymu + yO)

(
ωx2 + ωz2

)
+
(
x∗ (x∗ + xO)− z∗2

)
ωxωy

+ x∗ (2z∗ + zO)ωyωz;
Kλθ = x∗ÿO + 2x∗ (ẋOωz − żOωx) + x∗ (xOω̇z − zOω̇x)− r2

muω̇
z − x∗ (ymu + yO)

(
ωx2 + ωz2

)
+
(
x∗ (x∗ + xO)− z∗2

)
ωxωy + x∗ (2z∗ + zO)ωyωz;

Kλλ = − (x∗ẍO + z∗z̈O) + 2 (z∗ẋO − x∗żO)ωy + 2ẏO (x∗ωz − z∗ωx) + (ymu + yO) (x∗ω̇z − z∗ω̇x)
+ (z∗xO − x∗zO) ω̇y + x∗xOω

z2 + z∗zOω
x2 − (ymu + yO) (x∗ωx + z∗ωz)ωy + (x∗xO + z∗zO)ωy2

− (z∗xO + x∗ (zO + 4z∗))ωxωz +
(
z∗2 − x∗2

)
(ωx − ωz) ;

Kλψ = z∗ÿO + 2z∗ (ẋOωz − żOωx) + z∗ (xOω̇z − zOω̇x)− r2
muω̇

x − z∗ (ymu + yO)
(
ωx2 + ωz2

)
+
(
z∗ (z∗ + zO)− x∗2

)
ωyωz + z∗ (2x∗ + xO)ωxωy;

Kψλ = z∗ÿO + 2z∗ (ẋOωz − żOωx) + z∗ (xOω̇z − zOω̇x) +
(
x∗2 − z∗2

) (
ω̇x − 2φ̇ωz

)
+ 2x∗z∗

(
ω̇z + 2φ̇ωx

)
− z∗ (ymu + yO)

(
ωx2 + ωz2

)
+
(
z∗ (z∗ + zO)− x∗2

)
ωyωz

+ z∗ (2x∗ + xO)ωxωy;
Kψψ = ẍO + (z∗ + zO)Kuw + (ymu + yO)Kuv − xOKuu + x∗

(
ωx2 − ωy2)+ 2 (żOωy − ẏOωz)− 2x∗φ̇ωy, (A.16)

Vφ̈
emu = −mmu

{
z∗ 0 −x∗ 0 r2

mu 0
}T ;

Vφ̇2

emu = mmu

{
x∗ 0 z∗ 0 0 0

}T ;

Femu,su (t) = −mmu

{
Fu F v Fw F θ Fλ Fψ

}T
, (A.17)

with

Fu = ẍO + 2 (żOωy − ẏOωz)− (x∗ + xO)
(
ωy2 + ωz2

)
− (ymu + yO) (ω̇z − ωxωy)

+ (z∗ + zO) (ω̇y + ωxωz)− 2x∗φ̇ωy;
F v = ÿO + 2 (ẋOωz − żOωx) + (x∗ + xO) (ω̇z + ωxωy)− (ymu + yO)

(
ωx2 + ωz2

)
− (z∗ + zO) (ω̇x − ωyωz) + 2φ̇ (x∗ωx + z∗ωz) ;

Fw = z̈O + 2 (ẏOωx − ẋOωy)− (x∗ + xO) (ω̇y − ωxωz) + (ymu + yO) (ω̇x + ωyωz)
− (z∗ + zO)

(
ωx2 + ωy2)− 2z∗φ̇ωy;

F θ = −z∗F v;
Fλ = z∗ẍO − x∗z̈O + 2 ((x∗ẋO + z∗żO)ωy − ẏO (x∗ωx + z∗ωz)) + ωy2 (x∗zO − z∗xO)

+ (x∗ + xO)
(
x∗ (ω̇y − ωxωz)− z∗ωz2

)
+ (z∗ + zO)

(
z∗ (ω̇y + ωxωz) + x∗ωx2)

− (ymu + yO) (x∗ (ω̇x + ωyωz) + z∗ (ω̇z − ωxωy)) ;
Fψ = x∗F v. (A.18)
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