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I. INTRODUCTION

In the recent decades, a number of solidification experiments led to spectacular oscillatory growth modes for both liquid crystals [1] and eutectic alloys [2,3]. Comparable oscillatory patterns were also observed in directional solidification of succinonitrile-based diluted binary alloys [4][5][6][7][8]. In thin samples, the existence of a generic 2λ -O mode was reported and characterized by a large set of experimental and numerical data [4,5]. More recently, it was shown that these oscillations result from a coherent interaction between the solute diffusion fields that surrounds two neighboring cell tips (firstneighbor correlations) [5]. In bulk samples, oscillating growth modes are more difficult to observe experimentally and their existence was not mentioned until recent experiments were performed under microgravity conditions in the DECLIC-DSI device. These experiments produced arrays of oscillating cells without global coherence but still displaying locally coherent oscillations with a π phase-shift in the case of local square ordering or a 2π/3 phase-shift in the case of local hexagonal ordering [6][7][8]. These coherent spatiotemporal oscillating patterns are known to result from generic 2D bifurcations [START_REF] Misbah | Dynamique complexe et morphogénèse[END_REF]. Several studies based on numerical simulations of the corresponding oscillation dynamics can be found in the literature.

For thin samples, a first study using the one-sided phase field * Corresponding author: fatima.lisboa-mota@im2np.fr model reported the onset of an oscillatory single structure 51 in an intermediate domain of spacings [START_REF] Gurevich | [END_REF]. Subsequently, a 52 similar model was used in a dedicated study of 2λ -O mode 53 that gave rather quantitative agreement with the oscillations 54 existence domain and proposed a complete description of 55 the physical underlying mechanisms [5]. For bulk samples, 56 numerical studies first relied on amplitude equations [11][12][13], 57 later on the two-sided version of the phase-field formalism 58 applied to a model system [14], and even more recently on 59 the one-sided phase-field model parametrized with the actual 60 physical parameters of microgravity experiments [6][7][8]. These 61 simulations also generated π and 2π/3 oscillatory modes with 62 oscillation periods comparable to the experimental ones [6][7][8]. 63 In addition, they showed that, for a given alloy, oscillations 64 only exist in a limited domain of spacings, pulling velocities, 65 and temperature gradients. A recent analysis of a series of 66 DECLIC experimental data suggested that cell oscillations 67 also stop when the misorientation of the 100 crystal axis 68 with respect to the thermal gradient (parallel to the pulling 69 direction) becomes too large [8]. A criterion was proposed to 70 evaluate the critical inclination above which oscillations stop 71 and a rough estimate of this threshold was obtained [8]. The 72 main goal of the present paper is to more finely characterize 73 and quantify the threshold for this oscillatory-nonoscillatory 74 transition due to the crystal misorientation. This problematic 75 is attacked by applying a common methodology to analyze 76 new experimental and phase-field simulation data and by com-77 paring the resulting informations.

The present phase-field approach readily combines two numerical codes used in recent studies that considered crystal misorientation and oscillatory states separately. In both cases, solidification of a succinonitrile-acrylonitrile alloy was simulated in a thin sample and the simulation results were compared with experimental data [5,15]. On the one hand, regarding the effects of the crystal misorientation, the numerical results [15] confirmed the orientational response law found experimentally [16,17]. Since this study focused on two specific growth shapes, steady cells and seaweeds, no particular attention was paid to the possibility of oscillating structures.

On the other hand, the study of a well-oriented 2λ -O oscillatory mode showed that quantitative results can be obtained for its existence domain and oscillation period [5]. This study also demonstrated the benefits that can be drawn from numerical data obtained for the concentration field, to follow the coupled dynamics of first-neighbor cells. Altogether, combining both approaches is thus expected to provide a reliable and powerful tool to explore the oscillatory-nonoscillatory transition of inclined cellular patterns in three-dimensional directional solidification.

We report here on new experimental results and on numerical simulations of the oscillatory-nonoscillatory transition. A number of points are addressed, like a comparison between thin layer and bulk samples. So far, a direct experimental comparison could not be attempted between the two cases because a different solute was used, acrylonitrile in thin samples [4,16] and camphor in the bulk samples [6][7][8]. It is one nice feature of the present numerical simulations to give results that are obtained in both geometries for the same alloy (succinonitrile-camphor is considered here). This paper is organized as follows. Section II describes the experimental procedure and the main results obtained, while Sec. III gives the basic ingredients of the phase-field code used in the simulations. Section III C is devoted to the thin layer samples.

The results for the bulk samples are given and analyzed in Sec. III D. Finally, a discussion completed by our main conclusions is provided in Sec. IV. I). The cylindrical crucible has an inner diameter of 139 1 cm and a length that enables about 10 cm of solidification, 140 thus allowing the study of the interface pattern dynamics from 141 the onset of morphological instability to the microstructural 142 steady state. A single crystalline solid seed with a direction 143 100 parallel to the pulling axial direction was prepared on 144 ground and kept during all the experimental campaigns. Fur-145 ther details about the experimental procedure can be found in 146 previous works [18][START_REF] Marcout | Proceedings of the 57th International Astronautical Congress[END_REF][START_REF] Mota | [END_REF][21].

147

Top-view images are used to morphologically character-148 ize the patterns developed during microgravity experiments. 149 Methods of analysis [8,[START_REF] Pereda | Proceedings of the 67th International Astronautical Congress[END_REF] start from the raw image where 150 a binary mask is created to identify and label each cell and 151 its center. Based on this image, a Voronoi tessellation reliably 152 finds the first neighbors at each instant of the solidification, so 153 that maps of the number of first neighbors can be drawn, to get 154 information on the quantity of topological defects in the pat-155 tern. The Voronoi tessellation is used to calculate the primary 156 spacing which corresponds to the average of the center-to-157 center distances between a cell and its first-neighbors. Each 158 cell is tracked from one image to the following one so that its 159 motion can be analyzed (trajectory, velocity), and elimination 160 or nucleation of new cells is evidenced.

161

During spatial experiments, two different values of gradi-162 ents and a wide range of pulling rate, from 0.1 to 30 μm/s, 163 were used. We could therefore study various complex pat-164 terns, from planar to cellular and dendritic. However, the 165 occurrence of oscillating cellular patterns is restricted to a 166 very limited range of experimental parameters which are 167 detailed in Ref. [8]. Most of the oscillating patterns are ob-168 tained for G = 19 K/cm, and for V p ranging between 0.5 169 and 1.5 μm/s. In this paper, we will deepen the analysis 170 of two solidification experiments for a temperature gradient 171 G = 19 K/cm, and pulling velocities V p = 0.75 and 1.5 μm/s, 172 that yield oscillations of a cellular array, but also specifically 173 evidence the influence of misorientation on the oscillations 174 (Table I). As was explained in Ref. [8], for V p = 1.0 and 175 0.5 μm/s, once oscillations start, they affect the whole inter-176 face for the remainder of the experiment. For V p = 0.75 and 177 1.5 μm/s, oscillations initially affect the whole interface but 178 after the sample is pulled by L 30 mm, cells on the left side 179 of the interface stop oscillating, while oscillations continue on the right side [8]. The origin for the premature termination of the left-side oscillation is attributed to the consequencesin terms of pattern drift-of a misorientation of the growth direction in this area, as will be detailed in the next part. For V p = 1.5 μm/s, oscillations on the right side also stop shortly after because the pulling velocity that keeps increasing due to transient growth reaches the limit of the existence domain of oscillations [8]: No oscillation appears for velocities higher than 1.5 μm/s.

B. Evidence and characterization of growth misorientations

Figure 1 shows a global view of the solid-liquid interface after about 20 mm of solidification for both pulling rates. For V p = 1.5μm/s, a clear morphological difference is observed between the left region (red-or white-square) that displays inclined structures and the right region (blue-or blacksquare) that does not. The origin of inclined structures is a misalignment between the preferred growth direction 100 and the pulling (thermal) axis [16,17]: the growth direction of a cell or dendrite rotates from the thermal gradient direction at low velocity, to the closest 100 direction as pulling rate increases. This implies that the growth direction will be misoriented with respect to the pulling (thermal) axis if no 100 direction is perfectly aligned with this axis. If the misalignment between the preferred growth direction 100 and the pulling (thermal) axis is large enough, then structures are tilted with respect to the optical axis, and we can distinguish subgrains by visual inspection of the microstructure.

The presence of at least one subboundary in Fig. 1 is clear for V p = 1.5 μm/s. To confirm it, it is useful to analyze the cell trajectories: each subgrain is characterized by a collective cell drift of specific direction and amplitude, caused by its particular misalignment with the pulling (thermal) axis. For The growth angle θ g varies relatively to θ 0 as

237 θ g /θ 0 = 1 - 1 1 + f Pe g , ( 2 
)
where f and g are alloy-dependent constants, and the Péclet mentioned that for V p = 0.75 μm/s a stationary-state was not attained on either primary spacing or in drift velocity. This is probably related to the fact that at V p = 0.75 μm/s, the interface is macroscopically convex. This curvature induces a glide of cells along the interface slope from the center towards the border, and the primary spacing evolution results from a permanent balance between the cell stretching at the center and the elimination at the border. The values at the end of the solidification were used to estimate the misorientation angles θ 0 .

C. Oscillation characterization

In top-view images, cells appear bright due to the light guided through their body and the size of the bright area is defined as the apparent surface area. The oscillation analyses are based on the time evolution of the apparent cell area [8,[START_REF] Pereda | Proceedings of the 67th International Astronautical Congress[END_REF]. For each of the cells previously identified inside the red (white) and blue (black) square zones of Fig. 1, the apparent surface area was followed as a function of the solidification time. An example of the typical behavior of a cell that stops oscillating is given in Fig. 4. The primary spacing presents a small overshoot at the end of the coarsening stage and then progressively increases till the end of the solidification. The drift velocity increases to reach a stationary value after 4.5 h roughly. The oscillation amplitude increases to reach its maximum after 2 h, it starts decreasing significantly after 3.3 h and oscillations almost stop after 4.2 h.

The evolution curves of all the studied cells in the different areas of interest are superposed in Fig. 5. As seen in Table II, the oscillation period τ osc on the right side of the interface (blue-or black-square) is slightly longer than the one on the left side (red-or white-square) for both values of V p . The oscillation amplitude is much more important and stable on the right than on the left side, where it seems to progressively decrease, as evidenced by the colormap insets in Fig. 5 for V p = 1.5 μm/s. From Fig. 5, it is difficult to determine the exact moment when oscillations stop. To clarify this point, the upper envelope of each curve [for example, the cyan-upper-curve in Fig. 4(b)] is extracted. At time t, the envelope amplitudes are averaged over all the cells, giving a curve A av (t ). Dividing A av (t ) by the curve maximum, one obtains Ãav (t ) that oscillates between 0 and +1, as shown II). In our 306 previous work [8], we came to the conclusion that the drift 307 induced by growth misorientation inhibits oscillation when on the ratio of the characteristic times of oscillation and drift, estimated, respectively, as the oscillation period and the time necessary for a cell to glide over its width (ratio between the primary spacing and the drift velocity),

ρ = τ drift τ osc . ( 3 
)
Our previous analyses [8] based on the observation of the experiments at V p = 0.75 and 1.5 μm/s led us to propose a possible threshold ρ stop = 3.0 below which the oscillation is inhibited. The evolution of this ratio for a cell is shown in Fig. 4 (gray curve): at some point roughly corresponding to a threshold ρ stop = 1.7, the cell is no longer oscillating. From that point on, the gray curve turned into dashed because ρ is estimated using the oscillation period measured before the oscillation stop. The time evolution of the average value of ρ is represented in Figs. 6(b) and 6(d) for each region. On the left side of the interface, for both pulling rates, the curves start with a quite low value and constantly decrease with the oscillation amplitude. The average values of ρ stop corresponding to the moment when the oscillations stop are given in Table II. We should point out that in the previous work, the values were estimated using the mean values of primary spacing and drift velocity (Table II of Ref. [8]), while in this work ρ is calculated for each cell (using its own local primary spacing and drift velocity) at each time and is therefore more precisely determined [Fig. 6(b)]. On the right side of the interface, the parameter ρ is always higher than its value on the left side, thus justifying a more robust oscillations. For V p = 1.5 μm/s, the oscillation stops after roughly 6 h, even if the parameter ρ is high. However, as was demonstrated experimentally and numerically in [8], the range of experimental parameters over which the oscillation can develop is limited. Especially, in our case, oscillation occurs for a velocity range of 2 < V p /V c < 6 (V c being the critical velocity for planar interface destabilization). Close to the upper limit of this velocity range, oscillations occur only during the transient growth stage. The oscillation stops on the right side of the interface for V p = 1.5 μm/s because the interface velocity attains the upper limit of velocity range to get oscillations. This is why in Table II we consider ρ stop as nonapplicable (N.A.).

III. PHASE-FIELD

Two decades ago, Alain Karma and coworkers introduced the thin interface phase-field model (TIPM) to simulate the solidification of a pure substance [24,25]. This model was extended later to the case of a dilute binary alloy [26,27]. Since, many examples of 3D simulations of alloy solidification that give quantitative agreement with the experiments were reported [5][6][7][8]15,28,29], following K. Glasner, we replace the usual phase-field ϕ ∈ [-1, 1] by the preconditioned phase-field

ψ = √ 2 tanh -1 (ϕ), (4) 
which is a signed distance from the interface, ψ ∈ (-∞, +∞) [30]. This transformation significantly reduces the numerical effort because a larger nondimensional mesh size can be used without affecting the numerical accu-racy [30]. The code is made even faster by using graphics processing unit (GPU) parallel programming [6][7][8]31,32]. We now recall the main lines of the model. More details can be found elsewhere [5,15].

A. Evolution equations

In the TIPM, the solid-liquid interface has a finite width W 0 [24,25]. For rough materials like succinonitrile, the kinetic coefficient can be safely set to zero. To ensure this, the time unit must verify the condition τ 0 = a 0 W 3 0 /(Dd 0 ), where d 0 is the capillary length, D the solute diffusion constant in the liquid phase, and a 0 0.5539 [24,25]. In the following, lengths and times are, respectively, divided by W 0 and τ 0 , which leads to the following nondimensional evolution equation for ψ:

(1 -β k z * )a 2 s ∂ψ ∂t = √ 2[ϕ -C(1 -ϕ 2 )(U + z * )] + a 2 s [∇ 2 ψ - √ 2ϕ( ∇ψ ) 2 ] + 2a s ∇a s ∇ψ + √ 2 (1 -ϕ 2 ) ∇ A, (5) 
with β k = (1k), k being the partition coefficient. Here, the nondimensional concentration field U is related to the physi-

cal concentration field c by c = c ∞ k (1 + β k U ) α k -β k ϕ 2 , ( 6 
)
where α k = (1 + k), and the additional term β k z * on the lefthand side of Eq. ( 5) is introduced to reduce higher order corrections that appear in the asymptotic expansion of the phase-field equations [27]. The nondimensional variable z * is defined as

z * = [z + z s (t ) -V t]/l T , (7) 
where

l T = mc ∞ (k -1)/(kG) ( 8 ) 
is the thermal length. The quantity V tz s is a small vertical offset that becomes constant (up to one mesh size) at large times [5]. For our rough material, the constant that couples the nondimensional concentration field U to the phase-field is

C = 75D * /47, with D * = Dτ 0 /W 2 0 [25].
In Eq. ( 5), both a s and A depend on the crystal anisotropy.

In the present study we consider the situation where the crystal axes X, Y, Z are rotated with respect to the axes x, y, z of the computational domain that has the shape of a rectangular parallelepiped. The vertical axis z gives the direction of the imposed temperature gradient, x is the coordinate along the domain width and y lies along the domain thickness.

Three rotation angles are needed in general, but we consider here a simple rotation of the [100] and [001] crystal axes about the y = Y = [010] crystal axis, by an angle θ 0 . In the X, Y, Z reference frame, the anisotropy function has the usual form for cubic crystals [33],

a s = (1 -3 4 ) + 4 4 n 4 X + n 4 Y + n 4 Z , (9) 
where n X , n Y , n Z are the components of unit vector n and 4

is the anisotropy strength. Then, the three components of the anisotropy vector A are 409 [START_REF] Gurevich | [END_REF] where ν = X, Y, Z. The numerical calculations are actually 410 performed in the domain reference frame, x, y, z, and they 411 make use of the very simple transformation equations between 412 the two frames of reference:

A ν = 16 4 (1 -ϕ 2 ) √ 2 | ∇ψ|a s n ν n 4 X + n 4 Y + n 4 Z -n 2 ν ,
413 n X = sin θ 0 n x + cos θ 0 n z , n Y = n y , ( 11 
)
n Z = cos θ 0 n x -sin θ 0 n z .
We use the one-sided model that neglects solute diffusion 414 in the solid. Following Refs. [26,27], a corrective solute cur-415 rent

416 j at = W 0 2 √ 2 c ∞ k β k γ n, ( 12 
)
with c ∞ the nominal solute concentration, is used to avoid 417 artificial solute trapping and other spurious corrections due to 418 the finite interface thickness W 0 . Here,

419 γ = 1 -ϕ 2 √ 2 (1 + β k U ) ∂ψ ∂t . ( 13 
)
The evolution equation for the nondimensional concentration 420 field U is then [26,27] 421

(α k -β k ϕ) ∂U ∂t = (1 -ϕ)D * ∇ 2 U - (1 -ϕ 2 ) √ 2 D * ∇ψ ∇U - 1 √ 2 n ∇γ + γ 1 - ∇ n √ 2 . ( 14 
)

B. Parameters and conditions imposed 422

Along the y direction (sample thickness), no-flux bound-423 ary conditions are imposed on U and ψ. Periodic boundary 424 conditions are imposed on U and ψ in the x direction (sample 425 width) because the cellular pattern is expected to constantly 426 drift due to the crystal misorientation. Along z, the bound-427 ary conditions are no-flux at the bottom of the domain and 428 U = -1.0 at its top. In addition, the fields ψ and U are shifted 429 when needed to keep the interface roughly at the same vertical 430 location in the simulation domain.

431

The initial condition is a flat interface that is per-432 turbed by a random spatiotemporal noise of weak ampli-433 tude [6][7][8]15,34,35] for a moderate time (1000 s in most 434 simulations). Beyond that time, the spatiotemporal noise is 435 turned off. To avoid numerical divergences due to the very fast 436 destabilization of the flat interface, simulations usually start 437 with a rather high value of the temperature gradient (typically 438 G = 80 K/cm). This value is lowered to reach the nominal 439 imposed value (G = 30 K/cm) in about 1000 s. The numerical 440 interface parameter ξ = W 0 /d 0 is taken sufficiently small that 441 good convergence of the simulation results with diminishing 442 interface width is ensured [5,15]. small number of cells involved here (two). The agreement further improves in large bulk samples.

C. Numerical simulations in thin samples

As mentioned previously, the present simulation code is based on earlier numerical studies of directional solidification of an acrylonitrile-succinonitrile alloy in thin samples [5,15]. To make contact with the microgravity experiments considered here, we now replace this alloy with the camphor-succinonitrile alloy that is used in DECLIC and we first perform numerical simulations in the thin sample geometry. Experimental estimates of camphor-succinonitrile physical parameters are listed in Table I. The control and numerical parameters used in the simulations are those of Table III. The numerical domain is approximately 2143.3 μm in height (z axis) and 60.0 μm in thickness (y axis). Two widths (x axis) are considered: 240.0 μm for the narrow domain that contains a pair of cells and 1143.1 μm for the wide domain that contains about ten cells. The main oscillation characteristics estimated from the numerical data described in this section and the next one are gathered in Table IV.

We first consider simulations in the narrow system. Two cells form and oscillate in phase opposition (2λ -O mode) with a period τ osc = 12 ± 1 min (see Table IV), a value very close to that found previously for 2π/3 oscillations for the same parameters [8]. The small sensitivity of the oscillation period to the actual oscillation mode was already noted previously, and it is confirmed here for the 2λ -O mode. For this small system, the existence of a well-defined static threshold between oscillatory and nonoscillatory states can be addressed, provided that only two cells coexist and fixed misorientations θ 0 are considered. As we will see later, there is no simple answer to this question when many cells coexist because oscillations are strongly affected by local rearrangements that constantly occur in the cellular array. As seen here and in the next paragraph, differences in the initial conditions (shape and/or imposed noise) and in the inclination (fixed versus variable) may also result in different thresholds for the present thin system. To locate the static threshold, we impose a constant misorientation θ 0 and we start with a thin domain of width slightly smaller than half that of the final domain. A single inclined cell with a steady growth velocity is then obtained. This cell is slightly dilated and copied twice in the final domain that has the necessary width for the 2λ -O mode to exist (240.0 μm). Growth is resumed from there, with a small spatiotemporal noise imposed during a short initial time length (100 s). Figure 8 shows the obtained oscillation FIG. 8. Evolution of the oscillation amplitude as a function of fixed inclination angles θ 0 in a thin narrow domain.

amplitudes à as a function of fixed misorientation angles θ 0 .

Clearly, Ã decreases below the cutoff experimental amplitude 0.15 for a static threshold θ 0,static 4.5 deg. This result compares well with but is not equal to the dynamic thresholds θ 0,stop , as we see now.

We now turn to the simulations with a variable misorientation, as described at the end of Sec. III B. The oscillations survive after the misorientation has started to increase, until a value θ 0,stop 2.2 deg is reached; at higher misorientations, the cells do not oscillate any more. Figure 9(a) represents the time evolution of θ 0 , ρ, and Ãav . Using the experimental cutoff for oscillation detection, Ãav = 0.15, one sees that oscillations stop for ρ stop 7.7. The oscillations do not resume during the decrease of θ 0 , as could be expected. This is rather predictable because there is little possibility of size fluctuations in such a small system and because the noise is turned down at that time. However, keeping the spatiotemporal noise during the whole simulation shows that oscillations resume roughly for ρ start ρ stop when θ 0 is decreased [see Fig. 9(b)]. The amplitude of the noise imposed on the phase-field ψ at each time step is F 0 = 5.0×10 -4 . We observe then more irregular variations of Ãav (t ), and obtain a lower (but less accurate) estimate of the oscillatory-non oscillatory threshold, ρ stop 5.2, while θ 0,stop 3.8 deg which is closer to θ 0,static . Thus, the imposed spatiotemporal noise induces sufficient disorder in the system to trigger oscillations. From now on, we will consider larger systems that contain tens of cells. In these large systems, the size and local environment varies from cell to cell. Due to this geometrical disorder, oscillations start and stop spontaneously, and so, except for the initial phase, spatiotemporal noise is set to zero in the following.

We now turn to the wide system that consists of about ten cells arranged in a thin layer [Fig. 10(a)]. Figure 10(b) represents the time evolution of θ 0 , ρ, and Ãav . The estimated oscillation period is τ osc = 14 ± 1 min for this simulation (see Table IV). As just discussed, oscillations are more likely to start and stop, as compared to the narrow system, because cell spacings and shapes now vary significantly in time and space. For this reason, one sees that oscillations resume at late FIG. 9. Time evolution of the oscillation characteristics obtained by numerical simulations in a thin narrow domain: (a) without imposing spatiotemporal noise and (b) imposing a spatiotemporal noise of amplitude F 0 = 5.0×10 -4 . Normalized average apparent surface area Ãav , thicker and darker curve; Inclinaiton angle θ 0 , straight line; Ratio of characteristic times of oscillation and drift ρ, light gray curve.

times, far on the right side of the figure. Oscillations do not 552 reappear earlier because no spatiotemporal noise is imposed 553 and because the confinement due to the very small sample 554 thickness does not allow much rearrangement of the cells in 555 the transverse direction. A much stronger effect indeed results 556 from the local ordering of neighbor cells in the bulk samples 557 studied in DECLIC experiments. To take local ordering of 558 the cellular array into account in the phase-field numerical 559 simulations, we now consider the cellular pattern evolution 560 in extended domains.

561

D. Numerical simulations in bulk samples

562

Simulations in bulk systems are performed in domains with 563 a square xy cross section of area 748.7×748.7 μm 2 and a 564 depth z of 2143.3 μm. Since local ordering is expected to 565 fluctuate in time and space, with noticeable repercussions on 566 the solidification dynamics, we opt to perform a series of 4 567 simulations that differ only by their initial condition (a dif-568 ferent seed for the random number generator). The amplitude 569 12. Time evolution of the oscillation characteristics averaged over four independent numerical simulations in a bulk domain. Normalized average apparent surface area Ãav , thicker and darker curve; inclination angle θ 0 , straight line; ratio of characteristic times of oscillation and drift ρ, light gray curve. bursts result from local interactions within small groups of a few neighboring cells. The four amplitude curves of Fig. 11 are summed up and the resulting amplitude is again divided by its maximum value to get Ãav . A similar average is made to obtain the oscillation parameter ρ. The curves giving Ãav (t ) and ρ(t ) are displayed in Fig. 12, together with the curve θ 0 (t ). It should be noted that the highest misorientation explored in this series of simulations is 20 degrees (instead of 10 degrees in the thin sample simulations) because the larger fluctuations in the cellular array that result from an increase of the degrees of freedom in the sample thickness make it less likely for a given cell to stop oscillating. From the curves displayed in Fig. 12, one obtains the estimate ρ stop = 1.4 for the oscillatory-nonoscillatory transition threshold. This result quantitatively agrees with the one predicted by the analysis of our experimental data (see Sec. II C).

In these bulk sample simulations, we obtain an oscillation period τ osc = 13 ± 1 min. Within the error bars, this estimate is compatible with the ones found above in thin systems (both narrow and wide) and, as already mentioned, is also compatible with the estimate obtained previously for a well ordered hexagonal array of oscillating cells [8]. This suggests that all the cells basically behave as oscillators with identical natural periods but that global and local geometrical constraints influence their actual oscillatory state via short range couplings that slightly modify the oscillation periods from one cell to another. Quantifying this picture would further require a close analysis of the concentration field that mediates the cell-to-cell interactions resulting from a subtle feedback between individual cell shapes, local ordering of the cellular array, and local solute fluxes. Such a complete analysis was recently proposed in the case of the 2λ -O mode in thin samples [5] but we will not attempt to generalize it to the more complex geometries encountered here.

To investigate the origin of the previously mentioned oscillation bursts that occur during the nonoscillatory (high misorientation) regime, we found that the cells presenting According to the previous remarks, one can infer that the 638 local rearrangements that occur in the cellular pattern induce 639 temporal variations of the cell-to-cell couplings in a given 640 group. The cell oscillation periods are not much affected by 641 these changes as already noticed but the oscillation amplitudes 642 and phases are much more sensitive to the details of the 643 couplings, thus to the local symmetries. This sensitivity is 644 probably at the origin of the coexistence of the oscillatory and 645 nonoscillatory dynamics of cell groups, and thus to the bursts 646 observed here.

647

IV. SUMMARY AND DISCUSSION

648

In the present paper, we have combined new experimen-649 tal and numerical results to characterize more accurately the 650 oscillatory-nonoscillatory transition in cellular patterns result-651 ing from the solidification of a binary alloy under purely 652 diffusive conditions.

653

The experimental study has been described in Sec. II. 654 Directional solidification experiments using a succinonitrile-655 camphor alloy have been carried out in the DECLIC-DSI 656 facility installed on board the International Space Station as 657 part of a joint research program between CNES and NASA. 658

The diffusive growth mode provided by the microgravity conditions allows to observe the dynamics of extended oscillating cellular patterns. Oscillations, observed in a narrow range of growth parameters, are manifested as a periodic variation of the apparent area of cells under top-view interface observation. We deepen here the analysis of two particular experiments (V p = 0.75 and 1.5μm/s, G = 19 K/cm), characterized by the existence of two subgrains with different misorientations with respect to the thermal gradient, where the oscillation is only transient in one of the subgrains while it continues in the other. The experiments demonstrate a threshold for the drift velocity of the pattern beyond which oscillations are inhibited. This leads us to propose a criterion for the oscillation inhibition that is based on the ratio ρ between the characteristic drift time and the oscillation period. We find that the threshold value that corresponds to the moment when the oscillations stop falls within the range ρ exp stop 2.3-2.8.

The numerical study has been presented in Sec. III. It is focused on the effect of the misorientation angle θ 0 on the cellular pattern dynamics (oscillatory vs nonoscillatory). In the simulations, θ 0 is varied linearly in time, first increasing, then decreasing. We consider systems with different shapes and sizes to compare thin versus thick samples and narrow versus wide ones. In both cases, we find that increasing the system dimensions favors the onset of oscillations, especially in thin samples. Altogether, we find that the oscillation period is little affected by global and local geometrical constraints but that it is not the case for oscillation amplitudes, phase shifts, and velocity drifts that show significant sensitivity to theses constraints. As a result, bursts of oscillatory cell groups are observed to appear in bulk systems, even for the highest misorientation that definitely favors nonoscillatory behavior. Although a direct comparison between the experimental and numerical studies cannot be made because the corresponding control parameters differ, we obtain a reasonable agreement between the oscillatory-nonoscillatory thresholds ρ exp stop 2.3-2.8 and ρ num stop 1.4 in bulk systems.

A few points have not been mentioned in the body of the paper that nevertheless warrant further study and/or discussion. First, the existence of a well defined threshold value for ρ is legitimately questionable. The transition from a dynamical 699 state to another one necessarily involves a characteristic time 700 that is required by the concentration field to settle cooperative 701 concentration fluxes between neighbor cells or to turn them 702 uncooperative. If a threshold can still be defined, then it cannot 703 be a static threshold as it is the case in most phase transitions. 704 Also, a threshold must be defined statistically, which requires 705 averaging it over many simulations/experiments. This prelim-706 inary study obviously does not fulfill the last requirement, so 707 our results for ρ stop are rather rough estimates of the threshold. 708 Second, there exists another threshold, ρ res , that corresponds 709 to oscillations resuming, after the nonoscillatory intermediate 710 regime, when the misorientation angle is decreased. At first 711 glance one can expect that ρ res = ρ stop . This would be true 712 for a static threshold but, as just discussed, we rather have a 713 dynamic threshold here. One additional dynamical effect is 714 that the cell growth axes are progressively tilting towards the 715 drift direction when θ 0 is increased, while they are rotating 716 opposite to the drift direction when θ 0 is decreased. From 717 our simulation results, we obtain ρ num res 2.3 that is close to 718 ρ exp stop 2.3-2.8.

719

In conclusion, our experimental and numerical results have 720 combined to suggest the following picture of the physical 721 mechanism for the oscillatory-nonoscillatory transition. Mis-722 orientation induces an overall drift of the cellular pattern, 723 so the advective motion of the liquid phase toward the cells 724 modifies the concentration fluxes between neighbor cells. At 725 sufficiently high drift velocities, the flux balance that stabi-726 lizes the oscillatory state is so perturbed that the system stops 727 oscillating (at least locally). The reverse is true when the drift 728 velocity (misorientation) decreases.

  solidification experiments in DECLIC-DSI: Device, method, and parameters The experiment described in this article was realized within the directional solidification insert (DSI) of the device for the study of critical liquids and crystallization (DECLIC) developed by the French Space Agency (CNES) and installed onboard the International Space Station (ISS). This device is dedicated to in situ and real-time characterization of the solid-liquid interface during directional solidification of bulk transparent alloys in diffusive transport conditions. Complete descriptions of DECLIC and DSI can be found elsewhere [18-20]. In DECLIC-DSI, a Bridgman furnace imposes a thermal gradient G in the interfacial area of the solidifying alloy contained in a glass crucible. Solidification is induced by pulling the crucible at constant rate V p towards the cold side on the furnace. The interface is observed from the top, i.e., along the direction of solidification, thanks to a flat glass window at the bottom of the crucible and a lens immersed in the liquid at the top. The transparent organic alloy used

FIG. 1 .

 1 FIG. 1. Global view of the interface: (a) at t = 4.38 h (L = 24 mm) for V p = 1.5 μm/s and (b) at t = 8.12 h (L = 22 mm) for V p = 0.75 μm/s and G = 19 K/cm. The red and blue squares (white and black in the grayscale version) correspond to the analysis regions on the left and right side of the interface, respectively.

V p = 1 . 5 1 )FIG. 3 .

 1513 FIG. 2. Maps of the apparent drift (a) direction and (b) velocity of each cell (V p = 1.5 μm/s, G = 19 K/cm, t = 4.62 h, L = 25 mm).

238numberFigs. 3 (FIG. 5 .

 35 Figs. 3(b) and 3(d) for the two selected regions: the morpho-244

FIG. 6 .

 6 FIG. 6. Evolution of (a), (c) the apparent surface area and (b), (d) the criterion parameter ρ = τ drift /τ osc for the cells present in the left and right sides of the interface: G = 19 K/cm; V p = 1.5 μm/s (upper panels) and V p = 0.75 μm/s (lower panels).

  308 a threshold of drift velocity is reached. Drift and oscillation 309 have their own dynamics, but the oscillation is based on a 310 subtle evolution of the concentration field at the tip of the cell 311 and adding a drift could affect the dynamics of oscillation by 312 modification of this concentration field, and eventually inhibit 313 it if the drift is too important. We defined a criterion based 314

452FIG. 7 .

 7 FIG.7. Transition from the 2λ -O oscillatory to a nonoscillatory mode in the narrow thin sample. Time evolution of the inclination angle θ 0 (straight lines), of the average drift velocity V d (symbols), and of the apparent surface areas of the two cells (curves). The inset is a closer view of the latter in the region delimited by the rectangular on the left side of the figure.

FIG. 10 .

 10 FIG. 10. Numerical simulations in a thin wide domain. (a) Snapshot of the system showing the solidification cells (ψ = 0 contour) at time t = 57 000 s when oscillations start again. (b) Time evolution of the oscillation characteristics. Normalized average apparent surface area Ãav , thicker and darker curve; inclinaiton angle θ 0 , straight line; ratio of characteristic times of oscillation and drift ρ, light gray curve.

FIG. 13 .

 13 FIG. 13. Temporal sequence showing the evolution of a local group of 5 cells: (a) unstable group and (b) stable group. Both cell groups relate to the lower right panel of Fig. 11, where the time interval considered is shaded in gray.

FIG. 14 .

 14 FIG. 14. Time evolution of the normalized cell surface areas Ã(t ) (curves) for (a) the unstable group of cells shown in Fig. 13(a), and (b) the stable group of cells shown in Fig. 13(b). The five times represented in the temporal sequences of Fig. 13 are marked by inner ticks labeled from 1 to 5. Inclination angle θ 0 , straight line.

TABLE I .

 I Physical parameters of the succinonotrile-camphor alloy of interest and control parameters imposed in the experiments.

	Physical parameter	Symbol Magnitude	Unit
	Liquidus slope	m	-1.365	K/wt%
	Solute (camphor) concentration	c ∞	0.24	wt%
	Solute diffusion coefficient (liq.)	D	270.0	μm 2 /s
	Gibbs-Thomson coefficient		0.06478	K μm
	Partition coefficient	k	0.07	-
	Anisotropy strength	4	0.011	-
	Control parameter	Symbol Magnitude	Unit
	Thermal gradient	G	19	K/cm
	Pulling velocity	V p	0.75 or 1.5 μm/s
	is a succinonitrile (SCN)-0.24wt% camphor alloy prepared 137
	using SCN purified by NASA by distillation and zone melting 138
	(Table			

TABLE II .

 II Pattern and oscillation characteristics measured in experiments. s.d. corresponds to the standard deviation of τ osc .

	V p (μm/s)	1.5		0.75	
	Interface region	Left	Right	Left	Right
	θ 0 (deg)	6.5	3.1	6.7	2.5
	τ osc	22.1	27.0	64.1	77.1
	±s.d. (min)	1.6	2.0	9.5	8.7
	t stop (h)	4.1	5.8	11.3	-
	ρ stop	2.3	N.A.	2.8	-

TABLE III .

 III Control and numerical parameters used in the simulations.

		Control parameter	Symbol	Magnitude	Unit
		Thermal gradient	G	30	K/cm
		Pulling velocity	V p	1.5	μm/s
		Numerical parameter		Expression	Value
		Convergence		W 0 /d 0	160.0
		Grid spacing		δs/W 0	1.2
	444	The control and numerical parameters used in the simu-
	445	lations are gathered in Table III. The values of G and V p
	446	reported in this table should not be directly associated with the
	447	corresponding values of the experimental control parameters
	448	(Table I). Indeed, in recent studies, it has been repeatedly
	449	observed that a systematic shift between the numerical and
	450	experimental conditions must be made to obtain comparable
		dynamical behaviors [7,8].	

451

To scan the growth dynamics as a function of the

[001] 

TABLE IV .

 IV Domain size and oscillation characteristics measured in the numerical simulations without spatiotemporal noise. Errors on τ osc are about 1.0 min.

	Sample	Thin narrow	Thin wide	Bulk
	Section area (μm 2 ) 240.0×60.0 1143.1×60.0 748.7×748.7
	τ osc (min)	12.0	14.0	13.0
	θ 0,stop (deg)	2.2	8.1	15.1
	t stop (h)	3.45	6.75	6.45
	ρ stop	7.7	1.9	1.4
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