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The oscillatory behavior of cellular patterns produced by directional solidification of a transparent alloy under
microgravity conditions was recently observed to depend on the misorientation of the main crystal axis with
respect to the direction of the imposed thermal gradient [Pereda et al., Phys. Rev. E 95, 012803 (2017)]. To
characterize the oscillatory-nonoscillatory transition resulting from the variations of the crystal misorientation,
new experiments performed in DECLIC-DSI onboard the International Space Station and phase-field simulations
are analyzed and combined in the present study. Experimental results are extracted from movies showing regions
that extend on both sides of a boundary between two grains with respective misorientations of roughly 3 and 7
degrees. A set of tools are developed to analyze the experimental data and the same analysis is reproduced
for the numerical data. A number of points are addressed in the simulations, like the effects of the system
dimensions. The oscillatory state is found to be favored by the increase of the geometrical degrees of freedom. In
bulk samples, a good agreement is found between the experimental and the numerical oscillatory-nonoscillatory
threshold given by the ratio of the drift time to the oscillation period at the transition. The existence and the
origin of bursts of localized groups of oscillating cells within a globally nonoscillatory pattern are characterized.
A qualitative description of the physical mechanism that governs the oscillatory-nonoscillatory transition is
provided.
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I. INTRODUCTION27

In the recent decades, a number of solidification experi-28

ments led to spectacular oscillatory growth modes for both29

liquid crystals [1] and eutectic alloys [2,3]. Comparable oscil-30

latory patterns were also observed in directional solidification31

of succinonitrile-based diluted binary alloys [4–8]. In thin32

samples, the existence of a generic 2λ − O mode was reported33

and characterized by a large set of experimental and numerical34

data [4,5]. More recently, it was shown that these oscilla-35

tions result from a coherent interaction between the solute36

diffusion fields that surrounds two neighboring cell tips (first-37

neighbor correlations) [5]. In bulk samples, oscillating growth38

modes are more difficult to observe experimentally and their39

existence was not mentioned until recent experiments were40

performed under microgravity conditions in the DECLIC-DSI41

device. These experiments produced arrays of oscillating cells42

without global coherence but still displaying locally coherent43

oscillations with a π phase-shift in the case of local square44

ordering or a 2π/3 phase-shift in the case of local hexago-45

nal ordering [6–8]. These coherent spatiotemporal oscillating46

patterns are known to result from generic 2D bifurcations [9].47

Several studies based on numerical simulations of the cor-48

responding oscillation dynamics can be found in the literature.49

For thin samples, a first study using the one-sided phase field50

*Corresponding author: fatima.lisboa-mota@im2np.fr

model reported the onset of an oscillatory single structure 51

in an intermediate domain of spacings [10]. Subsequently, a 52

similar model was used in a dedicated study of 2λ − O mode 53

that gave rather quantitative agreement with the oscillations 54

existence domain and proposed a complete description of 55

the physical underlying mechanisms [5]. For bulk samples, 56

numerical studies first relied on amplitude equations [11–13], 57

later on the two-sided version of the phase-field formalism 58

applied to a model system [14], and even more recently on 59

the one-sided phase-field model parametrized with the actual 60

physical parameters of microgravity experiments [6–8]. These 61

simulations also generated π and 2π/3 oscillatory modes with 62

oscillation periods comparable to the experimental ones [6–8]. 63

In addition, they showed that, for a given alloy, oscillations 64

only exist in a limited domain of spacings, pulling velocities, 65

and temperature gradients. A recent analysis of a series of 66

DECLIC experimental data suggested that cell oscillations 67

also stop when the misorientation of the 〈100〉 crystal axis 68

with respect to the thermal gradient (parallel to the pulling 69

direction) becomes too large [8]. A criterion was proposed to 70

evaluate the critical inclination above which oscillations stop 71

and a rough estimate of this threshold was obtained [8]. The 72

main goal of the present paper is to more finely characterize 73

and quantify the threshold for this oscillatory-nonoscillatory 74

transition due to the crystal misorientation. This problematic 75

is attacked by applying a common methodology to analyze 76

new experimental and phase-field simulation data and by com- 77

paring the resulting informations. 78
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The present phase-field approach readily combines two79

numerical codes used in recent studies that considered crys-80

tal misorientation and oscillatory states separately. In both81

cases, solidification of a succinonitrile-acrylonitrile alloy was82

simulated in a thin sample and the simulation results were83

compared with experimental data [5,15]. On the one hand, re-84

garding the effects of the crystal misorientation, the numerical85

results [15] confirmed the orientational response law found86

experimentally [16,17]. Since this study focused on two spe-87

cific growth shapes, steady cells and seaweeds, no particular88

attention was paid to the possibility of oscillating structures.89

On the other hand, the study of a well-oriented 2λ − O oscilla-90

tory mode showed that quantitative results can be obtained for91

its existence domain and oscillation period [5]. This study also92

demonstrated the benefits that can be drawn from numerical93

data obtained for the concentration field, to follow the coupled94

dynamics of first-neighbor cells. Altogether, combining both95

approaches is thus expected to provide a reliable and pow-96

erful tool to explore the oscillatory-nonoscillatory transition97

of inclined cellular patterns in three-dimensional directional98

solidification.99

We report here on new experimental results and on numer-100

ical simulations of the oscillatory-nonoscillatory transition. A101

number of points are addressed, like a comparison between102

thin layer and bulk samples. So far, a direct experimental103

comparison could not be attempted between the two cases104

because a different solute was used, acrylonitrile in thin105

samples [4,16] and camphor in the bulk samples [6–8]. It106

is one nice feature of the present numerical simulations to107

give results that are obtained in both geometries for the same108

alloy (succinonitrile-camphor is considered here). This paper109

is organized as follows. Section II describes the experimental110

procedure and the main results obtained, while Sec. III gives111

the basic ingredients of the phase-field code used in the sim-112

ulations. Section III C is devoted to the thin layer samples.113

The results for the bulk samples are given and analyzed in114

Sec. III D. Finally, a discussion completed by our main con-115

clusions is provided in Sec. IV.116

II. EXPERIMENTAL117

A. Directional solidification experiments in DECLIC-DSI:118

Device, method, and parameters119

The experiment described in this article was realized within120

the directional solidification insert (DSI) of the device for121

the study of critical liquids and crystallization (DECLIC)122

developed by the French Space Agency (CNES) and in-123

stalled onboard the International Space Station (ISS). This124

device is dedicated to in situ and real-time characterization125

of the solid-liquid interface during directional solidification126

of bulk transparent alloys in diffusive transport conditions.127

Complete descriptions of DECLIC and DSI can be found else-128

where [18–20]. In DECLIC-DSI, a Bridgman furnace imposes129

a thermal gradient G in the interfacial area of the solidifying130

alloy contained in a glass crucible. Solidification is induced131

by pulling the crucible at constant rate Vp towards the cold132

side on the furnace. The interface is observed from the top,133

i.e., along the direction of solidification, thanks to a flat glass134

window at the bottom of the crucible and a lens immersed135

in the liquid at the top. The transparent organic alloy used136

TABLE I. Physical parameters of the succinonotrile-camphor
alloy of interest and control parameters imposed in the experiments.

Physical parameter Symbol Magnitude Unit

Liquidus slope m −1.365 K/wt%
Solute (camphor) concentration c∞ 0.24 wt%
Solute diffusion coefficient (liq.) D 270.0 μm2/s
Gibbs-Thomson coefficient � 0.06478 K μm
Partition coefficient k 0.07 −
Anisotropy strength ε4 0.011 −
Control parameter Symbol Magnitude Unit

Thermal gradient G 19 K/cm
Pulling velocity Vp 0.75 or 1.5 μm/s

is a succinonitrile (SCN)—0.24wt% camphor alloy prepared 137

using SCN purified by NASA by distillation and zone melting 138

(Table I). The cylindrical crucible has an inner diameter of 139

1 cm and a length that enables about 10 cm of solidification, 140

thus allowing the study of the interface pattern dynamics from 141

the onset of morphological instability to the microstructural 142

steady state. A single crystalline solid seed with a direction 143

〈100〉 parallel to the pulling axial direction was prepared on 144

ground and kept during all the experimental campaigns. Fur- 145

ther details about the experimental procedure can be found in 146

previous works [18–21]. 147

Top-view images are used to morphologically character- 148

ize the patterns developed during microgravity experiments. 149

Methods of analysis [8,22] start from the raw image where 150

a binary mask is created to identify and label each cell and 151

its center. Based on this image, a Voronoi tessellation reliably 152

finds the first neighbors at each instant of the solidification, so 153

that maps of the number of first neighbors can be drawn, to get 154

information on the quantity of topological defects in the pat- 155

tern. The Voronoi tessellation is used to calculate the primary 156

spacing which corresponds to the average of the center-to- 157

center distances between a cell and its first-neighbors. Each 158

cell is tracked from one image to the following one so that its 159

motion can be analyzed (trajectory, velocity), and elimination 160

or nucleation of new cells is evidenced. 161

During spatial experiments, two different values of gradi- 162

ents and a wide range of pulling rate, from 0.1 to 30 μm/s, 163

were used. We could therefore study various complex pat- 164

terns, from planar to cellular and dendritic. However, the 165

occurrence of oscillating cellular patterns is restricted to a 166

very limited range of experimental parameters which are 167

detailed in Ref. [8]. Most of the oscillating patterns are ob- 168

tained for G = 19 K/cm, and for Vp ranging between 0.5 169

and 1.5 μm/s. In this paper, we will deepen the analysis 170

of two solidification experiments for a temperature gradient 171

G = 19 K/cm, and pulling velocities Vp = 0.75 and 1.5 μm/s, 172

that yield oscillations of a cellular array, but also specifically 173

evidence the influence of misorientation on the oscillations 174

(Table I). As was explained in Ref. [8], for Vp = 1.0 and 175

0.5 μm/s, once oscillations start, they affect the whole inter- 176

face for the remainder of the experiment. For Vp = 0.75 and 177

1.5 μm/s, oscillations initially affect the whole interface but 178

after the sample is pulled by L � 30 mm, cells on the left side 179
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FIG. 1. Global view of the interface: (a) at t = 4.38 h (L =
24 mm) for Vp = 1.5 μm/s and (b) at t = 8.12 h (L = 22 mm) for
Vp = 0.75 μm/s and G = 19 K/cm. The red and blue squares (white
and black in the grayscale version) correspond to the analysis regions
on the left and right side of the interface, respectively.

of the interface stop oscillating, while oscillations continue180

on the right side [8]. The origin for the premature termination181

of the left-side oscillation is attributed to the consequences—182

in terms of pattern drift—of a misorientation of the growth183

direction in this area, as will be detailed in the next part. For184

Vp = 1.5 μm/s, oscillations on the right side also stop shortly185

after because the pulling velocity that keeps increasing due to186

transient growth reaches the limit of the existence domain of187

oscillations [8]: No oscillation appears for velocities higher188

than 1.5 μm/s.189

B. Evidence and characterization of growth misorientations190

Figure 1 shows a global view of the solid-liquid interface191

after about 20 mm of solidification for both pulling rates. For192

Vp = 1.5μm/s, a clear morphological difference is observed193

between the left region (red—or white—square) that displays194

inclined structures and the right region (blue—or black—195

square) that does not. The origin of inclined structures is a196

misalignment between the preferred growth direction 〈100〉197

and the pulling (thermal) axis [16,17]: the growth direction198

of a cell or dendrite rotates from the thermal gradient direc-199

tion at low velocity, to the closest 〈100〉 direction as pulling200

rate increases. This implies that the growth direction will201

be misoriented with respect to the pulling (thermal) axis if202

no 〈100〉 direction is perfectly aligned with this axis. If the203

misalignment between the preferred growth direction 〈100〉204

and the pulling (thermal) axis is large enough, then structures205

are tilted with respect to the optical axis, and we can distin-206

guish subgrains by visual inspection of the microstructure.207

The presence of at least one subboundary in Fig. 1 is clear208

for Vp = 1.5 μm/s. To confirm it, it is useful to analyze the209

cell trajectories: each subgrain is characterized by a collective210

cell drift of specific direction and amplitude, caused by its211

particular misalignment with the pulling (thermal) axis. For212

Vp = 1.5 μm/s, the cell drift velocities are mapped in Fig. 2,213

both in direction and module: On the left side of the interface,214

the drift velocity is almost twice higher than on the right215

side, confirming the presence of a subboundary. We may note216

that, in the lower left area, the drift directions are different217

from the ones in the upper left area, suggesting a second218

boundary that splits the left part into two subgrains. As we219

never remelted the initial single crystal of selected orientation220

FIG. 2. Maps of the apparent drift (a) direction and (b) velocity
of each cell (Vp = 1.5 μm/s, G = 19 K/cm, t = 4.62 h, L = 25 mm).

during the whole experimental campaign, the formation of 221

subboundaries is attributed to dislocation reorganizations into 222

subboundaries, and thus to a polygonization of the seed crys- 223

tal, due to successive thermal cycles. For Vp = 0.75 μm/s, it 224

is difficult to spot any subboundary from Fig. 1. Despite a 225

general heterogeneity on the right side, throughout the analy- 226

sis of cell trajectories, one clearly distinguish a group of cells 227

moving in the same direction and with the same velocity on 228

the left side of the interface, whereas on the right side the cells 229

are drifting with a velocity more than twice lower, confirming 230

the presence of the subboundary between left and right. 231

Focusing on the regions identified in Fig. 1, the mean 232

drift velocity evolution is shown in Figs. 3(a) and 3(c). The 233

amplitude of the drift velocity Vd can be used to estimate 234

the tilt angle θg between the growth velocity and the pulling 235

velocity, considering a macroscopically flat interface: 236

tan θg = Vd/Vp. (1)

FIG. 3. Evolution of (a), (c) the drift velocity and (b), (d) the
primary spacing as functions of the solidification time for the two
regions identified in Fig. 1: G = 19 K/cm; Vp = 1.5 μm/s (upper
panels); and Vp = 0.75 μm/s (lower panels).

002800-3
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FIG. 4. Typical time evolution of a cell, belonging to the left side
of the interface (stops oscillating), characterized by (a) its primary
spacing (blue curve), drift velocity (red curve), and (b) its apparent
surface area (green curve). The gray curve in (a) is the evolution of
the ratio ρ between the characteristic times of drift and oscillation.
The cyan (upper) curve in (b) corresponds to the upper envelope of
the apparent surface area. (Vp = 1.5 μm/s; G = 19 K/cm).

The growth angle θg varies relatively to θ0 as237

θg/θ0 = 1 − 1

1 + f Peg , (2)

where f and g are alloy-dependent constants, and the Péclet238

number Pe = (λVp)/D, with λ the primary spacing and D239

the solute diffusion coefficient [15–17,23]. Phase-field sim-240

ulations of perfectly hexagonal patterns with different angles241

θ0 lead to f = 0.67 and g = 1.47 (unpublished work). The242

time evolution of the average primary spacing is presented in243

Figs. 3(b) and 3(d) for the two selected regions: the morpho-244

logical difference also affects the primary spacing since the245

right region presents a primary spacing roughly 11% higher246

than the left region for Vp = 1.5 μm/s, and 4.5% higher for247

Vp = 0.75 μm/s. Based on the measurement of the average248

primary spacing and the corresponding average drift velocity,249

the misorientation angles θ0 are estimated for the right and250

left selected regions of the interface (Table II). It should be251

FIG. 5. Evolution of the apparent surface area for the cells
present in the (a) left and (b) right sides of the interface, for Vp =
1.5 μm/s and G = 19 K/cm. The insets represent colormaps of the
oscillation amplitude at the times given by the gray dotted lines,
where the light gray color represent A lower than 300 μm2 and red
(darker in the grayscale version) greater than 2500 μm2.

mentioned that for Vp = 0.75 μm/s a stationary-state was not 252

attained on either primary spacing or in drift velocity. This 253

is probably related to the fact that at Vp = 0.75 μm/s, the 254

interface is macroscopically convex. This curvature induces a 255

glide of cells along the interface slope from the center towards 256

the border, and the primary spacing evolution results from a 257

permanent balance between the cell stretching at the center 258

and the elimination at the border. The values at the end of 259

the solidification were used to estimate the misorientation 260

angles θ0. 261

C. Oscillation characterization 262

In top-view images, cells appear bright due to the light 263

guided through their body and the size of the bright area is 264

defined as the apparent surface area. The oscillation analyses 265

are based on the time evolution of the apparent cell area [8,22]. 266

For each of the cells previously identified inside the red 267

(white) and blue (black) square zones of Fig. 1, the apparent 268

surface area was followed as a function of the solidification 269

time. An example of the typical behavior of a cell that stops 270

oscillating is given in Fig. 4. The primary spacing presents 271

a small overshoot at the end of the coarsening stage and 272

then progressively increases till the end of the solidification. 273

The drift velocity increases to reach a stationary value after 274

4.5 h roughly. The oscillation amplitude increases to reach its 275

maximum after 2 h, it starts decreasing significantly after 3.3 h 276

and oscillations almost stop after 4.2 h. 277

The evolution curves of all the studied cells in the dif- 278

ferent areas of interest are superposed in Fig. 5. As seen in 279

Table II, the oscillation period τosc on the right side of the 280

interface (blue—or black—square) is slightly longer than the 281

one on the left side (red—or white—square) for both values 282

of Vp. The oscillation amplitude is much more important and 283

stable on the right than on the left side, where it seems to 284

progressively decrease, as evidenced by the colormap insets 285

in Fig. 5 for Vp = 1.5 μm/s. From Fig. 5, it is difficult to 286

determine the exact moment when oscillations stop. To clarify 287

this point, the upper envelope of each curve [for example, the 288

cyan—upper—curve in Fig. 4(b)] is extracted. At time t , the 289

envelope amplitudes are averaged over all the cells, giving 290

a curve Aav(t ). Dividing Aav(t ) by the curve maximum, one 291

obtains Ãav(t ) that oscillates between 0 and +1, as shown 292
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FIG. 6. Evolution of (a), (c) the apparent surface area and (b), (d)
the criterion parameter ρ = τdrift/τosc for the cells present in the left
and right sides of the interface: G = 19 K/cm; Vp = 1.5 μm/s (upper
panels) and Vp = 0.75 μm/s (lower panels).

in Figs. 6(a) and 6(c). A great difference can be seen in the293

mean amplitude curves obtained on both sides of the interface:294

on the left side, Ãav(t ) decreases smoothly to reach a steady295

value for both pulling rates. On the right side, the oscillation296

dynamics depends on the pulling velocity: for Vp = 1.5 μm/s,297

the amplitude remains significant, albeit quite variable, before298

starting to decrease after 4h to reach its minimum value at299

5.8 h; for Vp = 0.75 μm/s, the amplitude remains high. Based300

on the error associated with the apparent surface area mea-301

surement, we define a cutoff of 300 μm2 (gray dashed line)302

below which we consider that there is no oscillation. This303

roughly corresponds to the condition Ãav(t ) � 0.15. From the304

oscillation curves of Fig. 6, we estimated the time tstop when305

oscillations stop according to this cutoff (Table II). In our306

previous work [8], we came to the conclusion that the drift307

induced by growth misorientation inhibits oscillation when308

a threshold of drift velocity is reached. Drift and oscillation309

have their own dynamics, but the oscillation is based on a310

subtle evolution of the concentration field at the tip of the cell311

and adding a drift could affect the dynamics of oscillation by312

modification of this concentration field, and eventually inhibit313

it if the drift is too important. We defined a criterion based314

TABLE II. Pattern and oscillation characteristics measured in
experiments. s.d. corresponds to the standard deviation of τosc.

Vp (μm/s) 1.5 0.75

Interface region Left Right Left Right

θ0 (deg) 6.5 3.1 6.7 2.5
τosc 22.1 27.0 64.1 77.1
±s.d. (min) 1.6 2.0 9.5 8.7
tstop (h) 4.1 5.8 11.3 –
ρstop 2.3 N.A. 2.8 –

on the ratio of the characteristic times of oscillation and drift, 315

estimated, respectively, as the oscillation period and the time 316

necessary for a cell to glide over its width (ratio between the 317

primary spacing and the drift velocity), 318

ρ = τdrift

τosc
. (3)

Our previous analyses [8] based on the observation of the 319

experiments at Vp = 0.75 and 1.5 μm/s led us to propose 320

a possible threshold ρstop = 3.0 below which the oscillation 321

is inhibited. The evolution of this ratio for a cell is shown 322

in Fig. 4 (gray curve): at some point roughly corresponding 323

to a threshold ρstop = 1.7, the cell is no longer oscillating. 324

From that point on, the gray curve turned into dashed because 325

ρ is estimated using the oscillation period measured before 326

the oscillation stop. The time evolution of the average value 327

of ρ is represented in Figs. 6(b) and 6(d) for each region. 328

On the left side of the interface, for both pulling rates, the 329

curves start with a quite low value and constantly decrease 330

with the oscillation amplitude. The average values of ρstop 331

corresponding to the moment when the oscillations stop are 332

given in Table II. We should point out that in the previous 333

work, the values were estimated using the mean values of 334

primary spacing and drift velocity (Table II of Ref. [8]), while 335

in this work ρ is calculated for each cell (using its own 336

local primary spacing and drift velocity) at each time and 337

is therefore more precisely determined [Fig. 6(b)]. On the 338

right side of the interface, the parameter ρ is always higher 339

than its value on the left side, thus justifying a more robust 340

oscillations. For Vp = 1.5 μm/s, the oscillation stops after 341

roughly 6 h, even if the parameter ρ is high. However, as 342

was demonstrated experimentally and numerically in [8], the 343

range of experimental parameters over which the oscillation 344

can develop is limited. Especially, in our case, oscillation 345

occurs for a velocity range of 2 < Vp/Vc < 6 (Vc being the 346

critical velocity for planar interface destabilization). Close to 347

the upper limit of this velocity range, oscillations occur only 348

during the transient growth stage. The oscillation stops on 349

the right side of the interface for Vp = 1.5 μm/s because the 350

interface velocity attains the upper limit of velocity range to 351

get oscillations. This is why in Table II we consider ρstop as 352

nonapplicable (N.A.). 353

III. PHASE-FIELD 354

Two decades ago, Alain Karma and coworkers introduced 355

the thin interface phase-field model (TIPM) to simulate the 356

solidification of a pure substance [24,25]. This model was 357

extended later to the case of a dilute binary alloy [26,27]. 358

Since, many examples of 3D simulations of alloy solidifica- 359

tion that give quantitative agreement with the experiments 360

were reported [5–8,15,28,29], following K. Glasner, we re- 361

place the usual phase-field ϕ ∈ [−1, 1] by the preconditioned 362

phase-field 363

ψ =
√

2 tanh−1(ϕ), (4)

which is a signed distance from the interface, ψ ∈ 364

(−∞,+∞) [30]. This transformation significantly reduces 365

the numerical effort because a larger nondimensional mesh 366

size can be used without affecting the numerical accu- 367
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racy [30]. The code is made even faster by using graphics368

processing unit (GPU) parallel programming [6–8,31,32]. We369

now recall the main lines of the model. More details can be370

found elsewhere [5,15].371

A. Evolution equations372

In the TIPM, the solid-liquid interface has a finite width373

W0 [24,25]. For rough materials like succinonitrile, the kinetic374

coefficient can be safely set to zero. To ensure this, the time375

unit must verify the condition τ0 = a0W 3
0 /(Dd0), where d0 is376

the capillary length, D the solute diffusion constant in the liq-377

uid phase, and a0 � 0.5539 [24,25]. In the following, lengths378

and times are, respectively, divided by W0 and τ0, which leads379

to the following nondimensional evolution equation for ψ :380

(1 − βkz∗)a2
s

∂ψ

∂t
=

√
2[ϕ − C(1 − ϕ2)(U + z∗)]

+ a2
s [∇2ψ −

√
2ϕ( 
∇ψ )2]

+ 2as 
∇as 
∇ψ +
√

2

(1 − ϕ2)

∇ 
A, (5)

with βk = (1 − k), k being the partition coefficient. Here, the381

nondimensional concentration field U is related to the physi-382

cal concentration field c by383

c = c∞
k

(1 + βkU )

(
αk − βkϕ

2

)
, (6)

where αk = (1 + k), and the additional term βkz∗ on the left-384

hand side of Eq. (5) is introduced to reduce higher order385

corrections that appear in the asymptotic expansion of the386

phase-field equations [27]. The nondimensional variable z∗ is387

defined as388

z∗ = [z + zs(t ) − V t]/lT , (7)

where389

lT = mc∞(k − 1)/(kG) (8)

is the thermal length. The quantity V t − zs is a small vertical390

offset that becomes constant (up to one mesh size) at large391

times [5]. For our rough material, the constant that couples392

the nondimensional concentration field U to the phase-field is393

C = 75D∗/47, with D∗ = Dτ0/W 2
0 [25].394

In Eq. (5), both as and 
A depend on the crystal anisotropy.395

In the present study we consider the situation where the crystal396

axes X,Y, Z are rotated with respect to the axes x, y, z of397

the computational domain that has the shape of a rectan-398

gular parallelepiped. The vertical axis z gives the direction399

of the imposed temperature gradient, x is the coordinate400

along the domain width and y lies along the domain thickness.401

Three rotation angles are needed in general, but we consider402

here a simple rotation of the [100] and [001] crystal axes about403

the y = Y = [010] crystal axis, by an angle θ0. In the X,Y, Z404

reference frame, the anisotropy function has the usual form405

for cubic crystals [33],406

as = (1 − 3ε4) + 4ε4
(
n4

X + n4
Y + n4

Z

)
, (9)

where nX , nY , nZ are the components of unit vector 
n and ε4407

is the anisotropy strength. Then, the three components of the408

anisotropy vector 
A are 409

Aν = 16ε4
(1 − ϕ2)√

2
| 
∇ψ |as nν

[(
n4

X + n4
Y + n4

Z

) − n2
ν

]
, (10)

where ν = X,Y, Z . The numerical calculations are actually 410

performed in the domain reference frame, x, y, z, and they 411

make use of the very simple transformation equations between 412

the two frames of reference: 413

nX = sin θ0 nx + cos θ0 nz,

nY = ny, (11)

nZ = cos θ0 nx − sin θ0 nz.

We use the one-sided model that neglects solute diffusion 414

in the solid. Following Refs. [26,27], a corrective solute cur- 415

rent 416


jat = W0

2
√

2

c∞
k

βkγ 
n, (12)

with c∞ the nominal solute concentration, is used to avoid 417

artificial solute trapping and other spurious corrections due to 418

the finite interface thickness W0. Here, 419

γ = 1 − ϕ2

√
2

(1 + βkU )
∂ψ

∂t
. (13)

The evolution equation for the nondimensional concentration 420

field U is then [26,27] 421

(αk − βkϕ)
∂U

∂t
= (1 − ϕ)D∗ ∇2U

− (1 − ϕ2)√
2

D∗ 
∇ψ 
∇U

− 1√
2


n 
∇γ + γ

(
1 − 
∇
n√

2

)
. (14)

B. Parameters and conditions imposed 422

Along the y direction (sample thickness), no-flux bound- 423

ary conditions are imposed on U and ψ . Periodic boundary 424

conditions are imposed on U and ψ in the x direction (sample 425

width) because the cellular pattern is expected to constantly 426

drift due to the crystal misorientation. Along z, the bound- 427

ary conditions are no-flux at the bottom of the domain and 428

U = −1.0 at its top. In addition, the fields ψ and U are shifted 429

when needed to keep the interface roughly at the same vertical 430

location in the simulation domain. 431

The initial condition is a flat interface that is per- 432

turbed by a random spatiotemporal noise of weak ampli- 433

tude [6–8,15,34,35] for a moderate time (1000 s in most 434

simulations). Beyond that time, the spatiotemporal noise is 435

turned off. To avoid numerical divergences due to the very fast 436

destabilization of the flat interface, simulations usually start 437

with a rather high value of the temperature gradient (typically 438

G = 80 K/cm). This value is lowered to reach the nominal 439

imposed value (G = 30 K/cm) in about 1000 s. The numerical 440

interface parameter ξ = W0/d0 is taken sufficiently small that 441

good convergence of the simulation results with diminishing 442

interface width is ensured [5,15]. 443
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TABLE III. Control and numerical parameters used in the
simulations.

Control parameter Symbol Magnitude Unit

Thermal gradient G 30 K/cm
Pulling velocity Vp 1.5 μm/s

Numerical parameter Expression Value

Convergence W0/d0 160.0
Grid spacing δs/W0 1.2

The control and numerical parameters used in the simu-444

lations are gathered in Table III. The values of G and Vp445

reported in this table should not be directly associated with the446

corresponding values of the experimental control parameters447

(Table I). Indeed, in recent studies, it has been repeatedly448

observed that a systematic shift between the numerical and449

experimental conditions must be made to obtain comparable450

dynamical behaviors [7,8].451

To scan the growth dynamics as a function of the [001]452

crystal axis inclination, the misorientation angle θ0 is varied453

in the simulations, according to a predefined linear ramp. A454

typical time evolution imposed on θ0 is represented in Fig. 7.455

Misorientation is initially set to zero for a time (8000 s) suf-456

ficient for the system to leave the transient regime, then θ0 is457

increased linearly until a time (28 000 s) when a prescribed458

maximum inclination (10 deg) is reached. After that, θ0 is de-459

creased symmetrically and, when zero inclination is reached460

again (48 000 s), a more or less long time is still simulated. As461

seen in Fig. 7, the variations of θ0 are taken sufficiently slow462

that the cell drift velocity follows them without noticeable463

delay. Small differences that appear can be mainly attributed464

to numerical approximations made to extract the cell drift465

velocity from an upper view of the system and also to the466

FIG. 7. Transition from the 2λ − O oscillatory to a nonoscil-
latory mode in the narrow thin sample. Time evolution of the
inclination angle θ0 (straight lines), of the average drift velocity Vd

(symbols), and of the apparent surface areas of the two cells (curves).
The inset is a closer view of the latter in the region delimited by the
rectangular on the left side of the figure.

TABLE IV. Domain size and oscillation characteristics measured
in the numerical simulations without spatiotemporal noise. Errors on
τosc are about 1.0 min.

Sample Thin narrow Thin wide Bulk

Section area (μm2) 240.0×60.0 1143.1×60.0 748.7×748.7
τosc (min) 12.0 14.0 13.0
θ0,stop(deg) 2.2 8.1 15.1
tstop (h) 3.45 6.75 6.45
ρstop 7.7 1.9 1.4

small number of cells involved here (two). The agreement 467

further improves in large bulk samples. 468

C. Numerical simulations in thin samples 469

As mentioned previously, the present simulation code 470

is based on earlier numerical studies of directional so- 471

lidification of an acrylonitrile-succinonitrile alloy in thin 472

samples [5,15]. To make contact with the microgravity ex- 473

periments considered here, we now replace this alloy with 474

the camphor-succinonitrile alloy that is used in DECLIC and 475

we first perform numerical simulations in the thin sample 476

geometry. Experimental estimates of camphor-succinonitrile 477

physical parameters are listed in Table I. The control and 478

numerical parameters used in the simulations are those of 479

Table III. The numerical domain is approximately 2143.3 μm 480

in height (z axis) and 60.0 μm in thickness (y axis). Two 481

widths (x axis) are considered: 240.0 μm for the narrow do- 482

main that contains a pair of cells and 1143.1 μm for the wide 483

domain that contains about ten cells. The main oscillation 484

characteristics estimated from the numerical data described in 485

this section and the next one are gathered in Table IV. 486

We first consider simulations in the narrow system. Two 487

cells form and oscillate in phase opposition (2λ − O mode) 488

with a period τosc = 12 ± 1 min (see Table IV), a value very 489

close to that found previously for 2π/3 oscillations for the 490

same parameters [8]. The small sensitivity of the oscilla- 491

tion period to the actual oscillation mode was already noted 492

previously, and it is confirmed here for the 2λ − O mode. 493

For this small system, the existence of a well-defined static 494

threshold between oscillatory and nonoscillatory states can 495

be addressed, provided that only two cells coexist and fixed 496

misorientations θ0 are considered. As we will see later, there 497

is no simple answer to this question when many cells coexist 498

because oscillations are strongly affected by local rearrange- 499

ments that constantly occur in the cellular array. As seen here 500

and in the next paragraph, differences in the initial conditions 501

(shape and/or imposed noise) and in the inclination (fixed 502

versus variable) may also result in different thresholds for 503

the present thin system. To locate the static threshold, we 504

impose a constant misorientation θ0 and we start with a thin 505

domain of width slightly smaller than half that of the final 506

domain. A single inclined cell with a steady growth velocity 507

is then obtained. This cell is slightly dilated and copied twice 508

in the final domain that has the necessary width for the 2λ − O 509

mode to exist (240.0 μm). Growth is resumed from there, with 510

a small spatiotemporal noise imposed during a short initial 511

time length (100 s). Figure 8 shows the obtained oscillation 512
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FIG. 8. Evolution of the oscillation amplitude as a function of
fixed inclination angles θ0 in a thin narrow domain.

amplitudes Ã as a function of fixed misorientation angles θ0.513

Clearly, Ã decreases below the cutoff experimental amplitude514

0.15 for a static threshold θ0,static � 4.5 deg. This result com-515

pares well with but is not equal to the dynamic thresholds516

θ0,stop, as we see now.517

We now turn to the simulations with a variable misorien-518

tation, as described at the end of Sec. III B. The oscillations519

survive after the misorientation has started to increase, until520

a value θ0,stop � 2.2 deg is reached; at higher misorientations,521

the cells do not oscillate any more. Figure 9(a) represents the522

time evolution of θ0, ρ, and Ãav. Using the experimental cutoff523

for oscillation detection, Ãav = 0.15, one sees that oscillations524

stop for ρstop � 7.7. The oscillations do not resume during the525

decrease of θ0, as could be expected. This is rather predictable526

because there is little possibility of size fluctuations in such527

a small system and because the noise is turned down at that528

time. However, keeping the spatiotemporal noise during the529

whole simulation shows that oscillations resume roughly for530

ρstart � ρstop when θ0 is decreased [see Fig. 9(b)]. The ampli-531

tude of the noise imposed on the phase-field ψ at each time532

step is F0 = 5.0×10−4. We observe then more irregular varia-533

tions of Ãav(t ), and obtain a lower (but less accurate) estimate534

of the oscillatory-non oscillatory threshold, ρstop � 5.2, while535

θ0,stop � 3.8 deg which is closer to θ0,static. Thus, the imposed536

spatiotemporal noise induces sufficient disorder in the system537

to trigger oscillations. From now on, we will consider larger538

systems that contain tens of cells. In these large systems, the539

size and local environment varies from cell to cell. Due to540

this geometrical disorder, oscillations start and stop sponta-541

neously, and so, except for the initial phase, spatiotemporal542

noise is set to zero in the following.543

We now turn to the wide system that consists of about544

ten cells arranged in a thin layer [Fig. 10(a)]. Figure 10(b)545

represents the time evolution of θ0, ρ, and Ãav. The estimated546

oscillation period is τosc = 14 ± 1 min for this simulation (see547

Table IV). As just discussed, oscillations are more likely to548

start and stop, as compared to the narrow system, because549

cell spacings and shapes now vary significantly in time and550

space. For this reason, one sees that oscillations resume at late551

FIG. 9. Time evolution of the oscillation characteristics obtained
by numerical simulations in a thin narrow domain: (a) without im-
posing spatiotemporal noise and (b) imposing a spatiotemporal noise
of amplitude F0 = 5.0×10−4. Normalized average apparent surface
area Ãav, thicker and darker curve; Inclinaiton angle θ0, straight line;
Ratio of characteristic times of oscillation and drift ρ, light gray
curve.

times, far on the right side of the figure. Oscillations do not 552

reappear earlier because no spatiotemporal noise is imposed 553

and because the confinement due to the very small sample 554

thickness does not allow much rearrangement of the cells in 555

the transverse direction. A much stronger effect indeed results 556

from the local ordering of neighbor cells in the bulk samples 557

studied in DECLIC experiments. To take local ordering of 558

the cellular array into account in the phase-field numerical 559

simulations, we now consider the cellular pattern evolution 560

in extended domains. 561

D. Numerical simulations in bulk samples 562

Simulations in bulk systems are performed in domains with 563

a square xy cross section of area 748.7×748.7 μm2 and a 564

depth z of 2143.3 μm. Since local ordering is expected to 565

fluctuate in time and space, with noticeable repercussions on 566

the solidification dynamics, we opt to perform a series of 4 567

simulations that differ only by their initial condition (a dif- 568

ferent seed for the random number generator). The amplitude 569
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(a)

FIG. 10. Numerical simulations in a thin wide domain. (a) Snap-
shot of the system showing the solidification cells (ψ = 0 contour) at
time t = 57 000 s when oscillations start again. (b) Time evolution of
the oscillation characteristics. Normalized average apparent surface
area Ãav, thicker and darker curve; inclinaiton angle θ0, straight line;
ratio of characteristic times of oscillation and drift ρ, light gray
curve.

curves of all the cells in the domain are displayed in Fig. 11570

for these four different simulations.571

As expected, the oscillations in the four simulations are572

different but all the curves share the common trend for os-573

cillatory states to disappear at some point during the crystal574

misorientation increase and to reappear at some point during575

its decrease. In the central, nonoscillatory domain, bursts of576

a few oscillating cells appear at times. One will see later that577

FIG. 11. Time evolution of the cell apparent surface area in four
independent simulations of a bulk system.

FIG. 12. Time evolution of the oscillation characteristics aver-
aged over four independent numerical simulations in a bulk domain.
Normalized average apparent surface area Ãav, thicker and darker
curve; inclination angle θ0, straight line; ratio of characteristic times
of oscillation and drift ρ, light gray curve.

bursts result from local interactions within small groups of a 578

few neighboring cells. The four amplitude curves of Fig. 11 579

are summed up and the resulting amplitude is again divided 580

by its maximum value to get Ãav. A similar average is made to 581

obtain the oscillation parameter ρ. The curves giving Ãav(t ) 582

and ρ(t ) are displayed in Fig. 12, together with the curve 583

θ0(t ). It should be noted that the highest misorientation ex- 584

plored in this series of simulations is 20 degrees (instead of 585

10 degrees in the thin sample simulations) because the larger 586

fluctuations in the cellular array that result from an increase 587

of the degrees of freedom in the sample thickness make it 588

less likely for a given cell to stop oscillating. From the curves 589

displayed in Fig. 12, one obtains the estimate ρstop = 1.4 for 590

the oscillatory-nonoscillatory transition threshold. This result 591

quantitatively agrees with the one predicted by the analysis of 592

our experimental data (see Sec. II C). 593

In these bulk sample simulations, we obtain an oscillation 594

period τosc = 13 ± 1 min. Within the error bars, this estimate 595

is compatible with the ones found above in thin systems 596

(both narrow and wide) and, as already mentioned, is also 597

compatible with the estimate obtained previously for a well 598

ordered hexagonal array of oscillating cells [8]. This suggests 599

that all the cells basically behave as oscillators with identical 600

natural periods but that global and local geometrical con- 601

straints influence their actual oscillatory state via short range 602

couplings that slightly modify the oscillation periods from 603

one cell to another. Quantifying this picture would further 604

require a close analysis of the concentration field that mediates 605

the cell-to-cell interactions resulting from a subtle feedback 606

between individual cell shapes, local ordering of the cellular 607

array, and local solute fluxes. Such a complete analysis was 608

recently proposed in the case of the 2λ − O mode in thin 609

samples [5] but we will not attempt to generalize it to the more 610

complex geometries encountered here. 611

To investigate the origin of the previously mentioned os- 612

cillation bursts that occur during the nonoscillatory (high 613

misorientation) regime, we found that the cells presenting 614

002800-9



FATIMA L. MOTA et al. PHYSICAL REVIEW E 00, 002800 (2020)

FIG. 13. Temporal sequence showing the evolution of a local
group of 5 cells: (a) unstable group and (b) stable group. Both cell
groups relate to the lower right panel of Fig. 11, where the time
interval considered is shaded in gray.

this behavior are first neighbors and we focused on the time615

evolution of a group of five cells [Fig. 13(a)]. The spatial616

organization of this group, termed unstable, changes in time:617

two cells that were initially not in contact with the central cell618

have drifted faster and pushed their way to become part of the619

group at the end of the sequence. As a consequence, several620

cells have started rather strong oscillations as evidenced by621

the time evolution of the normalized cell surface areas Ã(t )622

[Fig. 14(a)]. The three highest oscillation amplitudes (green,623

blue, red cells) roughly occur when the two extra white cells624

make contact with the group.625

In the close neighborhood of the unstable group, we626

found another group of five cells, termed stable, which keeps627

roughly its initial spatial organization throughout the time628

sequence [Fig. 13(b)]. As a result, the influence of the second629

neighbor cells remains rather low and the cells of the group630

do not start oscillating [Fig. 14(b)]. All the curves remain631

below the cutoff value of 0.15, except for one that slightly632

increases beyond 0.15 at intermediate times (cyan curve). The633

corresponding cell is initially shared in common with the first634

group (cyan cell). This explains its marginal behavior that635

offers a compromise between the nonoscillatory state of the636

second group and the oscillatory state of the first.637

FIG. 14. Time evolution of the normalized cell surface areas Ã(t )
(curves) for (a) the unstable group of cells shown in Fig. 13(a), and
(b) the stable group of cells shown in Fig. 13(b). The five times
represented in the temporal sequences of Fig. 13 are marked by inner
ticks labeled from 1 to 5. Inclination angle θ0, straight line.

According to the previous remarks, one can infer that the 638

local rearrangements that occur in the cellular pattern induce 639

temporal variations of the cell-to-cell couplings in a given 640

group. The cell oscillation periods are not much affected by 641

these changes as already noticed but the oscillation amplitudes 642

and phases are much more sensitive to the details of the 643

couplings, thus to the local symmetries. This sensitivity is 644

probably at the origin of the coexistence of the oscillatory and 645

nonoscillatory dynamics of cell groups, and thus to the bursts 646

observed here. 647

IV. SUMMARY AND DISCUSSION 648

In the present paper, we have combined new experimen- 649

tal and numerical results to characterize more accurately the 650

oscillatory-nonoscillatory transition in cellular patterns result- 651

ing from the solidification of a binary alloy under purely 652

diffusive conditions. 653

The experimental study has been described in Sec. II. 654

Directional solidification experiments using a succinonitrile- 655

camphor alloy have been carried out in the DECLIC-DSI 656

facility installed on board the International Space Station as 657

part of a joint research program between CNES and NASA. 658
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The diffusive growth mode provided by the microgravity con-659

ditions allows to observe the dynamics of extended oscillating660

cellular patterns. Oscillations, observed in a narrow range661

of growth parameters, are manifested as a periodic varia-662

tion of the apparent area of cells under top-view interface663

observation. We deepen here the analysis of two particular664

experiments (Vp = 0.75 and 1.5μm/s, G = 19 K/cm), char-665

acterized by the existence of two subgrains with different666

misorientations with respect to the thermal gradient, where667

the oscillation is only transient in one of the subgrains while668

it continues in the other. The experiments demonstrate a669

threshold for the drift velocity of the pattern beyond which os-670

cillations are inhibited. This leads us to propose a criterion for671

the oscillation inhibition that is based on the ratio ρ between672

the characteristic drift time and the oscillation period. We find673

that the threshold value that corresponds to the moment when674

the oscillations stop falls within the range ρ
exp
stop � 2.3–2.8.675

The numerical study has been presented in Sec. III. It is676

focused on the effect of the misorientation angle θ0 on the677

cellular pattern dynamics (oscillatory vs nonoscillatory). In678

the simulations, θ0 is varied linearly in time, first increasing,679

then decreasing. We consider systems with different shapes680

and sizes to compare thin versus thick samples and narrow681

versus wide ones. In both cases, we find that increasing the682

system dimensions favors the onset of oscillations, especially683

in thin samples. Altogether, we find that the oscillation period684

is little affected by global and local geometrical constraints685

but that it is not the case for oscillation amplitudes, phase686

shifts, and velocity drifts that show significant sensitivity to687

theses constraints. As a result, bursts of oscillatory cell groups688

are observed to appear in bulk systems, even for the highest689

misorientation that definitely favors nonoscillatory behav-690

ior. Although a direct comparison between the experimental691

and numerical studies cannot be made because the corre-692

sponding control parameters differ, we obtain a reasonable693

agreement between the oscillatory-nonoscillatory thresholds694

ρ
exp
stop � 2.3–2.8 and ρnum

stop � 1.4 in bulk systems.695

A few points have not been mentioned in the body of the696

paper that nevertheless warrant further study and/or discus-697

sion. First, the existence of a well defined threshold value for ρ698

is legitimately questionable. The transition from a dynamical 699

state to another one necessarily involves a characteristic time 700

that is required by the concentration field to settle cooperative 701

concentration fluxes between neighbor cells or to turn them 702

uncooperative. If a threshold can still be defined, then it cannot 703

be a static threshold as it is the case in most phase transitions. 704

Also, a threshold must be defined statistically, which requires 705

averaging it over many simulations/experiments. This prelim- 706

inary study obviously does not fulfill the last requirement, so 707

our results for ρstop are rather rough estimates of the threshold. 708

Second, there exists another threshold, ρres, that corresponds 709

to oscillations resuming, after the nonoscillatory intermediate 710

regime, when the misorientation angle is decreased. At first 711

glance one can expect that ρres = ρstop. This would be true 712

for a static threshold but, as just discussed, we rather have a 713

dynamic threshold here. One additional dynamical effect is 714

that the cell growth axes are progressively tilting towards the 715

drift direction when θ0 is increased, while they are rotating 716

opposite to the drift direction when θ0 is decreased. From 717

our simulation results, we obtain ρnum
res � 2.3 that is close to 718

ρ
exp
stop � 2.3–2.8. 719

In conclusion, our experimental and numerical results have 720

combined to suggest the following picture of the physical 721

mechanism for the oscillatory-nonoscillatory transition. Mis- 722

orientation induces an overall drift of the cellular pattern, 723

so the advective motion of the liquid phase toward the cells 724

modifies the concentration fluxes between neighbor cells. At 725

sufficiently high drift velocities, the flux balance that stabi- 726

lizes the oscillatory state is so perturbed that the system stops 727

oscillating (at least locally). The reverse is true when the drift 728

velocity (misorientation) decreases. 729
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