Stefan Le 
  
Zhong Wang 
  
STABILITY OF THE MULTI-SOLITONS OF THE MODIFIED KORTEWEG-DE VRIES EQUATION

Keywords: . 2010 Mathematics Subject Classification. 35Q53, 35B35, 35Q51, 35C08, 76B25 stability, multi-solitons, N-solitons, recursion operator, Sylvester Law of Inertia, Korteweg-de Vries equation

We establish the nonlinear stability of N -soliton solutions of the modified Korteweg-de Vries (mKdV) equation. The N -soliton solutions are global solutions of mKdV behaving at (positive and negative) time infinity as sums of 1-solitons with speeds 0 < c 1 < • • • < c N . The proof relies on the variational characterization of N -solitons. We show that the N -solitons realize the local minimum of the (N + 1)-th mKdV conserved quantity subject to fixed constraints on the N first conserved quantities. To this aim, we construct a functional for which N -solitons are critical points, we prove that the spectral properties of the linearization of this functional around a N -soliton are preserved on the extended timeline, and we analyze the spectrum at infinity of linearized operators around 1-solitons. The main new ingredients in our analysis are a new operator identity based on a generalized Sylvester law of inertia and recursion operators for the mKdV equation.

Introduction

We consider the modified Korteweg-de Vries equation

u t + (u xx + u 3 ) x = 0, (mKdV) 
where u : R t ×R x → R. The modified Korteweg-de Vries equation (mKdV) is a well-known completely integrable model [START_REF] Miura | Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation[END_REF][START_REF] Wadati | The modified Korteweg-de Vries equation[END_REF]. In particular, solutions might be constructed using the inverse scattering transform and there exists an infinite sequence of conservations laws. Among the possible solutions of (mKdV), some are of particular interest: the solitons and multi-solitons. A soliton is a solution of the form U c1 (t, x) = Q c1 (x -c 1 t -x 1 ), where the profile Q c1 is fixed along the time evolution and is translated along R at speed c 1 > 0 with initial position x 1 . A multi-soliton is a solution U c1,...,cN of (mKdV) such that

U c1,...,cN (t, x) ∼ t→±∞ N j=1 Q cj (x -c j t -x ± j ),
which means that U c1,...,cN behaves at negative and positive time infinity as a sum of solitons. Explicit formulas for solitons and multi-solitons are known and will be recalled in Section 2. It has long been known (see Schuur [START_REF] Schuur | Asymptotic analysis of soliton problems[END_REF]) that a solution of the classical Korteweg-de Vries equation (i.e. when the nonlinearity is quadratic instead of cubic) decomposes as a finite sum of solitons and a dispersive remainder. This type of behavior is expected to be generic for nonlinear dispersive equations, but it has seldom been rigorously established and remains known most of the time under the name Soliton Resolution Conjecture. In the case of the modified Korteweg-de Vries equation, the conjecture has been established recently in weighted spaces and for multi-solitons in [START_REF] Chen | Soliton resolution for the modified KdV equation[END_REF]. However, whereas for the classical Korteweg-de Vries equation the only nonlinear solutions obtained via inverse scattering are the multi-solitons, for the modified Korteweg-de Vries equation the inverse scattering also generates breathers and N -poles (see [START_REF] Wadati | The modified Korteweg-de Vries equation[END_REF][START_REF] Wadati | Multiple-pole solutions of the modified Korteweg-de Vries equation[END_REF]), which are not yet taken into account by any soliton resolution statement. Observe that (mKdV) possesses even more complicated solutions like self-similar solutions (see [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF] for their asymptotic behavior in Fourier space).

One of the major questions related to multi-solitons is their stability with respect to the dynamics of the equation. In the case of the classical Korteweg-de Vries equation, this question was settled in 1993 by Maddocks and Sachs [START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF]: N -solitons are stable in H N (R). Our goal in this paper is to establish the counter-part of this result in the case of the modified Korteweg-de Vries equation.

Our main result is the following.

Theorem 1.1. Given N ∈ N, N 1, a collection of speeds c = (c 1 , . . . , c N ) with 0 < c 1 < • • • < c N and a collection of phases x = (x 1 , . . . , x N ) ∈ R N , let U (N ) c (•, •; x) be the corresponding multi-soliton given by [START_REF] Bona | Stability of solitary waves in higher-order Sobolev spaces[END_REF]. For any ε > 0, there exists δ > 0 such that for any u 0 ∈ H N (R), the following stability property holds. If

u 0 -U (N ) c (0, •, x) H N < δ,
then for any t ∈ R the corresponding solution u of (mKdV) verifies

inf τ ∈R,y∈R N u(t) -U (N ) c (τ, •, y) H N < ε.
Some discussion of the notion of stability obtained in Theorem 1.1 is in order, as many possible notions of stability exist, already for single solitons, and even more in the case of multi-solitons. Observe that for the comprehension we have neglected in the statement of Theorem 1.1 a redundancy in the stability expression, as we in fact have

{U (N ) c (τ, •, y) : τ ∈ R, y ∈ R N } = {U (N ) c
(0, •, y) : y ∈ R N }. Our stability statement is valid for the whole timeline, from infinity in the past to infinity in the future. This feature is usually specific to integrable equations, we should comment later on stability statements obtained for only one end of the timeline in non-integrable models. The stability statement could be reformulated in terms of stability of a set in the following way. A set is said to be stable if any solution with initial data close to this set will remain close to this set for all time. Different kind of sets can be considered, for example the time orbit of the multi-soliton, the family of multi-soliton profiles (with same speeds), the set of (local or global) minimizers of some variational problems. For solitons of (mKdV), it is known that these three sets coincide. However, it is not always the case. In particular, the first two sets are different as soon as we consider N -solitons with N 2, and our stability result concerns the second set. It is indeed not hard to verify using the explicit formula of the N -solitons that the time orbit of the N -solitons cannot be stable (to make our result a time-orbit stability result, one would need to include all possible time-orbits under the N first Hamiltonian flows of the (mKdV) hierarchy, see e.g. the discussion in [38, p. 869]). A typical result of stability of the third kind of sets (i.e. sets of minimizers) is the seminal work of Cazenave and Lions [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF]. The flexibility and versatility of variational technics makes the stability of this kind of sets easier to obtain, but leads to potentially weaker stability statements unless some uniqueness or non-degeneracy of the minimizers is established. Unfortunately, uniqueness statements are most of the time widely open problems (for more in this direction, see the recent work of Albert [START_REF] Albert | A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation[END_REF] in the case of the classical Korteweg-de Vries equation for a uniqueness result for the two-solitons). In our case, we are able to obtain the non-degeneracy property in the same process as a local minimization property.

Observe here that, while solutions behaving at both ends of the time line as pure sums of solitons are probably bound to exist only in integrable cases, it is nevertheless possible to obtain multi-soliton solutions for non-integrable equations if the behavior is expected only at positive (or negative) large times. In the framework of the nonlinear Schrödinger equation, in 1990, Merle [START_REF] Merle | Construction of solutions with exactly k blow-up points for the Schrödinger equation with critical nonlinearity[END_REF] obtained a first existence result for the mass-critical case. Since then, many existence results for multi-solitons have been obtained in different settings (see [START_REF] Bellazzini | Multi-solitary waves for the nonlinear Klein-Gordon equation[END_REF][START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations[END_REF][START_REF] Le Coz | Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations[END_REF][START_REF] Coz | Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF][START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Wang | Multi-speed solitary waves for the Klein-Gordon-Schrödinger system with cubic interaction[END_REF][START_REF] Wang | Multi solitary waves for a fourth order nonlinear Schrödinger type equation[END_REF][START_REF] Wang | Multi-speed solitary wave solutions for a coherently coupled nonlinear Schrödinger system[END_REF][START_REF] Wang | Multi-solitons for a generalized Davey-Stewartson system[END_REF] among many others). In the framework of Korteweg-de Vries type equations, existence (and uniqueness) of multi-solitons in non-integrable cases was first established by Martel [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF]. Stability of multisolitons for generalized Korteweg-de Vries equations was obtained by Martel, Merle and Tsai in [START_REF] Martel | Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations[END_REF] (see also [START_REF] Albert | On the stability of KdV multi-solitons[END_REF] for related developments). Using a similar approach, some stability results have been obtained in the nonlinear Schrödinger case (see [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] and more recently [START_REF] Coz | Stability of Multisolitons for the Derivative Nonlinear Schrödinger Equation[END_REF]), but the results are only partial and stability of multi-solitons remains essentially an open problem in the Schrödinger case. In the case of the classical Korteweg-de Vries equation, results combining the approaches of [START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF] and [START_REF] Martel | Stability in H 1 of the sum of K solitary waves for some nonlinear Schrödinger equations[END_REF] have been obtained by Alejo, Muñoz and Vega [START_REF] Alejo | The Gardner equation and the L 2 -stability of the N -soliton solution of the Korteweg-de Vries equation[END_REF], with in particular results of stability and asymptotic stability in L 2 (R) for multi-solitons. A detailed overview of these results is offered by Muñoz in [START_REF] Muñoz | Stability of integrable and nonintegrable structures[END_REF]. Let us also mention the asymptotic stability results obtained for generalized Korteweg-de Vries equations in [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF][START_REF] Pego | Asymptotic stability of solitary waves[END_REF].

The premises of the stability analysis of N -solitons may be found in the pioneering work of Lax [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF], in which in particular the variational principle satisfied by multi-solitons of the Korteweg-de Vries equation is given. However, it is Maddocks and Sachs [START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF] who laid the cornerstone for the stability analysis of multi-solitons in integrable equations. Their approach relies essentially on spectral and variational arguments, and makes no (direct) use of inverse scattering. The integrable nature of the equation is used essentially in two aspects: first, for the explicit formulas for multi-solitons, second for the construction of an infinite sequence of conservation laws. Indeed, the central point of [START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF] is to show that N -solitons are local minimizers of the (N + 1)-th conserved quantity subject to fixed constraints on the N first conserved quantities. In a way, this argument is to be related to the theories developed by Benjamin, Bona, Grillakis, Shatah and Strauss [START_REF] Benjamin | The stability of solitary waves[END_REF][START_REF] Bona | On the stability theory of solitary waves[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] for the stability of a single solitary wave.

The ideas developed by Maddocks and Sachs have been successfully implemented to obtain stability results in various settings. Neves and Lopes [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF] proved the stability of the two-solitons of the Benjamin-Ono equation. Alejo and Muñoz [START_REF] Alejo | Nonlinear stability of MKdV breathers[END_REF] established the stability of (mKdV) breathers (which can be formally seen as counterparts of two-solitons for complex speeds). Spectral stability for multi-solitons in the KdV hierarchy was considered by Kodoma and Pelinovsky [START_REF] Kodama | Spectral stability and time evolution of N -solitons in the KdV hierarchy[END_REF]. We also mention the work of Kapitula [START_REF] Kapitula | On the stability of N -solitons in integrable systems[END_REF], which is devoted to the stability of N -solitons of a large class of integrable systems, including in particular the model cubic nonlinear Schrödinger equation. Very recently, a variational approach was used by Killip and Visan [START_REF] Killip | Orbital stability of KdV multisolitons in H -1[END_REF] to obtain the stability of multi-solitons of the classical Korteweg-de Vries equation in weak regularity spaces (up to H -1 (R) !). Finally, a stability result in low regularity H s -spaces was also obtained very recently by Koch and Tataru [START_REF] Koch | Multisolitons for the cubic NLS in 1-d and their stability[END_REF] for the multi-solitons of both modified Korteweg-de Vries equation and the cubic nonlinear Schrödinger equation. This result contains ours, as it is valid in particular for s = N . The proof is however much more involved and relies on a extensive analysis of an iterated Bäcklund transform.

The major difference between our approach and the approach of Maddocks and Sachs lies in the analysis of spectral properties. In particular, we develop in the context of (mKdV), and for N -solitons, ideas introduced by Neves and Lopes [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF] for the analysis of the two-solitons of the Benjamin-Ono equation. Indeed, the spectral analysis of Maddocks and Sachs and many of their continuators relies on an extension of Sturm-Liouville theory to higher order differential equations (see [START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF]Section 2.2] and [START_REF] Greenberg | An oscillation method for fourth-order, selfadjoint, two-point boundary value problems with nonlinear eigenvalues[END_REF]). As the Benjamin-Ono equation is nonlocal, Neves and Lopes [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF] were lead to introduce a new strategy relying on iso-inertial properties of linearized operators. It turns out that this type of argument can also be implemented for local problems such as (mKdV). Our first task was to extend the spectral theory of Neves and Lopes [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF] to an arbitrary number N of composing solitons. Apart from an increased technical complexity (inherent to the fact that the number of composing solitons is now arbitrary), no major difficulty arises here. Then our second task was to implement this spectral theory for the multi-solitons of (mKdV). At that level, we had to overcome major obstacles. Most of the existing works content themselves with the simpler analysis of two-solitons, for which many informations can be obtained by brut force (it is said in [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF]: "It is likely that our method can be extended to multi-solitons of the BO equation and of its hierarchy but the algebra may become prohibitive"). Hence, to deal with the arbitrary N case, it was necessary to acquire a deeper understanding of the relationships between N -solitons, the variational principle that they satisfy, and the spectral properties of the operators obtained by linearization of the conserved quantities around them.

We now present the process leading to the proof of our main result Theorem 1.1. We first review in Section 2 the results gravitating around our main topic of interest. We recall the wellposedness of the Cauchy problem, and remind the reader that the conservation laws for (mKdV) may be obtained from one another using a recursion formula (see ( 4)) involving the first derivative of consecutive conservation laws and what we call the recursion operator K (see [START_REF] Alejo | Nonlinear stability of MKdV breathers[END_REF]). We also recall the formulas for solitons and multisolitons.

Section 3 is devoted to the next step: establishing the variational principle verified by the multi-solitons, i.e. to construct a functional S N of which N -solitons are critical points. The form of the variational principle as well as some elements of proof were given by Lax [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF]. Holmer, Perelman and Zworski [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV[END_REF] later established a rigorous proof for the 2-solitons, which we adapt here to the case of N -solitons. The proof proceeds into two steps. First, as N -solitons are decomposing at time infinity as decoupled solitons, the variational principle that they possibly satisfy should also be verified by each of their composing solitons. As a consequence, the coefficients of the variational principle are determined by the speeds of the composing solitons. Second, we prove that the N -solitons indeed verify the conjectured variational principle by a rigidity argument on the differential equation verified by a remainder term. The proof given here is analytic in spirit and makes little use of the algebraic structure of the problem. Alternative strategies to obtain a similar result using the inverse scattering approach are possible, see e.g. [START_REF] Kapitula | On the stability of N -solitons in integrable systems[END_REF][START_REF] Liu | Stability of Smooth Multi-Solitons for the Camassa-Holm Equation[END_REF].

Given the functional S N admitting a N -soliton as critical point, we hold a natural candidate for a Lyapunov functional allowing to prove stability. Indeed, it was proved by Maddocks and Sachs that if one can equate the number of negative eigenvalues of the operator corresponding to the Hessian with the number of positive principal curvatures of the solution surface (see Proposition 6.1 or [START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF]Lemma 2.3]), then a Lyapunov functional based on an augmented Lagrangian may be constructed and stability follows (the reader familiar with the stability theory of single solitons will recognize in these two criteria the equivalent for multi-solitons of the spectral and slope conditions rendered famous by Grillakis, Shatah and Strauss [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF]). The spectral analysis represents the major task and is spread on two sections.

At first, in Section 4, one needs to extend to the N -soliton case the theory developed by Neves and Lopes [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF] in the case of 2-solitons. Indeed, in the spectral analysis of linearized operators, a major difference appears between solitons and multi-solitons: whereas it is possible for solitons to consider the perturbation at the profile level and therefore to work with operators having time independent potentials, the operators associated with multi-solitons have inherently time dependent potentials. To overcome this difficulty, and somehow to go back to time-independent potentials, one needs a relation between the spectral structure along the time evolution and the spectral structure at time infinity (where the decoupling between solitons brings us back to the case of 1-solitons). This comes in the form of the preservation of inertia property, i.e. the numbers of negative and zero eigenvalues are constant along the extended timeline (see Proposition 4.3 and Corollary 4.5).

With this tool in hand, the spectral analysis is obtained as the spectral analysis of the linearized operator at infinity, which is itself the combination of the spectral analysis of the linearized operators around each of the composing solitons. In Section 5, the later analysis is made possible by a remarkable factorization identity (see Proposition 5.3), which we obtain thanks to the recursion properties of the linearized conserved quantities around each soliton. Indeed, given Q j the j-th soliton profile, one may introduce the operators

M j = Q j ∂ x • Q j , M t j = 1 Q j ∂ x (Q j • ) ,
and, denoting the linearized operator around Q j by L N,j := S ′′ N (Q j ), we have

M j L N,j M t j = M t j N k=1 (-∂ 2 x + c k ) M j ,
which allows us to obtain the necessary spectral informations. Finally, in Section 6, we compute the number of positive principal curvatures for the multi-soliton surface by an astute use of the (matrix) Sylvester's law of inertia combined with the relations between the coefficients of the candidate Lyapunov functional and the speeds of the multi-soliton. The stability of the N -soliton is then a consequence of the combination of the previous arguments.

Preliminaries

In this section we collect some preliminary results on (mKdV).

2.1.

Hamiltonian structure and conserved quantities. The first few conserved quantities of (mKdV) are given by

(mass) H 0 (u) := R u dx, (momentum) H 1 (u) := 1 2 R u 2 dx, (1) 
(energy) H 2 (u) := 1 2 R u 2 x - 1 4 R u 4 dx, (2) 
(second energy) H 3 (u) := 1 2 R u 2 xx dx + 1 4 R u 6 dx - 5 2 R u 2 u 2 x dx.
In general, for n ∈ N, the conserved quantities of (mKdV) are of the form

H n (u) := 1 2 R u 2 (n-1)x dx + R q n (u, u x , . . . , u (n-2)x ) dx,
where q n is a polynomial which might be explicitly calculated. Various strategies are possible to generate the conserved quantities of (mKdV). In particular, one might rely on the following Lenard recursion identity. For u ∈ S(R) (the Schwartz space of fast-decaying smooth functions), define the recursion operator K by

K(u) := -∂ 3 x -2u 2 ∂ x -2u x ∂ -1 x (u∂ x ), ∂ -1 x u := 1 2 x -∞ u(y) dy - ∞ x u(y) dy . (3) 
For all n 0, we have the recursion formula (see [START_REF] Olver | Applications of Lie groups to differential equations[END_REF] or [22, formula (2.4)])

∂ x H ′ n+1 (u) = K(u)H ′ n (u). (4) 
The modified Korteweg-de Vries equation (mKdV) is a Hamiltonian system of the form

u t = ∂ x H ′ 2 (u).
The recursion formula readily leads to another Hamiltonian expression for (mKdV):

u t = K(u)H ′ 1 (u).
This bi-Hamiltonian nature allows to consider the mKdV hierarchy, a generalized class of equations given by

u t = ∂ x H ′ n+1 (u) = K(u)H ′ n (u), n ∈ N.
In particular, the functionals H n are constant along the flow of all equations in the hierarchy.

A substantial body of works is available regarding the Cauchy problem for the modified Korteweg-de Vries equation (mKdV). In particular, one may refer to the celebrated works of Kenig, Ponce and Vega [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF] and Colliander, Keel, Staffilani, Takaoka, and Tao [START_REF] Colliander | Sharp global well-posedness for KdV and modified KdV on R and T[END_REF], or see some of the recent books on the topic [START_REF] Koch | Dispersive equations and nonlinear waves[END_REF][START_REF] Linares | Introduction to nonlinear dispersive equations[END_REF][START_REF] Zhidkov | Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory[END_REF]. In this work, we will make use of the following property, which has been established in a streamlined proof (using only the necessary elements of [START_REF] Kenig | Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[END_REF]) by Holmer, Perelman and Zworski [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV[END_REF]. For all k ∈ N, given any initial data u 0 ∈ H k (R) there exists a unique global solution u ∈ C(R, H k (R)) of (mKdV) such that u(0) = u 0 . Moreover, the data-to-solution map is continuous and H j (u) is preserved by the flow for j = 1, . . . , k + 1.

Solitons and Multi-solitons.

The inverse scattering method allows, by purely algebraic technics, to calculate explicitly solutions of (mKdV) (at least for rapidly decreasing solutions) and we now give a quick review of some solutions which have been constructed for (mKdV). Details of the constructions are given in [START_REF] Hirota | Exact Solution of the Modified Korteweg-de Vries Equation for Multiple Collisions of Solitons[END_REF][START_REF] Wadati | The modified Korteweg-de Vries equation[END_REF][START_REF] Wadati | Multiple-pole solutions of the modified Korteweg-de Vries equation[END_REF]. Recent progress using the inverse scattering approach (including a soliton resolution result and asymptotic stability of multi-solitons in weighted spaces) are reported in [START_REF] Chen | Soliton resolution for the modified KdV equation[END_REF].

We start with the solitons. A soliton of (mKdV) is a traveling wave solution of the form

u(t, x) = Q c (x -ct + x 0 ),
where c ∈ R is the speed and x 0 is the initial position. The profile Q c satisfies the ordinary differential equation

-∂ xx Q c + cQ c -Q 3 c = 0. (5) 
The soliton profile Q c can be proved to be a minimizer of the energy H 2 (see ( 2)) under the momentum (see ( 1)

) constraint H 1 (u) = H 1 (Q c ) = 2 √ c.
Up to sign change and translation, there exists a unique positive even solution to the profile equation [START_REF] Bellazzini | Multi-solitary waves for the nonlinear Klein-Gordon equation[END_REF], which is explicitly given by the formula

Q c (x) = √ cQ( √ cx), Q(x) = √ 2 sech(x). (6) 
To make a link with what follows, note that the 1-soliton with speed c 1 and shift parameter x 1 can be written in the form

U c1 (t, x; x 1 ) = 2 √ 2∂ x (arctan (e s1 )) , where s 1 = √ c 1 (x -c 1 t) + x 1 .
Solitons form the building blocks for more complicated dynamics of (mKdV), which we now present, starting with 2-solitons.

Given speeds c 1 , c 2 > 0, c 1 = c 2 and shift parameters x 1 , x 2 ∈ R, a 2-soliton is a solution of (mKdV) given by

U c1,c2 (t, x; x 1 , x 2 ) = 2 √ 2∂ x arctan e s1 + e s2 1 -ρ 2 e s1+s2 , (7) 
where s j := √ c j (x -c j t) + x j for j = 1, 2, and ρ :=

√ c1- √ c2 √ c1+ √ c2 .
Asymptotically in time, this solution decomposes into a sum of two 1-solitons traveling at speeds c 1 and c 2 . More precisely, there exist

x ± 1 , x ± 2 depending explicitly on c 1 , c 2 , x 1 , x 2 such that lim t→±∞ U c1,c2 (t, •; x 1 , x 2 ) -Q c1 (• -c 1 t -x ± 1 ) -Q c2 (• -c 2 t -x ± 2 ) H 1 = 0.
As can be observed in the above formula, in the 2-solitons the interaction between the two composing solitons is smooth and its only consequence is a shift in the trajectories, as x - j = x + j for j = 1, 2. Observe here that when c 1 = c 2 , there exist also solutions behaving at time infinity as two solitons traveling at the same speed and going away at logarithmic rate (see [START_REF] Wadati | Multiple-pole solutions of the modified Korteweg-de Vries equation[END_REF]). Those solutions, called double-poles, are however given by a formula different from [START_REF] Bona | On the stability theory of solitary waves[END_REF] and are not included in the results of the present paper. Our progress in the analysis of such solutions will be reported in a future work.

The formula for N -solitons for generic N is slightly more complicated but has a similar form.

Given N ∈ N, speeds 0 < c 1 < • • • < c N , phases x 1 , . . . , x N ∈ R, a N -soliton solution is given by U c1,...,cN (t, x; x 1 , . . . , x N ) = 2 √ 2∂ x arctan g(t, x) f (t, x) , (8) 
where the functions f and g are given by

f (t, x) = ⌊ N 2 ⌋ n=0 σ∈C N 2n a(σ) exp s σ(1) + • • • + s σ(2n) , g(t, x) = ⌊ N -1 2 ⌋ n=0 σ∈C N 2n+1 a(σ) exp s σ(1) + • • • + s σ(2n+1) .
Here, N 2 denotes the integer part of N 2 and C N 2n is the set of all possible combinations of 2n elements among N . The variables s j are given for j = 1, . . . , N by

s j := √ c j (x -c j t) + x j .
The function a is build upon the functions ã given by

ã(k, l) := - √ c l - √ c k √ c l + √ c k 2 ,
and for n 1 and σ := {i 1 , . . . , i 2n }, we set a(σ) :=

1 k<l 2n ã(i k , i l )
and a(σ) = 1 otherwise (i.e. if σ is not in the above form). It was shown in [START_REF] Hirota | Exact Solution of the Modified Korteweg-de Vries Equation for Multiple Collisions of Solitons[END_REF] that the N -soliton solutions given by the above formula decompose at positive and negative time infinity as sums of solitons. As was shown by Martel [START_REF] Martel | Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations[END_REF], they are the unique solutions of (mKdV) having this prescribed behavior.

The Variational Principle

We analyze in this section the variational principle satisfied by multi-solitons. We first observe that the differential equation ( 5) verified by the soliton profile and the recursion relation [START_REF] Alejo | The Gardner equation and the L 2 -stability of the N -soliton solution of the Korteweg-de Vries equation[END_REF] imply that the 1-soliton U c1 (t) ≡ U c1 (t, •; x 1 ) with speed c 1 > 0 satisfies for all n 1 and for any t ∈ R the following variational principle

H ′ n+1 (U c1 (t)) + c 1 H ′ n (U c1 (t)) = 0. ( 9 
)
For future reference, we calculate here the quantities H j (Q c1 ) related to the 1-soliton profile Q c1 . Multiplying ( 9) with

dQc 1 dc1 , for each j, we get dH j+1 (Q c ) dc |c=c1 = -c 1 dH j (Q c ) dc |c=c1 = • • • = (-c 1 ) j dH 1 (Q c ) dc |c=c1 = (-1) j c 2j-1 2 1 ,
and therefore

H j+1 (Q c1 ) = (-1) j 2 2j + 1 c 2j+1 2 1 . (10) 
It can be verified by explicit calculations that the 2-soliton U c1,c2 (t) ≡ U c1,c2 (t, •, x 1 , x 2 ) with speeds 0 < c 1 < c 2 satisfies for all n 1 and for any t ∈ R the variational principle

H ′ n+2 (U c1,c2 (t)) + (c 1 + c 2 )H ′ n+1 (U c1,c2 (t)) + c 1 c 2 H ′ n (U c1,c2 (t)) = 0.
Using the explicit expression (8) for the N -solitons, it would in theory be possible to verify by hand for any given N that they also satisfy variational principles. Calculations would however rapidly become unmanageable when N grows. In the following, we provide an analytic proof that the multi-solitons indeed verify a variational principle. This fact is commonly accepted but rarely proved. We base here our proof on the approach outlined by Lax [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF] and later rigorously developed by Holmer, Perelman and Zworski [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV[END_REF]. Proposition 3.1. Let U : R t × R x → R be a solution of (mKdV) and assume that there exist

N ∈ N \ {0}, 0 < c 1 < • • • < c N , and x 1 , . . . , x N : R t → R such that U (t) - N j=1 Q cj (• -x j (t)) H N +1 e -1 2 √ c1| min j,k (xj (t)-x k (t))| ,
and for all j = 1, . . . , N , we have

|∂ t x j (t) -c j | 1 |t| . ( 11 
)
Then there exist λ 1 , . . . , λ N ∈ R such that for all t ∈ R the function U (t) verifies the variational principle

H ′ N +1 (U (t)) + N j=1 λ j H ′ j (U (t)) = 0. ( 12 
)
The coefficients λ j , j = 1, . . . , N are uniquely determined in terms of the speeds c j , j = 1, . . . , N . Precisely, they are given by Vieta's formulas: for k = 1, . . . , N we have

λ N +1-k = 1 i1<•••<i k N   k j=1 c ij   . (13) 
Let λ 1 , . . . , λ N be given by [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF]. For u ∈ H N (R), we define the functional whose first derivative gives (12) by

S N (u) = H N +1 (u) + N j=1 λ j H j (u). ( 14 
)
We first prove that if a solution of (mKdV) decomposes asymptotically as a sum of solitons, then the parameters of the variational principle it possibly satisfies are constrained by the values of the speeds in the asymptotic decomposition and must satisfy [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF]. Lemma 3.2. Let U : R t × R x → R be a solution of (mKdV) and assume that there exist

N ∈ N \ {0}, 0 < c 1 • • • c N , and x 1 , . . . , x N : R t → R such that lim t→±∞ U (t) - N j=1 Q cj (• -x j (t)) H N = 0,
and for all j, k = 1, . . . , N , j = k we have

lim t→±∞ |x j (t) -x k (t)| = ∞.
Assume also that there exist λ 1 , . . . , λ N ∈ R such that for all t ∈ R the function U (t) verifies the variational principle

H ′ N +1 (U (t)) + N j=1 λ j H ′ j (U (t)) = 0. ( 15 
)
Then the coefficients λ j , j = 1, . . . , N are uniquely determined in terms of the speeds c j , j = 1, . . . , N by Vieta's formula [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF].

Remark 3.3. The assumptions of Lemma 3.2 are weaker than those of Proposition 3.1. In particular, Lemma 3.2 applies also to N -pole solutions (i.e. with multi-solitons with possibly equal speeds), whereas Proposition 3.1 is restricted to N -solitons with different speeds.

Proof of Lemma 3.2. Letting t → ∞ in [START_REF] Côte | Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations[END_REF], using the exponential localization of each soliton and the asymptotic description of U , for each j = 1, . . . , N we have

H ′ N +1 (Q cj ) + N k=1 λ k H ′ k (Q cj ) = 0.
Observe here that this argument would not be valid if the functionals H k were containing non-local terms.

In the present setting, each H ′ k contains only derivatives and potentials based on powers of U and its spatial derivatives.

Recall that each soliton profile Q cj verifies for each k 1 the equation

H ′ k+1 (Q cj ) = (-c j ) k H 1 (Q cj ).
As a consequence, we see that for each j = 1, . . . , N we have

(-c j ) N + N k=1 λ k (-c j ) k-1 = 0.
In other words, the speeds -c j are the roots of the N -th order polynomial with coefficients 1, λ N , . . . , λ 1 . The relations between the roots of a polynomial and its coefficients are well-known to be described by Vieta's formulas as in [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF].

We will use the following technical result in the course of the proof of Proposition 3.1.

Lemma 3.4. For any φ ∈ H N +1 (R) and for any j, k = 1, . . . , N + 1, we have

H ′ j (φ), ∂ x H ′ k (φ) L 2 = 0
Proof. The result is a consequence of the iteration identity (4). Indeed, for any φ ∈ C ∞ c we have

H ′ j (φ), ∂ x H ′ k (φ) L 2 = H ′ j (φ), K(φ)H ′ k-1 (φ) L 2 = -K(φ)H ′ j (φ), H ′ k-1 (φ) L 2 = -∂ x H ′ j+1 (φ), H ′ k-1 (φ) L 2 = H ′ j+1 (φ), ∂ x H ′ k-1 (φ) L 2 .
Iterating the process k -1 times, we arrive at

H ′ j (φ), ∂ x H ′ k (φ) L 2 = H ′ j+k-1 (φ), ∂ x H ′ 1 (φ) L 2 .
From the invariance of H j+k-1 under translation, we have

0 = dH j+k-1 (φ(• -y)) dy |y=0 = H ′ j+k-1 (φ), φ x L 2 = H ′ j+k-1 (φ), ∂ x H ′ 1 (φ) L 2 .
Gathering the previous identities leads to the desired conclusion, which by density is also valid in H N +1 (R).

Proof of Proposition 3.1. From Lemma 3.2, we know that, if they exist, λ 1 , . . . , λ N in Proposition 3.1 are uniquely determined by c 1 , . . . , c N and (13). We define

r(t) = S ′ N (U (t))
. By construction, each of the soliton profile Q cj composing U at the limit t → ±∞ is a critical point of S N and is exponentially decaying, therefore we have

S ′ N   N j=1 Q cj (• -x j (t))   = N j=1 S ′ N (Q cj (• -x j (t))) + O e -1 2 √ c1| min j,k (xj (t)-x k (t))| = O e -1 2 √ c1| min j,k (xj(t)-x k (t))| .
Since we have assumed that c j = c k for j = k, we can infer from [START_REF] Chen | Soliton resolution for the modified KdV equation[END_REF] that there exists c * > 0 such that

S ′ N   N j=1 Q cj (• -x j (t))   = O e -c * |t| .
Hence we can use this result with the expression of r to obtain

r(t) = S ′ N (U (t)) -S ′ N   N j=1 Q cj (• -x j (t))   + O e -c * |t| . = S ′′ N   N j=1 Q cj (• -x j (t))     U (t) - N j=1 Q cj (• -x j (t))   + o   U (t) - N j=1 Q cj (• -x j (t))   + O e -c * |t| .
By assumption, we have

U (t) - N j=1 Q cj (• -x j (t)) H N +1
e -c * |t| , therefore we have r(t) L 2 e -c * |t| . In particular, we have lim t→∞ r(t) L 2 = 0.

Our goal is to show that in fact for all t ∈ R we have

r(t) = 0.
For this, it is sufficient to show that for some t 0 ∈ R and for any

v 0 ∈ C ∞ c (R) we have (r(t 0 ), v 0 ) L 2 = 0.
We choose arbitrarily t 0 ∈ R and v 0 ∈ C ∞ c (R) and consider the evolution problem for the linearized (mKdV) equation around U given by

∂ t v = ∂ x H ′′ 2 (U (t))v, v(t 0 ) = v 0 .
We will show that ∂ t (r(t), v(t)) L 2 = 0, and lim t→∞ (r(t), v(t)) L 2 = 0, from which the conclusion follows.

First, we observe that

∂ t (r(t), v(t)) L 2 = ∂ t (S ′ N (U (t)), v(t)) L 2 = ∂ t H ′ N +1 (U (t)), v(t) L 2 + N j=1 λ j ∂ t H ′ j (U (t)), v(t) L 2 .
We claim that for every j = 1, . . . , N + 1 we have

∂ t H ′ j (U (t)
), v(t) L 2 = 0. Indeed, using the equations verified by U and v (and removing the variable t for convenience) we have

∂ t H ′ j (U ), v L 2 = H ′′ j (U )∂ x H ′ 2 (U ), v L 2 + H ′ j (U ), ∂ x H ′′ 2 (U )v L 2 . ( 16 
)
From Lemma 3.4, we have for any φ ∈ H N +1 (R) and for any j, k = 1, . . . , N + 1 that

H ′ j (φ), ∂ x H ′ k (φ) L 2 = 0. Writing φ = U + sv
and differentiating in s at s = 0 we obtain [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF] and using the self-adjointness of H ′′ j (U ) we obtain

H ′′ j (U )v, ∂ x H ′ k (U ) + H ′ j (U ), ∂ x H ′′ k (U )v L 2 = 0. Substituting in
∂ t H ′ j (U ), v L 2 = H ′′ j (U )∂ x H ′ 2 (U ), v L 2 -H ′′ j (U )v, ∂ x H ′ 2 (U ) L 2 =
0, This proves the claim, and we can infer that

∂ t (r(t), v(t)) L 2 = 0.
From the exponential decay of r, we have

(r(t), v(t)) L 2 v(t) L 2 e -c * |t| .
Hence if we are able to show that v grows slower than e c * t , we can readily conclude that necessarily (r(t), v(t)) L 2 = 0.

To this aim, let us consider a partition of unity constructed in such a way that each member of the partition is (at time infinity) a localizing factor around one of the solitons composing the multi-soliton U . The partition that we use is similar to the one used in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations[END_REF]. Let ψ : R → R be a C ∞ cut-off function defined such that

ψ(s) = 0 if s -1, 0 < ψ(s) < 1 if -1 < s < 1, ψ(s) = 1 if 1 s.
Define for j = 2, . . . , N the middle speeds

m j = c j-1 + c j 2 ,
Define also for (t, x) ∈ R × R the domain walls

ψ 1 (t, x) = 1, ψ j (t, x) = ψ 1 √ t (x -m j t) , j = 2, . . . , N,
and construct the partition of unity as follows:

φ j = ψ j -ψ j+1 , j = 1, . . . , N -1, φ N = ψ N .
We may now write

v = N j=1 ψ j v.
Recall (see [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV[END_REF]) the following coercivity property for the linearized action around a 1-soliton profile Q c : there exists δ > 0 such that

H ′′ 2 (Q c )w, w + c H ′′ 1 (Q c )w, w δ w 2 H 1 - 1 δ w, ∂ -1 x Λ c Q c 2 -(w, Q) 2 . (17) 
Observe that Weinstein [57] for the equivalent version for Schrödinger equations). We will use this property on ψ j v for j = 1, . . . , N .

∂ -1 x Λ c Q c and Q = ∂ -1 x ∂ x Q form the generalized kernel of the operator (H ′′ 2 (Q c ) + H ′′ 1 (Q c ))∂ x (see the original work of
We first deal with the orthogonality directions. By direct calculations, we have

∂ t ψ j v, Q cj (• -x j (t)) L 2 = ∂ t ψ j )v, Q cj (• -x j (t)) L 2 + ψ j ∂ t v, Q cj (• -x j (t)) L 2 + ψ j v, ∂ t x j (t)∂ x Q cj (• -x j (t)) L 2 .
The first term of the right hand side contains a time derivative of ψ, hence it will be of order t -1 2 . For the second term, we have

ψ j ∂ t v, Q cj (• -x j (t)) L 2 = ψ j ∂ x H ′′ 2 (U )v, Q cj (• -x j (t)) L 2 = -∂ x ψ j H ′′ 2 (U )v, Q cj (• -x j (t)) L 2 -ψ j H ′′ 2 (U )v, ∂ x Q cj (• -x j (t)) L 2 = -ψ j v, H ′′ 2 (U )∂ x Q cj (• -x j (t)) L 2 + O t -1 2 v H 1 .
Moreover, by assumption on x j (t), the third term gives

ψ j v, ∂ t x j (t)∂ x Q cj (• -x j (t)) = ψ j v, c j ∂ x Q cj (• -x j (t)) + O t -1 v L 2 = ψ j v, c j H ′′ 1 (U )∂ x Q cj (• -x j (t)) + O t -1 v L 2 .
By the localization properties of ψ j , as t is large U is close to the soliton Q cj (• -x j (t)) on the support of ψ j and we have

H ′′ 2 (U ) + c j H ′′ 1 (U ) = H ′′ 2 (Q cj (• -x j (t)) + c j H ′′ 1 (Q cj (• -x j (t))) + O(e -c * t ). Since ∂ x Q cj (• -x j (t)
) is in the kernel of the above operator, this gives

∂ t ψ j v, Q cj (• -x j (t)) = O(t -1 2 v H 1 ).
From similar arguments, we may also obtain the result for the other orthogonality direction that we have chosen:

∂ t ψ j v, ∂ -1 x Λ cj Q cj (• -x j (t)) = O(t -1 2 v H 1 ).
Let j = 1, . . . , N . We have

∂ t H ′′ 2 (U )ψ j v, ψ j v = H ′′′ 2 (U )∂ t U ψ j v, ψ j v + 2 H ′′ 2 (U )ψ j v, ∂ t (ψ j v) = -6U ∂ t U ψ j v, ψ j v + 2 H ′′ 2 (U )ψ j v, ∂ t ψ j + 2 H ′′ 2 (U )ψ j v, ψ j ∂ t v .
We will keep the first term of the right hand side. The second term contains a time derivative of ψ, hence it will be of order t -1 2 . For the third term, we have

H ′′ 2 (U )ψ j v, ψ j ∂ t v = H ′′ 2 (U )ψ j v, ψ j ∂ x H ′′ 2 (U )v = -∂ x (H ′′ 2 (U )ψ j v), ψ j H ′′ 2 (U )v -H ′′ 2 (U )ψ j v, (∂ x ψ j )H ′′ 2 (U )v .
The second term contains a time derivative of ψ, hence it will be of order t -1 2 . For the first one, we proceed further:

∂ x (H ′′ 2 (U )ψ j v), ψ j H ′′ 2 (U )v = ∂ x (H ′′ 2 (U )ψ j v), H ′′ 2 (U )ψ j v -∂ x (H ′′ 2 (U )ψ j v), (∂ x ψ j ∂ x v + ∂ 2 x ψ j v) = -∂ x (H ′′ 2 (U )ψ j v), (∂ x ψ j ∂ x v + ∂ 2 x ψ j v) ,
and therefore this term is also of order t -1 2 . Summarizing, we have proved that

∂ t H ′′ 2 (U )ψ j v, ψ j v = -6U ∂ t U ψ j v, ψ j v + O ψ j v 2 H 1 √ t .
We may argue similarly to obtain

∂ t H ′′ 1 (U )ψ j v, ψ j v = -6U ∂ x U ψ j v, ψ j v + O ψ j v 2 H 1 √ t .
Hence, we have

∂ t ( H ′′ 2 (U )ψ j v, ψ j v + c j H ′′ 1 (U )ψ j v, ψ j v ) = -6U (U t + c j ∂ x U ) ψ j v, ψ j v + O ψ j v 2 H 1 √ t .
Recall that a 1-soliton U c verifies the following transport equation

∂ t U c + c∂ x U c = 0.
All we have left to do is to take into account the localizing factor that we have introduced. Since ψ j is centered around c j t, by assumption on U we have

(∂ t U + c j ∂ x U )ψ j = O e -c * t .
Therefore, using the coercivity property [START_REF] Germain | Asymptotic stability of solitons for mKdV[END_REF] we have for t large enough

∂ t ( H ′′ 2 (U )ψ j v, ψ j v + c j H ′′ 1 (U )ψ j v, ψ j v ) C √ t ( H ′′ 2 (U )ψ j v, ψ j v + c j H ′′ 1 (U )ψ j v, ψ j v ) ,
which gives

H ′′ 2 (U )ψ j v, ψ j v + c j H ′′ 1 (U )ψ j v, ψ j v e C √ t .
As a consequence, we have

v 2 H 1 N j=1 ψ j v 2 H 1 e C √ t , which implies (r(t), v(t)) L 2 = 0.
This concludes the proof.

Inertia Preservation

The tools presented in this section have been developed by Lax [START_REF] Lax | Periodic solutions of the KdV equation[END_REF], Lopes [START_REF] Lopes | A class of isoinertial one parameter families of selfadjoint operators[END_REF] and Neves and Lopes [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF]. The work of Neves and Lopes being devoted to the case of 2 solitons, we extended here their results to the case of N -solitons with N an arbitrary integer.

4.1. The Generalized Sylvester Law of Inertia. Let X be a real Hilbert space. We first define the inertia of a self-adjoint operator with positive essential spectrum. Definition 4.1. Let L : D(L) ⊂ X → X be a self-adjoint operator. Assume that there exists δ > 0 such that the spectrum of L in (-∞, δ) consists into a finite number of eigenvalues with finite geometric multiplicities. The inertia of L, denoted by Inertia(L), is the pair (n, z), where n is the number of negative eigenvalues of L (counted with geometric multiplicities) and z is the dimension of the kernel of L.

We first recall the generalized Sylvester law of inertia, which is the operator version of the eponymous law for matrices, and can be proved using the same line of arguments. Proposition 4.2 (Generalized Sylvester Law of Inertia). Let L : D(L) ⊂ X → X be a self-adjoint operator such that the inertia is well-defined, and let M be a bounded invertible operator. Then we have

Inertia(L) = Inertia(M LM t ),
where M LM t is the self-adjoint operator with domain (M t ) -1 (D(L)). 4.2. Iso-inertial Families of Operators. We will be working with linearized operators around a multi-soliton, which fit in the following more generic framework.

Consider the abstract evolution equation

∂ t u = f (u), (18) 
for u : R → X, and recall that the following framework was set in [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF][START_REF] Lopes | A class of isoinertial one parameter families of selfadjoint operators[END_REF][START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF]. Let X 2 ⊂ X 1 ⊂ X be Hilbert spaces and V : X 1 → R be such that the following assumptions are verified.

(H1) The spaces X 2 ⊂ X 1 ⊂ X are continuously embedded. The embedding from X 2 to X 1 is denoted by i. [START_REF] Greenberg | An oscillation method for fourth-order, selfadjoint, two-point boundary value problems with nonlinear eigenvalues[END_REF], we assume that there exists a self-adjoint operator L(t) : D(L) ⊂ X → X with domain D(L) independent of t such that for h, k ∈ Z, where Z ⊂ D(L)∩X 2 is a dense subspace of X, we have L(t)h, k = V ′′ (u(t))(h, k). We consider the operators B(t) : D(B) ⊂ X → X such that for any h ∈ Z we have

(H2) The functional V : X 1 → R is C 3 . (H3) The function f : X 2 → X 1 is C 2 . (H4) For any u ∈ X 2 , we have V ′ (i(u))f (u) = 0. Moreover, given u ∈ C 1 (R, X 1 ) ∩ C(R, X 2 ) a strong solution of
B(t)h = -f ′ (u(t))h,
and we have the following assumption.

(H5) The closed operators B(t) and B t (t) have a common domain D(B) which is independent of t. The Cauchy problems

∂ t u = B(t)u, ∂ t v = B t ( 
t)v are well-posed in X for positive and negative times. We then have the following result, which we recall without proofs (see the work of Lax [START_REF] Lax | Periodic solutions of the KdV equation[END_REF] or the work of Lopes [START_REF] Lopes | A class of isoinertial one parameter families of selfadjoint operators[END_REF]).

Proposition 4.3. Let u ∈ C 1 (R, X 1 ) ∩ C(R, X 2 )
be a strong solution of (18) and assume that (H1)-(H5) are satisfied. Then the following assertions hold.

• Invariance of the set of critical points. If there exists t 0 ∈ R such that V ′ (u(t 0 )) = 0, then V ′ (u(t)) = 0 for any t ∈ R. • Invariance of the inertia. Assume that u is such that V ′ (u(t)) = 0 for all t ∈ R. Then the inertia Inertia(L(t)) of the operator L(t) representing V ′′ (u(t)) is independent of t.

4.3.

Iso-inertia at Infinity. Given an t-dependent family of operators whose inertia we are interested in, Proposition 4.3 allows to choose for a specific t to perform the inertia calculation. This is however in most situations not sufficient, as we would like to let t go to infinity and relate the inertia of our family with the inertia of the asymptotic objects that we obtain. This is what is allowed in the following framework. Let X be a real Hilbert space. Let N ∈ N and (τ j n ) be sequences of isometries of X for j = 1, . . . , N . For brevity in notation, we denote the composition of an isometry τ k n and the inverse of τ j n by

τ k/j n = τ k n (τ j n ) -1 .
Therefore, we have τ j/k n P k τ k/j n P j p=1,...,P q=1,...,Q

τ j/k n ξ p k , ξ q j X
By assumption (A7), the right hand side goes to 0 as n → ∞. In addition, since P j has finite range and (A + B k -λ) -1 (I -P k ) is bounded, by assumption (A6), as n → ∞, we have

τ j/k n (A + B k -λ) -1 (I -P k )B k τ k/j n P j → 0, which proves our claim.
The first term in [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV[END_REF] will vanish as n → ∞ as we now show. By assumption (A4), the operator

A(A + B j -λ) -1 (I -P j )
is bounded (note that here assumption (A4) remains valid even if λ ∈ σ(A + B j ) as we are projecting out the spectral subspace associated with λ). By assumption (A8), the operator

B j A -1 A(A + B j -λ) -1 (I -P j )
is compact, which combined with assumption (A7) shows that as n → ∞ we have

τ j/k n P k τ k/j n B j (A + B j -λ) -1 (I -P j ) → 0.
Summarizing the previous analysis, we have shown that

lim n→∞ P n -(τ k n ) -1 P k τ k n - j=1,...,N j =k (τ j n ) -1 P j τ j n = 0.
Therefore, for n large enough we have

dim (Range (P n )) = j=1,...,N dim Range P j .
This concludes the proof.

Spectral Analysis

In the theory of stability of solitary waves (as developed e.g. in [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF][START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF] or more recently in [START_REF] De Bièvre | Orbital stability: analysis meets geometry[END_REF]), it is customary to use the coercivity properties of a linearized operator around the solitary wave to obtain the stability estimate. If the perturbation is set at the level of the solitary wave profile, the corresponding linearized operator is independent of time. When trying to adopt a similar strategy for multi-solitons, it is not possible to write the perturbation at the level of a profile independent of time and the linearized operator is necessarily time dependent.

The combination of two main arguments allows to overcome this difficulty. First, we have shown in Section 4 that a form of iso-spectrality holds for linearized operators around a multi-soliton, in the sense that the inertia (i.e. the number of negative eigenvalues and the dimension of the kernel, see Definition 4.1 below) is preserved along the time evolution. Second, at large time, the linearized operator can be viewed as a composition of several decoupled linearized operators around each of the soliton profiles composing the multi-soliton, and the spectrum of the multi-soliton linearized operator will converge to the union of the spectra of the linearized operators around each soliton.

5.1.

The auxiliary operators M c and M t c . Let c > 0 and consider the associated soliton profile Q c given in [START_REF] Benjamin | The stability of solitary waves[END_REF]. We introduce an auxiliary linear operator M c and its adjoint M t c , defined as follows:

M c , M t c : D(M c ) = D(M t c ) = H 1 (R) ⊂ L 2 (R) → L 2 (R), M c h(x) = h ′ (x) + √ c tanh( √ cx)h(x), M t c k(x) = -k ′ (x) + √ c tanh( √ cx)k(x). (23) 
The operators M c and M t c are linked with Q c by the following observation. Given h, k ∈ H 1 (R), we have

M c h = Q c ∂ x h Q c , M t c k = - 1 Q c ∂ x (Q c k). (24) 
The operators M c and M t c are linked to Darboux transformations and the factorization of Schrödinger operators. As such, their use is not limited to integrable equations and they appear in other contexts, see in particular [START_REF] Chang | Spectra of linearized operators for NLS solitary waves[END_REF]Section 3.2]. The auxiliary operators M c and M t c verify the following properties (see e.g. [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF]Lemma 5]).

Lemma 5.1. Let M c , M t c be given by [START_REF] Kapitula | On the stability of N -solitons in integrable systems[END_REF]. The following properties are verified. • The operators M c and M t c map odd functions on even functions and even functions on odd functions. • The null space of M c is spanned by Q c and M t c is injective. • The operator M c is surjective and the image of M t c is the L 2 (R)-subspace orthogonal to Q c . Proof. That M c and M t c map odd (resp. even) functions to even (resp. odd) functions is easily seen from their definition in [START_REF] Kapitula | On the stability of N -solitons in integrable systems[END_REF], using in particular the oddness of x → tanh(x).

Let h ∈ H 1 (R) be such that M c h = 0. From the expression of M c in terms of Q c given in [START_REF] Kato | Perturbation theory for linear operators[END_REF], this implies that h/Q c is constant, i.e. h is a multiple of Q c . Hence we indeed have ker(M c ) = span(Q c ).

Let k ∈ H 1 (R) be such that M t c k = 0. From the expression of M t c in terms of Q c given in [START_REF] Kato | Perturbation theory for linear operators[END_REF], this implies that Q c k is constant, i.e. k is a multiple of 1/Q c . However, 1/Q c does not belong to H 1 (R), hence k = 0. This gives the injectivity of M t c . From the preceding observations combined with the fact that M t c is the adjoint of M c , we have im

(M c ) = ker(M t c ) ⊥ = L 2 (R), im(M t c ) = ker(M c ) ⊥ = Q ⊥ c .
It remains to prove that both images are closed.

We start with im(M c ). Let g ∈ L 2 (R). We look for h ∈ H 1 (R) such that M c h = g. To this aim, we define the operator T by

T g(x) = Q c (x) x 0 g(y) Q c (y)
dy.

We clearly have

(T g) ′ - Q ′ c Q c T g = (T g) ′ + √ c tanh( √ cx)T g = g,
hence we only have to prove that (T g) ∈ L 2 (R) to prove that (T g) ∈ H 1 (R) and M c (T g) = g. We will prove the operator T is bounded in L 1 (R) and L ∞ (R) respectively, thus in L 2 (R) by interpolation. Recall the explicit expression of Q c given in ( 6):

Q c (x) = √ 2c sech( √ cx)
. Hence, we have

Q c (x) x 0 dy Q c (y) = 1 √ c sinh( √ cx) sech( √ cx) = 1 √ c tanh( √ cx)
and we see that T is bounded in L ∞ (R). We now prove that T is bounded in L 1 (R). Let a > 0 and g ∈ L 1 (R). By integration by parts, we have

a 0 Q c (x) x 0 |g(y)| Q c (y) dy dx = a 0 ∂ x - a x Q c (s)ds x 0 |g(y)| Q c (y) dy dx = 1 √ c a 0 arctan sinh( √ ca) -arctan sinh( √ cx) cosh( √ cx)|g(x)| dx = 1 √ c a 0 arctan sinh( √ ca) - π 2 + arctan 1 sinh( √ cx) cosh( √ cx)|g(x)| dx 1 √ c a 0 arctan 1 sinh( √ cx) cosh( √ cx)|g(x)| dx C a 0 |g(x)| dx,
where we have used the famous calculus formula arctan(x) + arctan

1 x = π 2 .
The case a < 0 can be treated in a similar way. This shows the boundedness of T in L 1 (R). By interpolation, T is also bounded in L 2 (R).

We now consider im(M t c ). Let g ∈ L 2 (R) be such that (g, Q c ) L 2 = 0. We look for k ∈ H 1 (R) such that M t c k = g. Using (24), we define

Sg = k(x) = - 1 Q c (x) x -∞ g(y)Q c (y) dy.
From similar arguments as before, the operator S is bounded in L 2 and verifies M t c Sg = g, which concludes the proof.

The operators M c and M t c have remarkable algebraic properties. We give the simplest ones in the following lemma.

Lemma 5.2. The following identities hold

M c M t c = -∂ 2 x + c, M t c M c = -∂ 2 x + c -Q 2 c , (25) 
M c (-∂ 2 x -2Q c ∂ -1 x (Q c ∂ x )) = (-∂ 2 x -Q 2 c )M c , (-∂ 2 x -Q 2 c )M t c = M t c (-∂ 2 x ), (26) 
M c Q c = 0, M t c Q c = -2(Q c ) x , (27) 
M c (xQ c ) = Q c , M t c (xQ c ) = -Q c -2x(Q c ) x . (28) 
Each of the identities of Lemma 5.2 may be obtain by elementary calculations. We omit the details here.

5.2. Spectra of linearized operators around 1-soliton profiles. Let N ∈ N and 0 < c 1 • • • c N . Denote by 1, λ N , . . . , λ 1 the coefficients of the polynomial whose roots are (-c j ) (see [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF]). Let S N be the corresponding functional defined in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF]. For any j = 1, . . . , N , define operators L N,j :

H N (R) ⊂ L 2 (R) → L 2 (R) by L N,j := S ′′ N (Q cj ).
For brevity, we use the notation M j := M cj , M t j := M t cj . The main interest of the auxiliary operators M j and M t j stems from the following result, which gives a ization of L N,j in terms of pure differential operators. Proposition 5.3. For any j = 1, . . . , N , the operator L N,j verifies the following factorization

M j L N,j M t j = M t j N k=1 (-∂ 2 x + c k ) M j .
The proof of Proposition 5.3 relies on several ingredients. We first prove the result for N = 1. Then we establish an iteration identity at the level of the conserved quantities linearized around soliton profiles and use it to factorize the operators L N,j . Finally, we obtain the conclusion by combining these elements with the properties of M j and M t j . We start with the case N = 1. By direct calculations, we have the following result (which has been used in particular in [START_REF] Wang | Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation[END_REF]).

Lemma 5.4. The operator L 1,1 is given by

L 1,1 = H ′′ 2 (Q c1 ) + c 1 H ′′ 1 (Q c1 ) = -∂ 2 x + c 1 -3Q 2 c1 .
The following operator identity holds:

M 1 L 1,1 M t 1 = M t 1 -∂ 2 x + c 1 M 1 . (29) 
Remark 5.5. It would also be possible to obtain by direct calculations the result for N = 2. However, even for N = 3 the calculations are becoming very intricate and it would not be reasonable to calculate by hand any further.

Lemma 5.6. Let Q c be a soliton profile of (mKdV) with speed c > 0 as given in [START_REF] Benjamin | The stability of solitary waves[END_REF]. For any n ∈ N, and for any z ∈ H n (R) we have

H ′′ n+1 (Q c )z = R(Q c )H ′′ n (Q c )z + (-1) n c n-1 Q 2 c z + 2Q c ∂ -1 x (Q ′ c z) , (30) 
where the recursion operator R(Q c ) is defined by

R(Q c ) = -∂ 2 x -2Q c ∂ -1 x (Q c ∂ x ).
Proof. The strategy of the proof is to linearize the recursion identity (4) around Q c . Let n ∈ N, n 1, and z ∈ H n (R). We have by differentiation of (4) around Q c at z the following identity:

∂ x H ′′ n+1 (Q c )z = K(Q c )(H ′′ n (Q c )z) + (K ′ (Q c )z) H ′ n (Q c ), where K ′ (Q c )z = -4Q c z∂ x -2z x ∂ -1 x (Q c ∂ x ) -2(Q c ) x ∂ -1
x (z∂ x ). Observe that the operator K(Q c ) might be rewritten in the following way [START_REF] Cazenave | Orbital stability of standing waves for some nonlinear Schrödinger equations[END_REF] satisfied by the 1-soliton profile Q c , we have

K(Q c ) = -∂ 3 x -2Q 2 c ∂ x -2(Q c ) x ∂ -1 x (Q c ∂ x ) = ∂ x -∂ 2 x -2Q c ∂ -1 x (Q c ∂ x ) = ∂ x R(Q c ) From the variational principle
H ′ n (Q c ) = (-c) n-1 H ′ 1 (Q c ) = (-c) n-1 Q c , hence (K ′ (Q c )z) H ′ n (Q c ) = (-c) n-1 (K ′ (Q c )z) Q c . Moreover, we have (K ′ (Q c )z) Q c = -4Q c (Q c ) x z -2z x ∂ -1 x (Q c (Q c ) x ) -2(Q c ) x ∂ -1 x (z(Q c ) x ) = -2Q c (Q c ) x z + Q 2 c z x -2 Q c (Q c ) x z + (Q c ) x ∂ -1 x (z(Q c ) x ) = -∂ x Q 2 c z + 2 Q c ∂ -1 x (z(Q c ) x ) .
Combining the previous identities and removing the ∂ x give the desired recursion identity and conclude the proof.

Lemma 5.7. Fix j = 1, . . . , N . The operator L N,j can be factorized in the following way:

L N,j =   N k=1,k =j (R(Q cj ) + c k )   (H ′′ 2 (Q cj ) + c j H ′′ 1 (Q cj )). (31) 
Proof. The proof proceeds by finite induction. Let k = 1, . . . , N , k = j. We have

L N,j = H ′′ N +1 (Q cj ) + N -1 l=1 λl H ′′ l+1 (Q cj ) + c k LN-1,j ,
where λl is obtained from λ l by removing all terms containing c k and

LN-1,j := S′′ N -1 (Q cj ) := H ′′ N -1 (Q cj ) + N -1 l=1 λl H ′′ l (Q cj ).
Writing more explicitly the coefficients λl :

λ1 = c 1 + • • • + c k-1 + c k+1 + • • • + c N , . . . , λN-1 = c 1 • • • c k-1 c k+1 • • • c N ,
we observe that (1, λ1 , . . . , λN-1 ) is the family of coefficients of the polynomial with roots -c 1 , . . . , -c k-1 , -c k+1 , . . . , -c N . We now use the recursion formula [START_REF] Lax | Integrals of nonlinear equations of evolution and solitary waves[END_REF] to obtain

H ′′ N +1 (Q cj ) + N -1 l=1 λl H ′′ l+1 (Q cj ) = R(Q cj ) H ′′ N (Q cj ) + N -1 l=1 λl H ′′ l (Q cj ) -(-c j ) N -1 + N -1 l=1 (-c j ) l-1 λl (Q 2 cj + 2Q cj ∂ -1 x ((Q cj ) x •) = R(Q cj ) LN-1,j ,
where we have used the fact that -c j is a root of the polynomial of coefficients 1, λ1 , . . . , λN-1 (recall that j = k). Gathering the previous calculations, we obtain the following formula:

L N,j = (R(Q cj ) + c k ) LN-1,j .
Iterating the process for any k = 1, . . . , N , k = j, we obtain the desired formula [START_REF] Lax | Periodic solutions of the KdV equation[END_REF].

With Lemmas 5.4, 5.6 and 5.7 in hand, we may now proceed to the proof of Proposition 5.3.

Proof of Proposition 5.3. Using successively (31), (26) (first equation), ( 29) and ( 26) (second equation) we have

M j L N,j M t j =   N k=1,k =j (-∂ 2 x -Q 2 cj + c k )   M j (H ′′ 2 (Q cj ) + c j H ′′ 1 (Q cj ))M t j =   N k=1,k =j (-∂ 2 x -Q 2 cj + c k )   M t j (-∂ 2 x + c j )M j = M t j N k=1 (-∂ 2 x + c k ) M j .
This concludes the proof.

Lemma 5.8. For j = 1, . . . , N , the operator L N,j verifies the following properties.

• The essential spectrum of L N,j is [c 1 • • • c N , ∞).
• If there does not exist k such that c k = c j , then we have the following.

-The operator L N,j has zero as a simple eigenvalue with eigenvector (Q cj ) x .

-If j is odd, then L N,j has exactly one negative eigenvalue.

-If j is even, then L N,j has no negative eigenvalue. • If there exists k such that c k = c j , then the operator L N,j has zero as a double eigenvalue with eigenvectors (Q cj ) x and ΛQ cj (see [START_REF] Le Coz | Fast-moving finite and infinite trains of solitons for nonlinear Schrödinger equations[END_REF]) and the rest of the spectrum is positive.

Remark 5.9. As a particular case of Lemma 5.8, we obtain the spectrum of the linearized operator L N,j around the 1-soliton with profile Q cj . This information might be used to obtain the nonlinear stability of 1-solitons of (mKdV) (see e.g. [START_REF] Bona | Stability of solitary waves in higher-order Sobolev spaces[END_REF]).

Proof of Lemma 5.8. Since Q cj is smooth and exponentially decaying, the operator L N,j is a compact perturbation of

N k=1 (-∂ 2 x + c k ).
From Weyl's Theorem, they share the same essential spectrum , which is

[c 1 • • • c N , ∞).
Given c > 0, introduce the scaling derivative ΛQ c , given by

ΛQ c := dQ c dc |c=c = 1 2c (Q c + x(Q c ) x ). (32) 
By construction, each soliton profile Q cj verifies the variational principle (15), i.e. S ′ N (Q cj ) = 0. Differentiating with respect to x and c j readily gives

L N,j (∂ x Q cj ) = 0, Using H ′ k (Q cj ) = (-c j ) k-1 H ′ 1 (Q cj ) = (-c j ) k-1 Q cj , we have L N,j ΛQ cj = - N k=1 ∂λ k ∂c j H ′ k (Q cj ) = - N k=1 ∂λ k ∂c j (-c j ) k-1 Q cj = -   N k=1,k =j (c k -c j )   Q cj .
Observe that if there is any k such that c k = c j , then ΛQ cj ∈ ker(L N,j ). These preliminary observations being made, we now proceed to the proof. Any z ∈ H N (R) might be decomposed orthogonally as

z = aQ cj + M t j g for a ∈ R and g ∈ H N +1 (R).
The operator L N,j preserves the symmetry (i.e. if z is even, then L N,j z is also even), hence it is natural to distinguish between two cases: z odd or z even.

We first treat the case where z is odd. In this case, a = 0 and (see Lemma 5.1) g is even. We have

L N,j z, z = L N,j M t j g, M t j g = M j L N,j M t j g, g = M t j N k=1 (-∂ 2 x + c k )M j g, g = N k=1 (-∂ 2 x + c k )M j g, M j g .
In particular, L N,j z, z > 0, unless M j g = 0, i.e. g is a multiple of )), and L N,j (∂ x Q cj ) = 0, this implies that 0 a simple (for odd functions) eigenvalue of L N,j , with associated eigenvector (∂ x Q cj ).

Q cj . Since M t j Q cj = -2(Q cj ) x (see ( 27 
We then treat the case where z is even. In this case, we may have a = 0 and (see Lemma 5.1) g is odd. Recall from [START_REF] Koch | Dispersive equations and nonlinear waves[END_REF] 

that M t j (xQ cj ) = -Q cj -2x(Q cj )
x . Therefore, we may rewrite z as

z = 4ac j ΛQ cj + M t j k, k = axQ cj + g. This gives L N,j z, z = 16a 2 c 2 j L N,j ΛQ cj , ΛQ cj + 8ac j L N,j ΛQ cj , M t j k + L N,j M t j k, M t j k = -16a 2 c 2 j   N k=1,k =j (c k -c j )   Q cj , ΛQ cj -8ac j   N k=1,k =j (c k -c j )   Q cj , M t j k + L N,j M t j k, M t j k = -16a 2 c 3 2 j   N k=1,k =j (c k -c j )   + N k=1 (-∂ 2 x + c k )M j k, M j k , (33) 
where we have used

Q cj , ΛQ cj = 1 2 d dc |c=cj Q c 2 L 2 = d dc |c=cj H 1 (Q c ) = d dc |c=cj (2 √ c) = 1 √ c j .
To proceed further, we distinguish between two cases. First, we assume that if k = j, then c k = c j . When j is even, since we have 0 < c 1 < • • • < c N , [START_REF] Coz | Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF] implies that L N,j z, z > 0 unless a = 0 and M t j k = 0, i.e. z = 0.

When j is odd, [START_REF] Coz | Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF] implies that L N,j z, z > 0 on the hyperplane {a = 0}, hence L N,j can have at most one nonnegative eigenvalue. Using ΛQ cj as a test function, we have

L N,j ΛQ cj , ΛQ cj = -c -1 2 j   N k=1,k =j (c k -c j )   < 0,
which implies the existence of a negative eigenvalue.

Finally, assume that there exists k = j such that c k = c j . In this case, [START_REF] Coz | Infinite soliton and kink-soliton trains for nonlinear Schrödinger equations[END_REF] implies that L N,j z, z > 0 unless M t j k = 0, i.e. z = 4ac j ΛQ cj , which makes ΛQ cj the unique possible direction for the 0 eigenvalue. This concludes the proof.

Stability of Multi-Solitons

This section is devoted to the proof of Theorem 1.1. To this aim, we will show that multi-solitons of (mKdV) verify a stability criterion established by Maddocks and Sachs [START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF]. Before stating the stability criterion, we introduce some notation. Recall that a N -soliton solution U (N ) (t, x) ≡ U (N ) (t, x; c, x) defined in ( 8) is a critical point of an associated action functional S N defined in [START_REF] Côte | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF].

In general, the N -soliton U (N ) is not a minimum of S N . At best, it is a constrained (and non-isolated) minimizer of the following variational problem min H N +1 (u) subject to H j (u) = H j (U (N ) ), j = 1, 2, ..., N.

We define the self-adjoint operator 

Then there exists C > 0 such that U (N ) is a non-degenerate unconstrained minimum of the augmented Lagrangian (Lyapunov function) AL defined by

AL(u) = S N (u) + C 2 N j=1 H j (u) -H j (U (N ) ) 2 .
As a consequence, U (N ) is nonlinearly stable.

Remark 6.2. The conclusion of Proposition 6.1 (nonlinear stability) is usually stated without proof in the literature (as in the original work of Maddocks and Sachs [START_REF] Maddocks | On the stability of KdV multi-solitons[END_REF]). We give here some elements of proof. First remark that the functional S N depends only on c and not on t or x. Hence, by construction of AL, any N -soliton with parameters c is a critical point of AL. Moreover, there exists γ > 0 ( which, as well as C, can be chosen independently of x) such that for any U In view of Proposition 6.1, to complete the proof of Theorem 1.1, it is sufficient to verify [START_REF] Coz | Stability of Multisolitons for the Derivative Nonlinear Schrödinger Equation[END_REF]. We start with the count of the number of positive eigenvalues of the Hessian matrix D. Proof. Let t be fixed. For notational convenience, we omit the dependency in t in the proof (as the result will be in any case independent of t). For any 1 i, j N , we have

D ij = ∂ 2 S N ∂λ i ∂λ j = N k=1 ∂c k ∂λ i ∂ ∂c k ∂S N ∂λ j = N k=1 ∂c k ∂λ i ∂H j ∂c k ,
where we have used the fact that ∂S N ∂λ j = S ′ N (U (N ) ), ∂U (N ) ∂λ j + H j (U (N ) ) = H j (U (N ) ).

We observe that D can be obtained as a product of two matrices:

D = AB, A = ∂c j ∂λ i , B = ∂H j ∂c i ,

L

  N := S ′′ N (U(N ) ) and denote by n(L N ) the number of negative eigenvalues of L N . Observe that the above defined objects are a priori time-dependent. We also define a N × N Hessian matrix byD := ∂ 2 S N (U (N ) ) ∂λ i ∂λ j ,and denote byp(D)the number of positive eigenvalues of D. Since S N is a conserved quantity for the flow of (mKdV), the matrix D is independent of t. The proof of Theorem 1.1 relies on the following theoretical result, which was obtained by Maddocks and Sachs [38, Lemma 2.3]. Proposition 6.1. Suppose that n(L N ) = p(D).

  •; x) and for any h ∈ H N (R) such that∇ x U (N ) c (t, •; x), h = 0, we have AL ′′ (U (N ) c (t, •; x))h, h > γ h 2 H N . Note here that In particular, for any u ∈ H N (R) such that inf x∈R N u -U (N ) c (t, •, x) H N < ε(as we already mentioned, the value of t is irrelevant here, as it is absorbed by the variations of x), for anyx u ∈ R N we have inf ) -AL(U (N ) c (t, •; x u )) .As a consequence of the preservation of AL by the (mKdV) flow, given an initial data u 0 sufficiently close to a N -soliton profile U c,x0 (0, cdot, x 0 ), the closeness to the N -solitons manifold with speeds c is preserved for all time: 0 ) -AL(U (N ) c (0, •; x 0 )) u 0 -U (N ) c (0, •; x 0 )

Lemma 6 . 3 .

 63 For all finite values of the parameters c, x with 0< c 1 < • • • < c N , we have p(D) = N + 1 2 .
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Let A, (B j ) j=1,...,N be linear operators and (R n ) be a sequence of linear operators. Define the sequences of operators based on (B j ) and (τ j n ) by B j n = (τ j n ) -1 B j τ j n . We will use the following notations: The resolvent set of an operator L will be denoted by ρ(L). We denote by P λ,ε (L) the spectral projection of L corresponding to the circle of center λ ∈ C and radius ε > 0. The range will be denoted by Range and the dimension by dim.

We make the following assumptions. (A1) For all j = 1, . . . , N and n ∈ N, the operators A, A + B j , A + B j n , A + N j=1 B j n + R n are self-adjoint with the same domain D(A). (A2) The operator A is invertible. For all j = 1, . . . , N and n ∈ N, the operator A commutes with τ j n (i.e. A = (τ j n ) -1 Aτ j n ). (A3) There exists δ > 0 such that for all j = 1, . . . , N and n ∈ N, the spectra of A, A + B j , A + B j n , A + N j=1 B j n + R n in (-∞, δ) consist into a finite number of eigenvalues with finite geometric multiplicities. (A4) For every λ ∈ ∩ N j=1 ρ(A + B j ) and for all j = 1, . . . , N the operators A(A + B j -λI) -1 are bounded. (A5) In the operator norm, R n A -1 → 0 as n → ∞. (A6) For all u ∈ D(A) and for all j, l = 1, . . . , N , j = l we have lim n→∞ τ j/l n B l τ l/j n u X → 0.

(A7) For all u ∈ X and for all j, k = 1, . . . , N , j = k, we have τ

We have the following result on the asymptotic behavior of the spectrum of L n as n goes to infinity.

Theorem 4.4. Assume that assumptions (A1)-(A8) hold and let λ < δ. The following assertions hold.

• If λ ∈ ∩ N j=1 ρ(A + B j ), then there exists n λ ∈ N such that for all n n λ we have λ ∈ ρ(L n ). • If λ ∈ ∪ N j=1 σ(A + B j ), then there exists ε 0 > 0 such that for all 0 < ε < ε 0 there exists n ε ∈ N such that for all n n ε we have

In our setting, we are interested in particular in the inertia of L n and we will make use of the following corollary.

Corollary 4.5. Under the assumptions of Theorem 4.4, if there exists n L such that for all n n L we have

then for all n n L we have

Moreover, a non-zero eigenvalue of L n cannot approach 0 as n → ∞. Theorem 4.4 and Corollary 4.5 were proved in [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF] in the case N = 2. We adapt here the proof of [START_REF] Neves | Orbital stability of double solitons for the Benjamin-Ono equation[END_REF] to handle the case of generic N ∈ N.

Proof of Theorem 4.4. We start by the first assertion. Let λ < δ be such that λ ∈ ∩ N j=1 ρ(A+B j ). By assumption (A3) λ can either be in the resolvent of L n or be an eigenvalue with finite multiplicity. Hence, to prove that λ ∈ ρ(L n ), it is sufficient to prove that u = 0 is the only solution to (L n -λI)u = 0. Assume therefore that there exists u ∈ D(A) such that

We remark here that since

) we may rewrite [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] for any k = 1, . . . , N as

We now use this equation recursively and replace the u after B j n by its expression in the right member (with k replaced by j) to obtain

We develop the right member of the previous equation to define the operator

Then u ∈ D(A) is a fixed point of W k n (λ). We aim at showing that the operator W k n can in fact be extended to a bounded operator which verifies W k n (λ) < 1 for n large. This will imply that u = 0. We first consider the operator

Since an operator and its adjoint share the same norm and all the operators that we are manipulating are symmetric by assumption, we have for any j, k, l = 1, . . . , N , k = j, j = l that

Since the τ j n are isometries, we have

Now, by assumption (A4), the family

n is uniformly bounded. By assumption (A8), the operator

is bounded. And finally, combining all these informations with assumption (A6), we have

The terms involving R n in W k n (λ) are taken care of by assumptions (A4) and (A5): as n → ∞, we have

In conclusion, we indeed have lim n→∞ W k n (λ) = 0, which implies that for n large enough u = 0 is the only solution of [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry[END_REF] and that λ ∈ ρ(L n ). This concludes the proof of the first part of Theorem 4.4.

We now prove the second part of Theorem 4.4. Let λ < δ be such that λ ∈ ∪ N j=1 σ(A + B j ). By isolatedness of the eigenvalues below δ, there exists ε 0 > 0 such that for all µ ∈ C verifying |λ -µ| ε 0 , µ = λ we have µ ∈ ∩ N j=1 ρ(A + B j ). Take now 0 < ε < ε 0 . By the first part, there exists n ε such that for all µ ∈ C verifying |λ -µ| = ε, µ = λ, we have µ ∈ ρ(L n ). We denote by Γ ⊂ C the circle centered at λ with radius ε. The corresponding spectral projection is then given by

We use a strategy similar to the one of the first part to express the resolvent (L n -µI

It is equivalent to

Since for all k = 1, . . . , N we have µ ∈ ρ(A + B k ), we may write

As in the first part, we use the equation recursively to replace the u after B j n to get

Using the operator W k n already defined in the first part (see ( 20)), we write

We already proved in the first part that lim n→∞ W k n (µ) = 0, therefore if n is large enough we may write u as the image of f by the following operator, therefore giving a new expression for the resolvent:

Let us define an approximate projection by

Since lim n→∞ W k n (µ) = 0, we have lim n→∞ P λ,ε (L n ) -P n = 0.

As P λ,ε (L n ) has finite dimensional range, this implies that for n large enough we have dim (Range (P λ,ε (L n ))) = dim (Range (P n )) .

We now analyze P n . The first term in the expression of P n is just

Moreover, we have dim Range(P λ,ε

. Remark here that it may very well be that λ ∈ σ(A + B k ) and P λ,ε (A + B k ) has null range.

For the second term in the expression of P n , we argue as follows. For j = k, we have

n . We will therefore analyze the operator

It is well-known (see e.g. [24, III. §6. 4. and V. §3. 5.]) that the resolvent of a self-adjoint operator U around an isolated eigenvalue λ verifies

where P λ is the orthogonal projection on the eigenspace corresponding to λ and U (µ) is holomorphic in µ and verifies U (λ) = 0. Applying this to A + B l for l = j, k, we get

where we have used the notation P l = P λ,ε (A + B l ) and U l (µ) is holomorphic in µ and verifies U l (λ) = 0. Consequently, we have

The residue of the operator Q n,k,j given by ( 21) at λ is thus given by

The second term in [START_REF] Holmer | Effective dynamics of double solitons for perturbed mKdV[END_REF] is treated in the following way. Since P j projects on the kernel of A + B j -λI, we have

n B j P j = -P j + τ j/k n P k τ k/j n P j + τ j/k n (A + B k -λ) -1 (I -P k )B k τ k/j n P j . We claim that, as n tends to infinity, only the term -P j will remain. Indeed, let (ξ p k ) p=1,...,P and (ξ q j ) q=1,...,Q be normalized bases for the (finite dimensional) subspaces on which P k and P j project. Given u ∈ X, we have

The value of H j is explicitly known (see [START_REF] Chang | Spectra of linearized operators for NLS solitary waves[END_REF]) for each Q cj composing the asymptotic form of the multi-soliton U (N ) . Therefore, we have

The value of c j in terms of the coefficients λ k cannot be easily expressed. However, we may express λ k in terms of c j using Vieta's formula [START_REF] Correia | Asymptotics in Fourier space of self-similar solutions to the modified Korteweg-de Vries equation[END_REF]. We therefore have an explicit expression for the inverse of A:

) t , and therefore, by Sylvester's law of inertia (see Proposition 4.2), the number of positive eigenvalues of D is the same as the number of positive eigenvalues for B(A -1 ) t , which turns out to be very simple. Indeed, the entries of the j-th column of (A -1 ) t are the coefficients of a polynomial whose roots are -c 1 , . . . , -c j-1 , -c j+1 , . . . , -c N and the entries of the i-th line of B can be rewritten as ( √ c j ) -1 (-c j ) j . Hence B(A -1 ) t is a diagonal matrix with diagonal entries given by (-1)

The number of positive entries is N + 1 2 , which is the desired result. Now we verify that n(L N ) is also equal to N +1

2

. In fact we can go further and we prove the following. Inertia(L N,j ).

Therefore, Lemma 6.4 is a direct consequence of the results of Section 5.2, in particular Lemma 5.8.