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EXPONENTIAL RAREFACTION OF MAXIMAL REAL ALGEBRAIC HYPERSURFACES

Given an ample real Hermitian holomorphic line bundle L over a real algebraic variety X, the space of real holomorphic sections of L ⊗d inherits a natural Gaussian probability measure. We prove that the probability that the zero locus of a real holomorphic section s of L ⊗d denes a maximal hypersurface tends to 0 exponentially fast as d goes to innity. This extends to any dimension a result of Gayet and Welschinger [10] valid for maximal real algebraic curves inside a real algebraic surface.

. MICHELE ANCONA 1.2. Real Hermitian line bundles and Gaussian measures. In order to answer the previous question, let π : (L, c L ) → (X, c X ) be an ample real holomorphic line bundle over X, that is, an ample holomorphic line bundle L over X equipped with a real structure c L such that π • c L = c X • π. We equip L with a smooth real Hermitian metric h of positive curvature ω (we recall that real means c * L h = h). We denote by RH 0 (X, L d ) the space of real global sections of L ⊗d = L d , that is the space of holomorphic sections s

)

for any pair of real global sections s 1 , s 2 ∈ RH 0 (X, L d ), where h d is the real Hermitian metric on L d induced by h. In turn, the L 2 -scalar product (2) naturally induces a Gaussian probability measure µ d dened by

(3)

for any open set A ⊂ RH 0 (X, L d ), where N d is the dimension of RH 0 (X, L d ) and ds the Lebesgue measure induced by the L 2 -scalar product (2). The probability space we will consider is then RH 0 (X, L d ), µ d .

1. Introduction 1.1. Real algebraic varieties and maximal hypersurfaces. Let (X, c X ) be a real algebraic variety, that is a complex (smooth, projective and connected) algebraic variety equipped with an antiholomorphic involution c X : X → X, called the real structure. For example, the projective space CP n equipped with the standard conjugaison conj is a real algebraic variety. More generally, the solutions of a system of homogeneous real polynomial equations in n + 1 variables dene a real algebraic variety X inside CP n , whose real structure is the restriction of conj to X. The real locus RX of a real algebraic variety is the set of xed points of the real structure, that is RX = Fix(c X ). The real locus RX is either empty, or a nite union of n dimensional C ∞ -manifolds, where n is the (complex) dimension of X. The study of the topology of real algebraic varieties is a central topic in real algebraic geometry since the works of Harnack and Klein on the topology of real algebraic curves [START_REF] Harnack | Ueber die Vieltheiligkeit der ebenen algebraischen Curven[END_REF][START_REF] Klein | Ueber den Verlauf der Abel'schen Integrale bei den Curven vierten Grades[END_REF] and the famous Hilbert's sixteenth problem [START_REF] Wilson | Hilbert's sixteenth problem[END_REF]. A fundamental restriction on the topology of the real locus of a real algebraic variety is given by the Smith-Thom inequality [START_REF] Thom | Sur l'homologie des variétés algébriques réelles[END_REF] which asserts that the total Betti number of the real locus RX of a real algebraic variety is bounded from above by the total Betti number of the complex locus:

(1)

n i=0 dim H i (RX, Z/2) ≤ 2n i=0 dim H i (X, Z/2).
We will more compactly write b * (RX) ≤ b * (X), where b * denotes the total Betti number (i.e. the sum of the Z/2-Betti numbers). For a real algebraic curve C, the inequality (1) is known as Harnack's inequality [START_REF] Harnack | Ueber die Vieltheiligkeit der ebenen algebraischen Curven[END_REF][START_REF] Klein | Ueber den Verlauf der Abel'schen Integrale bei den Curven vierten Grades[END_REF] and reads b 0 (RC) ≤ g + 1, where g is the genus of C. A real algebraic variety which realizes the equality in (1) is called maximal.

In this paper, we will study maximal real algebraic hypersurfaces inside a xed real algebraic variety X. More precisely, we are interested in the following question: given a real linear system of divisors in X, what is the probability to nd a divisor dening a real algebraic maximal hypersurface? The goal of the paper is to show that real algebraic maximal hypersurfaces are exponentially rare inside their linear system.

Tel Aviv University, School of Mathematical Sciences; e-mail: michi.ancona@gmail.com. The author is supported by the Israeli Science Foundation through the ISF Grants 382/15 and 501/18. Example 1.1. When (X, c X ) is the n-dimensional projective space and (L, c L , h) is the degree 1 real holomorphic line bundle equipped with the standard Fubini-Study metric, then the vector space RH 0 (X, L d ) is isomorphic to the space R hom d [X 0 , . . . , X n ] of degree d homogeneous real polynomials in n + 1 variables and the L 2 -scalar product is the one which makes the family of monomials
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•+αn=d an orthonormal basis. A random polynomial with respect to the Gaussian probability measure induced by this scalar product is called a Kostlan polynomial. ), as d → ∞, where v(L) := X c 1 (L) n is the so-called volume of the line bundle L (see, for example, [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF]Lemma 3]). If the total Betti number b * (RZ s d ) of the real locus of a sequence of real algebraic hypersurfaces veries the same asymptotics, then the hypersurfaces are called asymptotically maximal. The existence of asymptotically maximal hypersurfaces is known in many cases, for example for real algebraic surfaces [START_REF] Gayet | Exponential rarefaction of real curves with many components[END_REF]Theorem 5], for projective spaces [START_REF] Itenberg | Asymptotically maximal real algebraic hypersurfaces of projective space[END_REF] and for toric varieties [START_REF] Bertrand | Asymptotically maximal families of hypersurfaces in toric varieties[END_REF]Theorem 1.3]. The rst main result of the paper shows that asymptotically maximal hypersurfaces are very rare in their linear system. More precisely: Theorem 1.2. Let (X, c X ) be a real algebraic variety of dimension n and (L, c L ) be a real Hermitian line bundle of positive curvature. Then, there exists a positive a 0 < v(L), such that, for any a > a 0 , we have

µ d s ∈ RH 0 (X, L d ), b * (RZ s ) ≥ ad n ≤ O(d -∞ ) as d → ∞.
The notation O(d -∞ ) stands for O(d -k ) for any k ∈ N and the measure µ d is the Gaussian measure dened in Equation [START_REF] Berman | A direct approach to Bergman kernel asymptotics for positive line bundles[END_REF]. Note that actually we have more than "asymptotically maximal hypersurfaces are very rare". Indeed, asymptotically maximal hypersurfaces corresponds to the asymptotics b * (RZ s ) = v(L)d n + O(d n-1 ), while in Theorem 1.2 we consider bigger subsets of RH 0 (X, L d ) of the form b * (RZ s ) ≥ ad n , for v(L) > a > a 0 .

For maximal real algebraic hypersurfaces, the rarefaction is even exponential. More precisely: Theorem 1.3. Let (X, c X ) be a real algebraic variety of dimension n and (L, c L ) be a real Hermitian line bundle of positive curvature. For any a > 0 there exists c > 0 such that

µ d s ∈ RH 0 (X, L d ), b * (RZ s ) ≥ b * (Z s ) -ad n-1 ≤ O(e -c √ d log d )
as d → ∞. Moreover, if the real Hermitian metric on L is analytic, one has the estimate

µ d s ∈ RH 0 (X, L d ), b * (RZ s ) ≥ b * (Z s ) -ad n-1 ≤ O(e -cd ).
Theorems 1.3 extends to any dimension a result of Gayet and Welschinger [START_REF] Gayet | Exponential rarefaction of real curves with many components[END_REF], in which the authors prove, using the theory of laminary currents, that maximal real curves are exponentially rare in a real algebraic surface. We stress that our techniques are dierent from those of [START_REF] Gayet | Exponential rarefaction of real curves with many components[END_REF].

Remark 1.4. The L 2 -scalar product on RH 0 (X, L d ) also induces a Fubini-Study volume on the linear system P (RH 0 (X, L d )). Both sets considered in Theorems 1.2 and 1.3 are cones in RH 0 (X, L d ) and the volume (with respect to the Fubini-Study form) of their projectivization coincides with the Gaussian measures estimated in Theorems 1.2 and 1.3.

Theorems 1.2 and 1.3 are consequence of a more general "approximation theorem" which states that, for some b < 1, with very high probability, the zero locus of a real section of L d is dieomorphic to the zero locus of a real section of L bd , where bd is the greatest integer less than or equal to bd. More precisely we have: Theorem 1.5. Let (X, c X ) be a real algebraic variety and (L, c L ) be a real Hermitian line bundle of positive curvature.

(1) There exists a positive b 0 < 1 such that for any b 0 < b < 1 the following happens: the probability that, for a real section s of L d , there exists a real section s of L bd such that the pairs (RX, RZ s ) and (RX, RZ s ) are isotopic, is at least 

1 -O(d -∞ ), as d → ∞. ( 2 
(Z s d ) = v(L)d n + O(d n-1 ), for s d ∈ RH 0 (X, L d ),
will imply Theorem 1.2 (resp. Theorem 1.3). It is also worth pointing out that the assertions [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] and (2) of Theorem 1.5 are independent of each other, although their proofs, which will be sketched in Section 4, are similar. Remark 1.6. Theorem 1.5 implies not only that maximal hypersurfaces are rare, but that "maximal congurations" are. For instance, we will show in Section 5 that in some suitable real algebraic surfaces the probability that a real algebraic curve has a deep nest of ovals is exponentially small (roughly speaking a nest of ovals means severals ovals one inside the other), see Theorems 5.3 and 5.7.

When (X, c X ) = (CP n , conj), L = O(1) and the Hermitian metric on L equals the Fubini-Study metric (that is for the case of the so-called Kostlan polynomials, see Example 1.1), a low degree approximation property was recently proved by Diatta and Lerario [START_REF] Niang | Low degree approximation of random polynomials[END_REF] (see also [START_REF] Breiding | Quantitative singularity theory for random polynomials[END_REF]), so that Theorem 1.5 is a natural generalization of their result. Actually, in [START_REF] Niang | Low degree approximation of random polynomials[END_REF] the authors proves a general low degree approximation property for Kostlan polynomials: for instance, they have proved that a degree d Kostlan polynomial can be approximated (in the sense of Theorem We stress that in [START_REF] Niang | Low degree approximation of random polynomials[END_REF], it is essential that the considered real algebraic variety is the projective space and that the metric on O(1) is the Fubini-Study one (and not, for instance, a small perturbation of it). Indeed, in this situation:

(1) the induced L 2 -scalar product on R hom d [X 0 , . . . , X n ] is invariant under the action of the orthogonal group O(n + 1), which acts on the variables X 0 , . . . , X n (equivalently, the group O(n + 1) acts by real holomorphic isometries on (CP n , conj)); [START_REF] Beauville | Complex algebraic surfaces[END_REF] 

there exists a canonical O(n+1)-invariant decomposition R hom d [X 0 , . . . , X n ] = d-∈2N V d, ,
where V d, is the space of homogeneous harmonic polynomials of degree , thanks to which it is possible to dene projections of degree d polynomials into lower degree ones. These two properties, together with the classication [START_REF] Kostlan | On the distribution of roots of random polynomials[END_REF] of the O(n + 1)-invariant scalar products on R hom d [X 0 , . . . , X n ], are fundamental for the proof of the results in [START_REF] Niang | Low degree approximation of random polynomials[END_REF]. This is a very special feature of Kostlan polynomials and the reason why in our general case some of the approximations of [START_REF] Niang | Low degree approximation of random polynomials[END_REF] cannot be obtained. Indeed,

(1) on a general real algebraic variety equipped with a Kähler metric ω the group of holomorphic isometries is trivial; (2) given a real Hermitian holomorphic line bundle L → X there is no canonical decomposition of RH 0 (X, L d ). Hence, in order to obtain an approximation property for sections of line bundles on a general real algebraic variety, we have to use a dierent strategy, that we will explain in more details in Section 1.4. In particular, in our proof, in constrast to the case of polynomials [START_REF] Niang | Low degree approximation of random polynomials[END_REF], the complex locus of the variety X (and not only the real one) plays a fundamental role. Indeed, we will consider real subvarieties of X with empty real loci and we will study the real sections of L d that vanish along these subvarieties. These real sections are the fundamental tool for our low degree approximation property.

During the proof of Theorem 1.5, we will also need to understand how much we can perturb a real section s ∈ RH 0 (X, L d ) without changing the topology of its real locus. This leads us to study two quantities related to the discriminant R∆ d ⊂ RH 0 (X, L d ), that is the subset of sections which do not vanish transversally along RX. More precisely, we will consider the volume (with respect to the Gaussian measure µ d ) of tubular neighborhoods of R∆ d and the function "distance to the discriminant". Such quantities have already been observed to be important in the case of Kostlan polynomials in [9, Section 4], however in our general framework the lack of symmetries makes the computation of those more delicate and requires the use of the Bergman kernel's estimates along the diagonal [START_REF] Berman | A direct approach to Bergman kernel asymptotics for positive line bundles[END_REF][START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF][START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF].

In particular, denoting by dist R∆ d (s) the distance (induced by the L 2 -scalar product (2)) from a section s to the discriminant R∆ d , we obtain the uniform estimate (see Lemma 3.1):

dist R∆ d (s) = min x∈RX s(x) 2 h d d n + ∇s(x) 2 h d d n+1 1/2 π n/2 + O(1/d)
as d → ∞. We believe that this formula has an independent interest.

Finally, let us conclude this section by pointing out that, while in the present paper we are interested in some rare events (that is, real algebraic hypersurfaces with rich topology), the expected value E[b i (RZ s d )] of the i-th Betti number of RZ s d is bounded from below and from above by respectively c i,n d n/2 and C i,n d n/2 , for some positive constants 0 < c i,n ≤ C i,n , see [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF][START_REF] Gayet | Lower estimates for the expected Betti numbers of random real hypersurfaces[END_REF]. Moreover, in the case of the 0-th Betti number (that is, for the number of connected components), it is known that lim d→∞ 1

d n/2 E[b 0 (RZ s d )]
exists and is positive [START_REF] Nazarov | Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions[END_REF].

1.4. Idea of the proof of Theorem 1.5. In this section, we sketch the proof of Assertion (2) of Theorem 1.5, the proof of Theorem 1.5 [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] is similar. We want to prove that, with very high probability, the real vanishing locus of a real section s of L d is ambient isotopic to the real vanishing locus of a real section s of L d-k .

The rst fact we will use is the existence of a real section σ of L k , for some suitable even k ∈ 2N large enough, with the properties that σ vanishes transversally and RZ σ = ∅ (see Proposition 2.1). In order to obtain such section σ, we consider an integer m such that L m is very ample and a basis {s 1 , . . . , s N } is a basis of RH 0 (X, L m ). Then, σ is any general small perturbation of the section N i=1 s ⊗2 i of L 2m . Let us dene RH d,σ to be the vector space of real global sections s ∈ RH 0 (X, L d ) such that s vanishes along the vanishing locus Z σ of σ. We also denote by RH ⊥ d,σ the orthogonal complement of RH d,σ with respect to the L 2 -scalar product dened in Equation (2). Then, for any section s ∈ RH 0 (X, L d ), there exists an unique decomposition

s = s ⊥ σ + s 0 σ with s 0 σ ∈ RH d,σ and s ⊥ σ ∈ RH ⊥ d,σ .
The fundamental point, that we will prove in Section 2.2 using the theory of logarithmic and partial Bergman kernels [START_REF] Coman | On the rst order asymptotics of partial Bergman kernels[END_REF][START_REF] Sun | Logarithmic bergman kernel and conditional expectation of gaussian holomorphic elds[END_REF], is that the "orthogonal component" s ⊥ σ of s has a very small C 1 -norm along the real locus RX. A geometric reason why this is true is that the space RH ⊥ d,σ is generated by the peak sections [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF] which have a peak on Z σ and, as Z σ ∩ RX = ∅, the pointwise C 1 -norm of these peak sections is very small along RX (indeed, a peak section has a very small C 1 -norm on any compact disjoint from its peak).

From the fact that s ⊥ σ has a very small C 1 -norm along the real locus RX, we deduce that s is a "small pertubation" of s 0 σ : Thom's Isotopy Lemma would therefore imply that the pairs (RX, RZ s ) and (RX, RZ s 0 σ ) are isotopic if s 0 σ has a big enough C 1 -norm along RX. This last implication can be translated in terms of distance from s 0 σ to the discriminant R∆ d , that is the space of real sections which do not vanish transversally along RX: if s 0 σ is far enough away from the discriminant, then the pairs (RX, RZ s ) and (RX, RZ s 0 σ ) are isotopic. Using the Bergman kernel, we are able to estimate the function "distance to the discriminant" (Lemma 3.1). These estimates, together with an approach similar to [9, Section 4], allows us to prove that, with very high probability, s 0 σ is far enough away from the discriminant, so that, with very high probability, the pairs (RX, RZ s ) and (RX, RZ s 0 σ ) are isotopic (Lemmas 4.3 and 4.4).

Finally, we prove that the section s 0 σ can be written as σ ⊗ s , for some real section s of L d-k . In particular, as σ does not have any real zero, we have the equality RZ s 0 σ = RZ s , which proves Theorem 1.5. 1.5. Organization of the paper. The paper is organized as follows.

In Section 2, we prove the existence of a real section σ of L k with empty real vanishing locus and then we will study the real sections of L d which vanish along Z σ . This leads us to consider logarithmic and partial Bergman kernels in Section 2.2.

In Section 3, we study the geometry of the discriminant R∆ d ⊂ RH 0 (X, L d ) and compute several quantities related to it: its degree, the volume (with respect to the Gaussian measure µ d ) of tubular neighborhoods and the function "distance to the discriminant".

In Section 4, we prove our main results, namely Theorems 1.2, 1.3 and 1.5. Finally, in Section 5, we study the depth of the nests of real algebraic curves inside some real algebraic surfaces, namely Hirzebruch surfaces (Theorem 5.3) and Del Pezzo surfaces (Theorem 5.7).

Sections vanishing along a fixed hypersurface

In this section, we prove the existence of a real global section σ of L k with empty real vanishing locus and we study the real sections of L d which vanish along Z σ .

2.1.

A global section with empty real vanishing locus. Let (L, c L ) be an ample real holomorphic line bundle over a real algebraic variety (X, c X ). A real section of L is a global holomorphic section s of L such that s

• c X = c L • s.
Proposition 2.1. There exists an even positive integer k 0 such that for any even k ≥ k 0 there exists a real section σ of L k with the following properties: (i) σ vanishes transversally and (ii) RZ σ is empty. Proof. Let m 0 be the smallest integer such that L m 0 is very ample and set k 0 = 2m 0 . For any integer m ≥ m 0 , x a basis s 1 , . . . , s Nm of RH 0 (X, L m ) and consider the real section

s = Nm i=1 s ⊗2
i , which is a real section of L 2m whose real vanishing locus is empty. Remark that any small perturbation of s inside RH 0 (X, L 2m ) will have empty real vanishing locus and that the discriminant (i.e. the sections which do not vanish transversally) is an algebraic hypersurface of RH 0 (X, L 2m ). We can then nd a small perturbation σ of s which has the desired properties, namely σ is a real global section of L 2m vanishing transversally and whose real vanishing locus is empty.

Denition 2.2. Let σ ∈ RH 0 (X, L k ) be a section given by Proposition 2.1, where k is a xed large enough integer, and let Z σ be its vanishing locus. For any integer , we will use the notation σ to designate the section σ ⊗ of L k . For any pair of integers d and , let us dene the space H d,σ to be the subspace of H 0 (X, L d ) consisting of sections which vanish along Z σ with order at least . Similarly, the vector space RH d,σ denotes the subspace of RH 0 (X, L d ) of real sections which vanish along Z σ with order at least .

Proposition 2.3. Let σ ∈ RH 0 (X, L k ) be a section given by Proposition 2.1, for some xed k large enough. For any pair of integers d and , the space H d,σ coincides with the space of section s ∈ H 0 (X, L d ) such that s = σ ⊗ s , for some s ∈ H 0 (X, L d-k ). Similarly, the space RH d,σ coincides with the space of real section s ∈ RH 0 (X,

L d ) such that s = σ ⊗ s , for some s ∈ RH 0 (X, L d-k ). Proof. If a section s of H 0 (X, L d ) is of the form s = σ ⊗ s , for some s ∈ RH 0 (X, L d-k ), then s ∈ H d,σ
(that is, s vanishes along Z σ with order at least ). Moreover if such section is real then s ∈ RH d,σ . Let us then prove the other inclusion. Let s ∈ H 0 (X, L d ) be such that s vanishes along Z σ with order at least . We want to prove that there exists s ∈ H 0 (X, L d-k ) such that s = σ ⊗ s . For this, let {U i } i be a cover of X by open subsets such that the line bundle L is obtained by gluing together the local models {U i × C} i using the maps

f ij : (x, v) ∈ U i ∩ U j × C → (x, g ij (x)v) ∈ (U i ∩ U j × C, where g ij : U i ∩ U j → C * are holomorphic maps.
Remark that, for any integer d, the line bundle L d is obtained by gluing together the same local models {U i × C} i using the maps

f d ij : (x, v) ∈ U i ∩ U j × C → (x, g d ij (x)v) ∈ (U i ∩ U j × C.
Using these trivializations, a global section s of L d is equivalent to the data of local holomorphic functions s i on U i such that s i = g d ij s j on U i ∩ U j . We can then dene locally the section s we are looking for by setting s i = s i σ i . Indeed, these are holomorphic functions because s i vanishes along the zero set of σ i with order bigger or equal than . With this denition, it is straightforward to check that the family {s i } i glues together and dene a global section s of L d-k with the property that s = σ ⊗ s .

The proof for the real case follows from the complex case and from that fact that if s and σ are real sections, then s is also real.

2.2.

L 2 -orthogonal complement to RH d,σ and C 1 -estimates. In this section, we equip L with a real Hermitian metric h with positive curvature and consider the induced L 2 -scalar product on RH 0 (X, L d ) given by Equation [START_REF] Beauville | Complex algebraic surfaces[END_REF]. The main goal is to study the real sections of L d which are L 2 -orthogonal to the space RH d,σ dened in Denition 2.2. 

Denition 2.4 (C

1 -norm). Let K ⊂ X be a compact set. We dene the C 1 (K)-norm of a global section s of L d to be s C 1 (K) = max x∈K s(x) h d + max x∈K ∇s(x) h d ,
h d = n i=1 ∇ v i s(x) 2 h d , with v 1 , . . . , v n an orthonormal basis of T x X. Remark 2.5. Recall that RH d,σ = H d,σ ∩ RH 0 (X, L d ).
The orthogonal complement (with respect to the L 2 -scalar product given by ( 2)) of RH d,σ inside RH 0 (X, L d ) coincides with

H ⊥ d,σ ∩ RH 0 (X, L d ).
Here, H ⊥ d,σ is the orthogonal complement of H d,σ with respect to the L 2 -Hermitian product dened by ( 4)

s 1 , s 2 L 2 = X h d (s 1 , s 2 ) ω ∧n n!
for any pair of global sections s 1 , s 2 ∈ H 0 (X, L d ).

Proposition 2.6. Let σ ∈ RH 0 (X, L k ) be a section given by Proposition 2.1, for some xed k large enough. There exists a positive real number t 0 such that, for any t ∈ (0, t 0 ), we have the uniform estimate

τ C 1 (RX) = O(d -∞ ) for any real section τ ∈ RH ⊥ d,σ td with τ L 2 = 1, as d → ∞.
Here, RH d,σ td is as in Denition 2.2 and td is the greatest integer less than or equal to td.

Proof. Let τ 1 , . . . , τ m d be an orthonormal basis of H ⊥ d,σ td and s 1 , . . . , s N d -m d be an orthonormal basis of H d,σ td (the Hermitian products are the ones induced by Equation ( 4)). We will denote by

P ⊥ d (x) = m d i=1 τ i (x) 2
h d and by P 0 [START_REF] Coman | On the rst order asymptotics of partial Bergman kernels[END_REF]. By [7, Theorem 1.3], for any compact subset K of X which is disjoint from Z σ and for any r ∈ N, there exists a positive real number t 0 (K) such that, for any t < t 0 (K), one has

d (x) = N d -m d i=1 s i (x)
P d -P 0 d C r (K) = O(d -∞
). Now, we have P ⊥ d = P d -P 0 d , so that, by choosing K = RX, which is disjoint from Z σ by construction of σ, we obtain

P ⊥ d C r (RX) = O(d -∞
), as soon as t < t 0 = t 0 (RX). This implies that for any t < t 0 and any τ ∈ 4)). We will denote by

H ⊥ d,σ td , with τ L 2 = 1, one has τ C 1 (RX) = O(d -∞ ) and
P ⊥ d (x) = m d i=1 τ i (x) 2
h d and by d equals the logarithmic Bergman kernel associated with the subvariety Z σ , see [START_REF] Sun | Logarithmic bergman kernel and conditional expectation of gaussian holomorphic elds[END_REF]. In [START_REF] Sun | Logarithmic bergman kernel and conditional expectation of gaussian holomorphic elds[END_REF]Theorem 3.4], it is proved that for any sequence of compact sets

P 0 d (x) = N d -m d i=1 s i (x)
K d whose distance from Z σ is bigger than log d √ d , one has P d -P 0 d C r (K d ) = O(d -∞ ).
The proof uses the fact that the C r -norm of a peak section [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF] at a point z d (depending on d) is O(d -∞ ), as soon as the distance between the peak and the point z d is bigger than log d √ d . This is a direct consequence of the fact that the C r -norm of the Bergman kernel at a pair of points 

(x d , y d ) with dist(x d , y d ) > log d √ d is O(d -∞ ).

Geometry of the discriminant: distance, degree and volume

Let R∆ d ⊂ RH 0 (X, L d ) denote the discriminant, that is the subset of sections which do not vanish transversally along RX. In this section, we will study and compute several quantities related to the discriminant: its degree, the volume (with respect to the Gaussian measure µ d ) of tubular conical neighborhoods (see Denition 3.3) and the function "distance to the discriminant".

As in the previous section, we equip L with a real Hermitian metric h with positive curvature and consider the induced L 2 -scalar product on RH 0 (X, L d ) given by Equation (2). Given s ∈ RH 0 (X, L d ), the next lemma gives us an explicit formula for computing the distance from s to the discriminant R∆ d . This distance is computed with respect to the L 2 -scalar product, that is

dist R∆ d (s) := min τ ∈R∆ d s -τ L 2 .
Lemma 3.1 (Distance to the discriminant). Let (L, c L ) be a real Hermitian ample line bundle over a real algebraic variety X of dimension n. Let denote by • h d the Hermitian metric on L d induced by a Hermitian metric h on L with positive curvature. Then, as d → ∞, we have the uniform estimate

dist R∆ d (s) = min x∈RX s(x) 2 h d d n + ∇s(x) 2 h d d n+1 1/2 π n/2 + O(1/d) .
Proof. We will follow the approach of [22, Section 3] which we combine with Bergman kernel estimates along the diagonal [START_REF] Dai | On the asymptotic expansion of Bergman kernel[END_REF][START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF][START_REF] Berman | A direct approach to Bergman kernel asymptotics for positive line bundles[END_REF][START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF]. Let us dene R∆ d,x to be the linear subspace of real sections which do not vanish transversally to x, that is R∆ d,x = {s ∈ RH 0 (X, L d ), s(x) = 0 and ∇s(x) = 0}. Let us x some notations:

• We x once for all an orthonormal basis s 1 , . . . , s N d of RH 0 (X, L d ) (with respect to the L 2 -scalar product (2)) and a trivialization e L of L around x whose norm equals 1 at x. • Any section s i of the basis can be written as s i = f i e d L . We will denote by f (x) the line vector f 1 (x), . . . , f N d (x) ∈ R N d . • We will also x an orthonormal basis { ∂ ∂x 1 , . . . , ∂ ∂xn } of T x RX (the Riemannian metric is the one induced by the curvature form ω of the real Hermitian line bundle (L, h)).

• We denote by ∇ j the covariant derivative along ∂ ∂x j on L d induced by the metric h d . Locally, the covariant derivative along ∂ ∂x j can be written as ∂ j := ∂ ∂x j + λ j (that is the sum of the derivative along ∂ ∂x j plus a term of order 0). • We will denote by M the (n+1)×N d matrix whose n+1 lines are

f (x), ∂ 1 f (x), . . . , ∂ n f (x),
where

∂ j f (x) = (∂ j f 1 (x), . . . , ∂ j f N d (x)) ∈ R N d .
Using these notations, a real holomorphic section s = i a i s i lies in R∆ d,x if and only if s(x) = 0 and ∇ j s(x) = 0 for any j ∈ {1, . . . , n}. Using the local picture, these conditions can be written as N d i=1 a i f i (x) = 0 and N d i=1 a i ∂ j f i (x) = 0 for any j ∈ {1, . . . , n}. We now compute dist(s, R∆ d,x ), for any s ∈ RH 0 (X, L d ). By denition, the distance dist(s, R∆ d,x ) equals min s+τ ∈R∆ d,x τ L 2 , that is, it equals the L 2 -norm of a section τ which is orthogonal to R∆ d,x and such that s + τ ∈ R∆ d,x . Writing s = i a i s i and τ = i b i s i , the last condition reads M (a + b) = 0, where a = (a 1 , . . . , a N d ) t , b = (b 1 , . . . , b N d ) t and the multiplication is the standard matrix multiplication. The condition "τ is orthogonal to R∆ d,x " can be written as "there exists α = (α 0 , . . . , α n ) t ∈ R n+1 such that b = M t α". Putting together these two conditions, we obtain M (a + M t α) = M a + M M t α = 0. Now, denoting A = M M t , we have α = -A -1 M a, so that b = -M t A -1 M a. We then obtain

(5) dist 2 (s, R∆ d,x ) = τ 2 L 2 = b 2 = M t A -1 M a 2 = a t M t (A -1 ) t M M t A -1 M a = a t M t (A -1 ) t M a.
Remark now that A is a (n + 1) × (n + 1)-symmetric matrix of the following form

     f (x), f (x) ∂ 1 f (x), f (x) • • • ∂ n f (x), f (x) f (x), ∂ 1 f (x) ∂ 1 f (x), ∂ 1 f (x) • • • ∂ n f (x), ∂ 1 f (x) . . . . . . . . . . . . f (x), ∂ n f (x) ∂ 1 f (x), ∂ n f (x) • • • ∂ n f (x), ∂ n f (x)     
where •, • denotes the standard scalar product on R N d . We can see that the quantities f (x), f (x) , ∂ i f (x), f (x) and ∂ i f (x), ∂ j f (x) equal the value of the Bergman kernel and of its rst derivatives at (x, x). The asymptotics of these quantities are well-known (see, for instance, [START_REF] Dai | On the asymptotic expansion of Bergman kernel[END_REF][START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF][START_REF] Berman | A direct approach to Bergman kernel asymptotics for positive line bundles[END_REF][START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF]). In particular, we have

f (x), f (x) = d n π n + O(d n-1 ), ∂ i f (x), f (x) = O(d n-1 ), ∂ i f (x), ∂ j f (x) = O(d n ) for i = j and ∂ i f (x), ∂ i f (x) = d n+1 π n + O(d n ), as d → ∞. As a consequence, as d → ∞, the matrix A equals      d n π n + O(d n-1 ) O(d n-1 ) • • • O(d n-1 ) O(d n-1 ) d n+1 π n + O(d n ) • • • O(d n ) . . . . . . . . . . . . O(d n-1 ) O(d n ) • • • d n+1 π n + O(d n )      =      d n π n 0 • • • 0 0 d n+1 π n • • • 0 . . . . . . . . . . . . 0 0 • • • d n+1 π n      Id+O(d -1 )
so that A -1 equals

A -1 =      d -n 0 • • • 0 0 d -n-1 • • • 0 . . . . . . . . . . . . 0 0 • • • d -n-1      π n Id + O(d -1 ) .
In particular, recalling the denition of the matrix M and the vector a given above, we get that (5) equals

s(x) 2 h d d n + ∇s(x) 2 h d d n+1
π n + O(1/d) . Taking the minimum over x ∈ RX, we obtain the result. Lemma 3.2 (Degree of the discriminant). Let (L, c L ) be a real ample line bundle over a real algebraic variety X of dimension n and denote by R∆ d the discriminant in RH 0 (X, L d ).

Then, there exists an homogeneous real polynomial Q d vanishing on R∆ d and such that

deg(Q d ) = (n + 1) X c 1 (X) n d n + O(d n-1 ).
Proof. Let ∆ d ⊂ H 0 (X, L d ) be the (complex) discriminant. First, remark that if s ∈ R∆ d , then s ∈ ∆ d , so that, if we nd a real polynomial vanishing on ∆ d , then it will vanish also on R∆ d . We will then nd a polynomial vanishing along ∆ d and estimate its degree. Remark that ∆ d is a cone in H 0 (X, L d ), so that the degree of ∆ d equals the number of intersection points of a generic line γ in P H 0 (X, L d ) with P(∆ d ). We remark that a line

γ in P H 0 (X, L d ) induces a Lefschetz pencil u : X CP 1 , by sending x ∈ X to [s 1 (x) : s 2 (x)] ∈ CP 1
, where s 1 and s 2 are two distinct sections lying on γ. Now, the cardinality of the intersection γ ∩ P(∆ d ) corresponds exactly to the number of singular bers of the Lefschetz pencil u.

By [1, Proposition 2.3], we then have

deg P(∆ d ) = (n + 1) X c 1 (X) n d n + O(d n-1
). In particular, there exists an homogenous polynomial

Q d of degree deg P(∆ d ) vanishing on ∆ d . Also, if s ∈ ∆ d , then we have c L • s • c X ∈ ∆ d , so that ∆ d is a real algebraic hypersurface in H 0 (X, L d ) (with respect to the natural real structure s → c L d • s • c X ).
It is then possible to choose the polynomial Q d to be real. Denition 3.3. A tubular conical neighborhood is a tubular neighborhood which is a cone (that is, if s is in the neighborhood, then λs is also in the neighborhood, for any λ ∈ R * ).

To dene a tubular conical neighborhood of R∆ d , it is then enough to dene its trace on the unit sphere S d := {s ∈ RH 0 (X, L d ), s L 2 = 1}. We also denote by S∆ d the trace of the discriminant on S d , that is S∆ d = S d ∩ R∆ d . The next lemma estimates the measure of very small tubular conical neighborhoods of the discriminant R∆ d , that are tubular conical neighborhoods whose trace on S d is of the form {s ∈ S d , dist(s, S∆ d ) < r d }, for r d a sequence of real numbers which goes to zero at least as d -2n . Lemma 3.4 (Volume of tubular conical neighborhoods). Let (L, c L ) be a real Hermitian ample line bundle over a real algebraic variety (X, c X ) of dimension n. Then there exists a positive constant c, such that, for any sequence r d verifying r d ≤ cd -2n , one has

µ d {s ∈ RH 0 (X, L d ), dist R∆ d (s) ≤ r d s L 2 } ≤ O(r d d 2n ).
Here, µ d is the Gaussian probability measure dened in Equation [START_REF] Berman | A direct approach to Bergman kernel asymptotics for positive line bundles[END_REF]. Proof. We start by a standard remark about Gaussian measures on Euclidian spaces: let us denote by S d the unit sphere in RH 0 (X, L d ), and by ν d the probability measure induced by its volume form (i.e. for any

A ⊂ S d , ν d (A) = Vol(A)Vol(S d ) -1 ), then the Gaussian measure of every cone C d in RH 0 (X, L d ) equals ν d (C d ∩ S d ).
We apply this remark to the tubular conical neighborhood 

C d = {dist R∆ d (s) ≤ r d s L 2 } and
ν d {s ∈ S d , dist(s, S∆ d ) ≤ r d } ≤ cN d d n r d
for some constant c > 0, where N d = dim RH 0 (X, L d ). By Riemann-Roch Theorem, we have that N d = O(d n ), so that the right-hand side of ( 6) is O(r d d 2n ). The lemma then follows from the fact that the ν d -measure of the set {s ∈ S d , dist(s, S∆ d ) ≤ r d } appearing in ( 6) equals the Gaussian measure of its cone. This implies

µ d {s ∈ RH 0 (X, L d ), dist R∆ d (s) ≤ r d s L 2 } ≤ O(r d d 2n ),
which concludes the proof.

Proof of the main results

In this section, we prove our main results, namely Theorems 1.2, 1.3 and 1.5. We will use the notations of the previous sections, in particular we consider an ample Hermitian real holomorphic line bundle (L, c L , h) over a real algebraic variety (X, c X ) and we denote by µ d the Gaussian measure on RH 0 (X, L d ) dened in Equation (3). Notation 4.1. Let σ ∈ RH 0 (X, L k ) be a section given by Proposition 2.1, for some xed k large enough. Let d and be two positive integers and let RH d,σ be as in Denition 2.2. For any real section s ∈ RH 0 (X, L d ) there exists an unique decomposition s

= s ⊥ σ + s 0 σ with s 0 σ ∈ RH d,σ and s ⊥ σ ∈ RH ⊥ d,σ
(the orthogonal is with respect to the L 2 -scalar product dened in Equation ( 2)). Proposition 4.2. Let σ ∈ RH 0 (X, L k ) be a section given by Proposition 2.1, for some xed k large enough. The following holds.

(1) There exists a positive real number t 0 such that for any t ∈ (0, t 0 ) the following happens. Let C > 0 and r ∈ N. For any w d ≥ Cd -r , there exists d 0 ∈ N, such that for any d ≥ d 0 , we have

µ d {s ∈ RH 0 (X, L d ), s ⊥ σ td C 1 (RX) ≥ w d s L 2 } = 0.
(2) There exist two positive constants c 1 and c 2 such that, for any sequence

w d ≥ c 1 e -c 2 √ d log d , we have µ d {s ∈ RH 0 (X, L d ), s ⊥ σ C 1 (RX) ≥ w d s L 2 } = 0.
If the real Hermitian metric on L is analytic, then the last estimate is true for any sequence

w d ≥ c 1 e -c 2 d .
Here, s ⊥ σ and s ⊥ σ td are given by Notation 4.1. Proof. Let us prove point [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF]. Let us x t 0 given by Proposition 2.6 and take t < t 0 . Let us denote by S d the unit sphere in RH 0 (X, L d ), and by ν d the probability measure induced by its volume form (i.e. for any A ⊂ S d , ν d (A) = Vol(A)Vol(S d ) -1 ). Then, the Gaussian measure of every cone

C d in RH 0 (X, L d ) equals ν d (C d ∩ S d ).
We apply this remark to the cone we are interested in, that is

C d = s ∈ RH 0 (X, L d ), s ⊥ σ td C 1 (RX) ≥ w d s L 2 ,
and obtain [START_REF] Coman | On the rst order asymptotics of partial Bergman kernels[END_REF] 

µ d s ∈ RH 0 (X, L d ), s ⊥ σ td C 1 (RX) ≥ w d s L 2 = ν d s ∈ S d , s ⊥ σ td C 1 (RX) ≥ w d .
Now, by Proposition 2.6, as s ⊥ σ td L 2 ≤ 1, there exists a constant c r > 0 such that

s ⊥ σ td C 1 (RX) ≤ c r d -r-1
, which is strictly smaller than w d , for d large enough. We then obtain

ν d s ∈ S d , s ⊥ σ td C 1 (RX) ≥ w d = 0,
which, together with [START_REF] Coman | On the rst order asymptotics of partial Bergman kernels[END_REF], proves point (1) of the result. The proof of point [START_REF] Beauville | Complex algebraic surfaces[END_REF] follows the same lines, using Proposition 2.7 instead of Proposition 2.6.

Lemma 4.3. There exists a positive integer d 0 such that for any d ≥ d 0 and any real section s ∈ RH 0 (X, L d ) \ R∆ d , the following happens. For any real global section s ∈ RH 0 (X, L d ) such that

s -s C 1 (RX) < d n/2 4π n/2 dist R∆ d (s),
we have that the pairs (RX, RZ s ) and (RX, RZ s ) are isotopic.

Proof. By Lemma 3.1, there exists d 0 such that for any d ≥ d 0 one has

dist R∆ d (s) < 2π n/2 min x∈RX s(x) 2 h d d n + ∇s(x) 2 h d d n+1 1/2 .
In particular, for any d ≥ d 0 , the inequality s -

s C 1 (RX) < d n/2 4π n/2 dist R∆ d (s) implies (8) 
s -s C 1 (RX) < 1 2 min x∈RX s(x) 2 h d + ∇s(x) 2 h d d 1/2 . Now, denoting δ(s) := min x∈RX s(x) 2 h d + ∇s(x) 2 h d d 1/2
and following the lines of [9,

Proposition 3], we have that the inequality [START_REF] Dai | On the asymptotic expansion of Bergman kernel[END_REF] implies that the pairs (RX, RZ s ) and (RX, RZ s ) are isotopic.

Lemma 4.4. Let σ ∈ RH 0 (X, L k ) be a section given by Proposition 2.1, for some xed k large enough. Then, we have the following estimates as d → ∞.

(1) There exists t 0 > 0 such that, for any t ∈ (0, t 0 ), we have

µ d s ∈ RH 0 (X, L d ), s ⊥ σ td C 1 (RX) < d n/2 4π n/2 dist R∆ d (s) ≥ 1 -O(d -∞ ).
(2) There exists a positive c > 0 such that

µ d s ∈ RH 0 (X, L d ), s ⊥ σ C 1 (RX) < d n/2 4π n/2 dist R∆ d (s) ≥ 1 -O(e -c √ d log d ).
Moreover, if the real Hermitian metric on L is analytic, then the last measure is even bigger then 1 -O(e -cd ).

Proof. First, remark that, by Proposition 3.4, for any m ∈ N, setting

r d = C 1 d -2n-m , one has (9) 
µ d s ∈ RH 0 (X, L d ), dist R∆ d (s) > r d s L 2 ≥ 1 -O(d -m ).
Also, by point (1) of Proposition 4.2, for any t < t 0 , any integer r, any sequence w d of the form C 2 d -r and any d large enough, we have (10)

µ d s ∈ RH 0 (X, L d ), s ⊥ σ td C 1 (RX) < w d s L 2 = 1.
Putting together ( 9) and ( 10), we have that, for any such sequences r d and w d ,

µ d s ∈ RH 0 (X, L d ), s ⊥ σ td C 1 (RX) < w d r d dist R∆ d (s) ≥ 1 -O(d -m ). (11) 
By choosing

w d = d n/2
4π n/2 r d , we then obtain that for any m ∈ N

µ d s ∈ RH 0 (X, L d ), s ⊥ σ td C 1 (RX) < d n/2 4π n/2 dist R∆ d (s) ≥ 1 -O(d -m ) (12) 
which proves the point (1) of the proposition. Point [START_REF] Beauville | Complex algebraic surfaces[END_REF] of the proposition follows the same lines, using point (2) of Proposition 4.2 and setting

r d = d -2n e -c √ d
, where c is given by point (2) of Proposition 4.2.

We now prove Theorems 1.5, 1.2 and 1.3.

Proof of Theorem 1.5. Let us start with the proof of point [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] of the theorem. Let σ ∈ RH 0 (X, L k ) be a section given by Proposition 2.1, for some xed k large enough. We want to prove that there exists b 0 < 1 such that for any b > b 0 , the measure (13) ) are isotopic. This implies that the measure [START_REF] Gayet | Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF] is bigger than the Gaussian measure of the set [START_REF] Harnack | Ueber die Vieltheiligkeit der ebenen algebraischen Curven[END_REF] 

µ d s ∈ RH 0 (X, L d ), ∃ s ∈ RH 0 (X, L bd ) such that (RX, RZ s ) ∼ (RX, RZ s ) equals 1 -O(d -∞ ),
s ∈ RH 0 (X, L d ), s ⊥ σ td C 1 (RX) < d n/2 4π n/2 dist R∆ d (s)
which, in turn, by the point [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] of Proposition 4.4, is bigger than 1 -O(d -∞ ). We have then proved that the pair (RX, RZ s ) is isotopic to the pair (RX, RZ s 0 σ td

) with probability 1 -O(d -∞ ). Now, s 0 σ td ∈ RH d,σ td which implies, by Proposition 2.3, that there exists s ∈ RH 0 (X, L d-k td ) such that s 0 σ td = σ td ⊗ s . Assertion [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] of the theorem then follows from the fact that the real zero locus of s 0 σ td coincides with the real zero locus of s . Indeed, the real zero locus of s 0 σ td equals RZ σ ∪ RZ s and this is equal to RZ s , because RZ σ = ∅. Assertion [START_REF] Beauville | Complex algebraic surfaces[END_REF] of the theorem follows the same lines, using the orthogonal decomposition s = s ⊥ σ + s 0 σ and Assertion (2) of Proposition 4.4. Proof of Theorems 1.2. Recall that we want to prove that there exists a 0 < v(L) such that, for any a > a 0 , we have

µ d {s ∈ RH 0 (X, L d ), b * (RZ s ) < ad n } = 1 -O(d -∞ ) as d → ∞. Let a 0 := X c 1 (L) n b n 0
, where b 0 is given by point (1) of Theorem 1.5 and let a > a 0 .

By point [START_REF] Ancona | Expected number and distribution of critical points of real Lefschetz pencils[END_REF] of Theorem 1.5, for any b > b 0 , the real zero locus of a global section s is dieomorphic to the real zero locus of a global section s of L bd with probability 1-O(d -∞ ). Now, by Smith-Thom inequality (see Equation ( 1)), the total Betti number b * (RZ s ) of the real zero locus a generic section s of L bd is smaller or equal than b * (Z s ), which, by [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF]Lemma 3], has the asymptotic b * (Z s ) = X c 1 (L) n bd n + O(d n-1 ). In particular, with probability 1 -O(d -∞ ), the total Betti number b * (RZ s ) of the real zero locus of a section s of L d is smaller than X c 1 (L) n bd n + d n , for any > 0, as d → ∞. Choosing small enough, we can nd 1 > b > b 0 such that X c 1 (L) n b n + < a, which implies the result.

Proof of Theorem 1.3. We want to prove that, for any a > 0, there exists c > 0 such that

µ d s ∈ RH 0 (X, L d ), b * (RZ s ) < b * (Z s ) -ad n-1 ≥ 1 -O(e -c √ d log d )
as d → ∞ (and also the similar estimate with 1 -O(e -cd ) in the right-hand side, if the real Hermitian metric on L is analytic).

Remark that the total Betti number of the zero locus Z s a generic section s of L d has the asymptotic [START_REF] Hezari | Quantitative upper bounds for Bergman kernels associated to smooth Kähler potentials[END_REF] b

* (Z s ) = X c 1 (L) n d n - X c 1 (L) n-1 ∧ c 1 (X)d n-1 + O(d n-2 ),
as d → ∞, where c 1 (X) is the rst Chern class of X. (This is a classical estimate which follows from the adjunction formula and Lefschetz hyperplane section theorem. A proof of this estimates follows the lines of [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF]Lemma 3], by just taking care of the second term of the asymptotic which can be derived using [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF]Lemma 2]). Similarly, for any k ∈ N, the zero locus of a generic section s of L d-k is such that [START_REF] Itenberg | Welschinger invariants of real del Pezzo surfaces of degree ≥ 2[END_REF] 

b * (Z s ) = X c 1 (L) n d n - X c 1 (L) n-1 ∧ c 1 (X) + nk X c 1 (L) n d n-1 + O(d n-2 ),
as d → ∞. Let us choose once for all an integer k big enough such that nk X c 1 (L) n > a.

In particular, by ( 15) and ( 16), the zero loci of generic sections s and s of L d and L d-k are such that [START_REF] Itenberg | Asymptotically maximal real algebraic hypersurfaces of projective space[END_REF] b * (Z s ) < b * (Z s ) -ad n-1 , d → ∞. Now, by the Assertion (2) of Theorem 1.5, the probability that the real zero locus of a section s of L d is dieomorphic to the real zero locus of a section s of L d-k equals

1 -O(e -c √ d log d ) (or 1 -O(e -cd
), if the real Hermitian metric on L is analytic). By Smith-Thom inequality and by [START_REF] Itenberg | Asymptotically maximal real algebraic hypersurfaces of projective space[END_REF], this implies that the probability of the event "the total Betti number of the real zero locus of a section s of L d is smaller than b * (Z s ) -ad n-1 " is bigger or equal than 1 -O(e -c √ d log d ) (or 1 -O(e -cd ), if the real Hermitian metric on L is analytic), which proves the theorem.

Real curves in algebraic surfaces and depth of nests

In this section, we study the nests dened by a random real algebraic curve inside a real algebraic surface. We will focus in particular on two examples: the Hirzebruch surfaces (Section 5.1) and the Del Pezzo surfaces (Section 5.2). The main results of the section (Theorems 5.3 and 5.7) say that, inside these surfaces, real algebraic curves with deep nests are rare, in the same spirit of Theorems 1.2 and 1.3. In order to dene what "deep nests" means in this context, we need to prove some bounds on the depth of nests (Propositions 5.2 and 5.5) which are well known to experts. These bounds play the same role that Smith-Thom inequality (1) plays for Theorems 1.2 and 1.3. Theorems 5.3 and 5.7 will also follows from our low degree approximation (Theorem 1.5). Denition 5.1. Let S be a real algebraic surface and let M be a connected component of the real part RS.

• An oval in M is an embedded circle S 1 → M which bounds a disk.

• Suppose that M is not dieomorphic to the sphere S 2 , then two ovals form an injective pair if one of the two oval is contained in the disk bounded by the other one. A nest N in M is a collection of ovals with the property that each pair of ovals in the collection is an injective pair.

• Suppose that M is dieomorphic to S 2 , then a nest N is a collection of ovals with the property that each connected component of M \ N is either a disk or an annulus. • The number of ovals which form a nest is called depth of the nest. 5.1. Nests in Hirzebruch surfaces. A Hirzebruch surface S is a compact complex surface which admits a holomorphic bration over CP 1 with ber CP 1 . Given a Hirzebruch surface S, then there exists a positive integer n such that S is isomorphic to the projective bundle P O CP 1 (n) ⊕ O CP 1 over CP 1 (see for example [START_REF] Beauville | Complex algebraic surfaces[END_REF]). We will denote such a Hirzebruch surface by Σ n . Remark that a Hirzebruch surface is simply connected, that Σ 0 is isomorphic to CP 1 × CP 1 and Σ 1 to CP 2 blown-up at a point.

The Hirzebruch surface Σ n admits a natural real structure c n , which we wix from now on, such that RΣ n is dieomorphic to a torus if n is even and to a Klein bottle if n is odd (see, for instance, [START_REF] Welschinger | Courbes algébriques réelles et courbes exibles sur les surfaces réglées[END_REF]Page 7]).

We denote by F n any ber of the natural bration Σ n → CP 1 and by B n the section P (O CP 1 (n) ⊕ {0}) of this bration. Remark that B n is a real algebraic curve and F n can be chosen to be a real algebraic curve. The homology classes

[F n ] and [B n ] form a basis of H 2 (Σ n , Z), with [F n ] • [F n ] = 0, [F n ] • [B n ] = 1 and [B n ] • [B n ] = n, where "•" denotes the intersection product of H 2 (Σ n , Z).
The second homology group H 2 (Σ n , Z) can be identied with the Picard group of Σ n . We say the an algebraic curve in Σ n realizes the class Proof. Let C be a real curve of bidegree (a, b), with a, b > 0. Let N be a nest of RC of depth l and choose a point p inside the innermost oval and a point q outside the outer oval of the nest. We can choose p and q so that they lie in the same ber F n of the bration Σ n → CP 1 and such that real locus of the ber RF n intersects the nest transversally. The real locus of the ber RF n intersects each of the l ovals of the nest in at least 2 points, so that RF n ∩ N ≥ 2l. On the other hand, by Bezout's theorem, we have that

RF n ∩ N ≤ [F n ] • [C] ≤ b, hence the result.
Theorem 5.3. Let (Σ n , c n ) be a real Hirzebruch surface and a and b be two positive integers.

(1) There exists a positive β 0 < b/2 such that for any β ∈ (β 0 , b/2 ), the probability that a real algebraic curve of bidegree (da, db) has a nest of depth ≥ βd is smaller or equal than O(d -∞ ). Proof. Notice that as a probability space we are considering the linear system associated with the divisor of bidegree (a, b), rather than the space of real sections of the associated line bundle. As noticed in Remark 1.4, these two probability spaces are equivalent for our purpose. By Assertion (1) of Theorem 1.5, the real locus of a real algebraic curve of bidegree (da, db) is ambient isotopic to the real locus of a real algebraic curve of bidegree dta , dtb with probability bigger or equal than 1 -O(d -∞ ), where t 0 < t < 1 for some t 0 . From this, using Proposition 5.2, we obtain that with probability bigger or equal than 1 -O(d -∞ ), the depth of a nest of a real algebraic curve of bidegree (da, db) is smaller or equal than dtb/2 . Setting β 0 = t 0 b/2 , we obtain Assertion (1).

The proof of the Assertion [START_REF] Beauville | Complex algebraic surfaces[END_REF] follows the same lines, by using Assertion (2) of Theorem 1.5 instead of Assertion (1). 5.2. Nests in Del Pezzo surfaces. An algebraic surface S is called a Del Pezzo surface, if the anticanonical bundle K * S is ample. We will say that a real algebraic curve inside S is of class d if it belongs to the real linear system dened by the real divisor -dK S , where d ∈ N.

The degree of a Del Pezzo surface is the self-intersection of the canonical class K S . Notation 5.4. We denote by m S the smallest value of -H • K S , where H is a real divisor such that -H • K S -1 ≥ 2.

When S has degree bigger or equal than 3, choosing H = -K S , we can see that m S is smaller or equal than the degree of S.

Proposition 5.5. Let (S, c S ) be a real Del Pezzo surface of degree bigger or equal than 3, with non empty real locus. Then, the depth of a nest of a real algebraic curve of class d is smaller or equal than dm S /2.

Proof. Let m S be the smallest value of -H • K S , where H is a real divisor with the property that -H • K S -1 ≥ 2. Fix such a real divisor H.

Let Z a real algebraic curve of class d and let N be a nest of RZ of depth l. Choose generic points p and q such that p is inside the innermost oval and q is outside the outer oval of the nest (if the connected component M where the nest is located is a sphere, then M \ N as exactly two disks, and one of the ovals bordering one of these two disks is the innermost oval and the other is the outer one). By [START_REF] Itenberg | Welschinger invariants of real del Pezzo surfaces of degree ≥ 2[END_REF], there exists a real rational curve C of class H whose real locus passes through p and q. This curve intersects each oval of the nest in at least two points, so that N ∩ RC ≥ 2l. On the other hand, by Bezout's theorem, we have that RC ∩ N ≤ -dK s • H = dm S , hence the result.

Remark 5.6. The same statement and proof also works for many degree 2 Del Pezzo surfaces (always using a real rational curves passing through 2 points, whose existence is ensured by the positivity of certain Welschinger invariants [START_REF] Itenberg | Welschinger invariants of real del Pezzo surfaces of degree ≥ 2[END_REF]). However, there exist degree 2 Del Pezzo surfaces for which such curves may not exist, as explained in [START_REF] Itenberg | Welschinger invariants of real del Pezzo surfaces of degree ≥ 2[END_REF]Section 2.3]. To avoid explaining these dierences, we have preferred to restrict ourselves only to Del Pezzo surfaces of degree greater than or equal to 3. Theorem 5.7. Let (S, c S ) be a Del Pezzo surface of degree bigger or equal than 3, with non empty real locus. Then the following happens.

(1) There exists a positive α 0 < m S /2 such that for any α ∈ (α 0 , m S /2 ), the probability that a real curve of class d has a nest of depth ≥ αd is smaller or equal than O(d -∞ ).

( Remark 5.8. The degree of a Del Pezzo surface is at least 1 and at most 9. The only degree 9 Del Pezzo surface is the projective plane CP 2 and, in this particular case, Theorem 5.7 follows from [START_REF] Niang | Low degree approximation of random polynomials[END_REF]Theorem 9].

Proof of Theorem 5.7. The proof of the follows the same lines of the proof of Theorem 5.3, using Proposition 5.5 instead of Proposition 5.2.
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 3 Statement of the main results. The zero locus of a real global section s d of L d is denoted by Z s d and its real locus by RZ s d . The total Betti number b * (Z s d ) of Z s d veries the asymptotic b * (Z s d ) = v(L)d n + O(d n-1

  ) For any k ∈ N there exists c > 0 such that the following happens: the probability that, for a real section s of L d , there exists a real section s of L d-k such that the pairs (RX, RZ s ) and (RX, RZ s ) are isotopic, is at least1 -O(e -c √ d log d ), as d → ∞.If moreover the real Hermitian metric on L is analytic, this probability is at least 1 -O(e -cd ), as d → ∞ Assertion (1) (resp. assertion (2)) of Theorem 1.5, together with the Smith-Thom inequality (1) and of the asymptotics b *

  1.5) by a degree b √ d log d Kostlan polynomial, b > 0, with probability 1 -O(d -a ), with a > 0 depending on b.

  Now, the Bergman kernel decreases exponentially fast outside any xed neighborhood of the diagonal, that is its C r -norm at a xed pair of distinct points (x, y) is O(e -c √ d log d ), in the general case, and O(e -cd ), if the metric on L is analytic (see, for instance, [15, Theorem 1.1 and Corollary 1.4]). This implies that the C r -norm of a peak section at a xed, not depending on d, point z is O(e -c √ d log d ), in the general case, and O(e -cd ), if the metric on L is analytic. Using this fact, the same proof as in [23, Theorem 3.4] gives us P d -P 0 d C r (K) ≤ O(e -c √ d log d ) (and P d -P 0 d C r (K) ≤ O(e -cd ), in the analytic case), where K is any compact disjoint from Z σ and c is a positive constant depending on K and r ∈ N. Now, we have P ⊥ d = P d -P 0 d , so that, by choosing K = RX, which is disjoint from Z σ by construction of σ, we obtain P ⊥ d C r (RX) ≤ O(e -c √ d log d ). This implies that for any τ ∈ H ⊥ d,σ , with τ L 2 = 1, one has τ C 1 (RX) ≤ O(e -c √ d log d ) and, in particular, this happens if τ ∈ RH ⊥ d,σ . Similarly, for the analytic case, we have τ C 1 (RX) ≤ O(e -cd ) for any τ ∈ RH ⊥ d,σ with τ L 2 = 1.

  as d → ∞, where (RX, RZ s ) ∼ (RX, RZ s ) means there the two pairs are isotopic. Let us consider t 0 > 0 given by point (1) of Proposition 4.4 and set b 0 = 1 -kt 0 . Then, for any b > b 0 , there exists t < t 0 , such that bd ≥ d-k td holds. Let us x such b and t. For any s ∈ RH 0 (X, L d ), let us write the orthogonal decomposition s = s ⊥ σ td +s 0 σ td given by Notation 4.1. By Lemma 4.3, if the C 1 (RX)-norm of s σ td is smaller than d n/2 4π n/2 dist R∆ d (s), then the pairs (RX, RZ s ) and (RX, RZ s 0 σ td

  (a, b) (or it is of bidegree (a, b)) if its homology class equals a[F n ] + b[B n ]. If a, b > 0, then the divisor associated with the class (a, b) is an ample divisor. Proposition 5.2. Let (Σ n , c n ) be a real Hirzebruch surface and let a, b be two positive integers. Then, the depth of a nest of a real algebraic curve in the class (a, b) is smaller or equal than b/2.

( 2 )

 2 For any k ∈ N there exists a positive constant c such that the probability that a real algebraic curve of bidegree (da, db) has a nest of depth ≥ db/2 -k is smaller or equal than O(e -c √ d log d ).

)

  For any k ∈ N there exists a positive constant c such that the probability that a real curve of class d has a nest of depth ≥ dm S /2 -k is smaller or equal than O(e -c √ d log d ).

  where • h d is the norm induced by the Hermitian metric h d , ∇ is the Chern connection on L d induced by h and ∇s(x) 2

  equals the Bergman function P d (i.e. the value of the Bergman kernel on the diagonal). The function P 0 d equals the partial Bergman kernel of order td associated with the subvariety Z σ , see

	2 h d , so that P ⊥ d + P 0 d

  , in particular, this happens if τ ∈ RH ⊥ d,σ td . If the real Hermitian metric on L is analytic, then we have the uniform estimate τ C 1 (RX) ≤ O(e -cd ) for any real section τ ∈ RH ⊥ d,σ with τ L 2 = 1. Proof. The proof follows the same idea of Proposition 2.6. Let τ 1 , . . . , τ m d be an orthonormal basis of H ⊥ d,σ and s 1 , . . . , s N d -m d be an orthonormal basis of H d,σ (the Hermitian products are the ones induced by Equation (

Proposition 2.7. Let σ ∈ RH 0 (X, L k ) be a section given by Proposition 2.1, for some xed k large enough. There exists c > 0 (depending on k) such that, we have the uniform

estimate τ C 1 (RX) ≤ O(e -c √ d log d ) for any real section τ ∈ RH ⊥ d,σ with τ L 2 = 1.

  obtain that its Gaussian measure equals ν d {s ∈ S d , dist(s, S∆ d ) ≤ r d }, where S∆ d denote the trace of the discriminant on S d . By Lemma 3.2, we have that, for d large enough, there exists a polynomial of degree bounded by 2(n + 1) X c 1 (X) n d n whose zero locus contains S∆ d . We are then in the hypothesis of [6, Theorem 21.1] which gives us[START_REF] Bürgisser | Condition, volume 349 of Grundlehren der Mathematischen Wissenschaften[END_REF] 
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