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Abstract—The bio-inspired concept of Spike-Timing-
Dependent Plasticity (STDP) derived from neurobiology is
increasingly used in Spiking Neural Networks (SNNs) nowadays.
Mostly found in unsupervised learning, though recent work has
shown its usefulness in supervised or reinforced paradigms too,
STDP is a key element to understanding SNN architectures’
learning process. This review introduces a categorisation of its
several variants and discusses their specificities and applications,
from a pattern recognition perspective. It gathers a variety of
definitions used in machine learning for pattern recognition.
It provides relevant information for research communities of
various backgrounds looking for an overview of this field.

Index Terms—Spiking Neural Networks, Machine Learning,
Artificial Neural Networks, Pattern Recognition, Unsupervised
Learning, STDP, Bio-inspiration.

INTRODUCTION

Machine learning and pattern recognition domains are vastly
dominated by deep learning. In less than a decade, deep
artificial neural networks (based on formal neurons) have
successfully pulled state-of-the-art performances of machine
learning tasks to new levels, on a wide range of challenging
benchmarks. The availability of both tremendous amounts
of annotated data and huge computational resources have
enabled remarkable progress. However, this success comes
with substantial costs in both human intervention for data
labelling and energy for training, despite most recent advances
in parallel digital architectures. Regarding data, for instance,
one of the top-ranking systems in LFW, the major face recog-
nition challenge, is IFLYTEK-CV (currently ranked third1),
was trained using a dataset of 3.8M face images of 85K
individuals. This amount, which has now become standard,
is far beyond what was usual just a decade ago. Because such
methods heavily rely on stochastic gradient descent and back-
propagation, they require tremendous computational power.
For instance, ResNet [11] has been trained for 3 weeks on
a 8-GPU server, which is equivalent to a power consumption
of about 1 GWh. More generally, worldwide data centres
currently require a power of about 1 PW, equivalent to 4%
of GHG emissions, which exceeds those of air transportation.

This work has been partly funded by IRCICA (Univ. Lille, CNRS, USR
3380 IRCICA, F-59000 Lille, France) under the Bioinspired Project. This
work was also supported by the French government through the Program
”Investissements d’avenir” (I-ULNE SITE / ANR-16-IDEX-0004 ULNE)
managed by the National Research Agency.

1See vis-www.cs.umass.edu/lfw/results.html. Last accessed May 2020.

Forecasts plan that this figure will double every 4 years. Hence,
a paradigm change in machine learning and pattern recognition
is needed in order to face the ever-growing demand.

Spiking Neural Networks display promising characteristics
for this paradigm change [23], [25], [30], [34], such as
unsupervised training with STDP rules, which reduces the
need for large annotated datasets. SNNs show higher efficiency
than classical neural networks, from both computation [18]
and energy [8] points of view. First, regarding computation,
with temporal coding (see Section I-C), the core information
in SNN models lies in the very timing of binary spikes, and
do no require to manipulate large matrices of floating-point
numbers. Second, the model is intrinsically sparse since units
only fire when needed. Therefore, just a few (thousands of)
spikes are needed at inference, as opposed to a total network
activation with classical neurons. Finally, the STDP rule for
a given synapse only involves the local spike timings of the
pre- and the post- synaptic neurons. This locality of the STDP
rule makes it hardware-friendly, contrary to stochastic gradient
descent, which requires a global loss differentiation. Hence,
SNNs are highly energy efficient when implemented on neu-
romorphic hardware. Ultra-low-power neuromorphic hardware
implementing SNNs can be built with CMOS technology,
and typically uses below-threshold voltage, enabling to reduce
energy dissipation by several orders of magnitude, compared to
standard digital architectures, even when using special-purpose
accelerator hardware such as Tensor Processing Units.

Historically, STDP started with Hebb’s remark that ”when
an axon of cell A is near enough to excite a cell B and repeat-
edly or persistently takes part in firing it, some growth process
or metabolic change takes place in one or both cells such that
A’s efficiency, as one of the cells firing B, is increased” [12].
Hebb consistently insists on the causality between afferent
Naff firing efferent Neff stating that ”one cell repeatedly
assists in firing another”. Therefore appeared as an attractive
option since it followed neurobiological processes governing
the brain. Furthermore, the brain being a power-efficient com-
puting unit, biomimetism implied increased power efficiency
which was the second motivation behind such enthusiasm [15].

STDP learning rule, implementing Hebbian learning, adjusts
synaptic strength through correlation detection between pre-
and post- synaptic firing times therefore affecting perfor-
mances [26]. Its mechanism is inspired from the organic



hierarchical ventral path of the visual cortex where neurons
communicate only through discrete spikes and not continuous
information [15]. Despite literature converging towards the
idea that most of the learning is performed in unsupervised
ways, some feedback and reinforcement connections and
techniques are used in the brain, and it seems that purely
unsupervised approach in the biological brain only serves as a
basic tool of image recognition before the more fine-grained
cogs come into action [15], [20]. The supposed secondary
role of feedback in image recognition is grounded in the
biological findings that the primate’s visual cortex extracts
basic information from an image in about 100 ms [15], thus
supporting the theory that at least part of the process is feasible
in a pure feed-forward way.

Biological STDP has been shown to produce both Long-
Term Potentiation (LTP) in synapses when the pre-synaptic
neuron had fired shortly before the post-synaptic one and
Long-Term Depression (LTD) when the pre-synaptic neuron
had fired shortly after the post-synaptic one. Synapses which
Naffs had not fired either before or after the Neffs are left
untouched. The modification of neural potential can occur
following several variants of STDP. Synaptic potential can
be tuned either through additive STDP where any correlated
inputs will be added to the potential of the post-synaptic
neuron, no matter how distant from firing time, and the
multiplicative STDP rule where a coefficient based on time-
remoteness from the signal is taken into account. A brief
overview of the several variants of STDP used in SNN is
presented in I together with their current examples of use.

I. SPIKING NEURAL NETWORKS

We consider both the afferent neuron (abbreviated aff, also
termed pre-synaptic) and the efferent neuron (abbreviated eff,
also termed post-synaptic) on each side of a given synapse.
We define δ = teff − taff as the time coefficient linked to
LTP if δ ≥ 0, LTD otherwise, where teff (resp. taff ) is the
spike timing of the efferent (resp. afferent) neuron.

A. Neurons

Despite the wide range of existing artificial neurons, only
a few popular models seem to draw most of the attention,
namely IF and LIF neurons, because of their simplified
equations and relative biological inspiration. In the specific
case of the LIF N , the role of the τ -leak parameter is to
replicate biological models’ preparation for the next spike,
however an alternative biologically plausible solution would
be the systematic reset of membrane potential to a resting
level between spikes [19]. Changing the neuron’s model does
not necessarily imply wide variations in performance, hence
inferring that computation is robust to increasing complexity of
computational unit [32], though this phenomenon can be more
or less common depending on STDP rule. Dropout techniques
used in training consist in ignoring several neurons at random.
These improve the global involvement rate of neurons while
concurrently decreasing the networks’ complexity [20].

B. Synapses and synaptic weights ω

The neurobiological synapse S -synaptic cleft in the case
of chemical synapses- is a region between Naff and Neff

which acts as a communication interface between both. In
biology, whether they interact directly through electrical action
potential or through neurotransmitters modifying cytoplasmic
content which in turn cause action potential, those communica-
tion paradigms are predominantly local and quick (tens of mil-
liseconds). According to Hebb’s theory, synapses which often
interact develop some ”growth process or metabolic change”
[12] therefore increasing the likelihood of future collaborations
between Naff and Neff . In computer science, this scheme
has been modelled by an S object which main attribute is its
synaptic weight ω, corresponding to Hebb’s growth. Minimal
efficiency corresponds to a disconnected synapse where firing
of an Naff does not increase the Neff ’s membrane potential.
[32]. Initialisation of ω is often set according to a random
[19] normal distribution with ω  N (µ, σ) where µ should
not be too small in order to avoid dead neurons (i.e. never
firing since their thresholds would never be reached) nor σ
too large since it would increase dependency on initial random
values with some synapses overpowering others in terms of
contribution [15]. In the case of R-STDP, small initial µ values
result in hard to train neurons while large σ values result in
increased impact of the initial random distribution, henceforth
the choice of high µ and low σ is considered optimal [20].
These synaptic weights vary during the learning process and
should stabilise upon reaching an equilibrium point [32] yet
usually need to be paired with a decaying term to avoid
unbounded results [19], except in the case of P-STDP [32].
Their stability greatly depends on the type of STDP used.
In computer vision applications, monitoring the dynamic of
those weights can allow retracing of implicit representation
of models [21] making it possible to reconstruct archetypal
images from learned features [9]. This and the observation
that these synaptic weights’ distributions are often bi-modal
after training with weights being either close to 0 or 1 [9]
led to research trying to modify the learning rule in order
to allow weights to adopt a more stable unimodal distribu-
tion and represent more fine-tuned features [22]. Synaptic
weights’ dynamics are determined by the learning rate hyper-
parameter α. As α→ +∞, learning memory decreases mak-
ing the network forget previous images faster; on the other
hand, as α→ −∞, the learning process slows down. Also,
the ratio between α+ and α− must take into account that
P(synapse undergoing LTD) > P(synapse undergoing LTP)
-particularly at the beginning- and should therefore remain
positive with α+ > α− yet not overwhelmingly so [15]. It
has been shown that it is possible to generate networks tolerant
to synaptic variability which are robust against learning rate
and weight initialisation values, therefore avoiding fine hyper-
parameter tuning [1].

C. Information coding

This mechanism is inspired by the organic hierarchical
ventral path of the visual cortex where neurons communicate



STDP variants and their specificities
STDP type Notable features Limitations Application examples
Ca-STDP simple implementation

robust to noise
tolerant to synaptic variability

unstable
skewed distribution of ω
limited resistance to jitter
poor differentiation between highly similar
objects
scarce support of intra-class variance

feature extraction for classification
(Masquelier, 2007) [19]

Cm-STDP semi-stable
based on δ and ω
more adaptative than Ca-STDP

skewed distribution of ω
poor differentiation between highly similar
objects

colour image recognition (Falez, 2019) [9]
: 48.27% (CIFAR-10) — 25.20% (CIFAR-
100) — 49.20% (STL-10)
large-scale image recognition (Kherad-
pisheh, 2018) [15] : 99.1% (Caltech) —
98.4% (MNIST) — 82.2% (ETH-80)
trajectory detection, AER (Bichler, 2012)
[1] : 98% (trajectory) — 95% (counting)
grey-scale image reco. (Nessler, 2009) [21]

M-STDP high LTP correlation
supports feed- forward and backward

limited biological plausibility reproduction of AE learning (Burbank,
2015) [5]

P-STDP simple implementation (based on δ)
robust

unstable
skewed distribution of ω

grey-scale image classification (Tavanaei,
2016) [32] : 99% (Caltech-face) —
97.5%(Caltech-motorbike)

R-STDP high LTP correlation
focus on discriminative features

unstable
skewed distribution of ω

grey-scale image classification (Mozafari,
2018) [20] : 98.9%(Caltech) —
89.5%(ETH-80) — 88.4%(NORB)

Rev-STDP stable top-down ω in the case of depression-
biased learning
possibility to combine with bottom-up vari-
ants

high focus on correlation numerical simulations (Burbank, 2012) [6]

S-STDP normal ω distribution without necessity of
explicit bounds

more complex than Cm-STDP from which
it evolved

optical flow, AER data (Paredes-Vallès,
2019) [22]

T-STDP stable ω
supports dense/overlapping time-windows

complex time-window definition differentiating mutually inclusive spatial
patterns (Krunglevicius, 2016) [17]

TABLE I
A COMPARATIVE OVERVIEW OF STDP LEARNING RULES

This table summarises all variations of STDP discussed in this paper. Both C-STDPs are the most basic rules that apply LTP/LTD according to the
presence/absence of neural connection. M-STDP’s particularity lies in its correlation time window being centered on the efferent neuron. For P-STDP, variations
in ω are exponentially related to current ω, aiming for no change at convergence. R-STDP in turn relies on reinforcement learning approach, regulating synaptic
behaviour with reward signals. S-STDP introduces a parameter to monitor excitability. Rev-STDP simulates biological top-down communication by reversing
the roles of efferent and afferent neurons. Finally, T-STDP relies on three neurons instead of two.

only through discrete spikes without continuous information
[15]. Biological spikes are brief (1 or 2 milliseconds) discrete
events, the way in which they encode information in living or-
ganisms varies with the type of stimulus and neurons involved.
Both frequency and temporal coding rely on spikes through
time to convey information, yet their approaches diverge on
what carries information, whether spike frequency or timing
or both. Since correlation and co-variation can not be directly
assimilated to causality [4] the question has not yet been tipped
in favour of neither one nor the other. Amplitude and duration
of spikes don’t vary much, which implies that the semantic
content must lie in timing [15]. Neurobiological approaches
suggest rate coding alone fails to account for the speed of data
transfer, hence pointing towards a, at least partially, temporal
coding [17]. Another argument in disfavour of frequency
coding it its energy cost due to the high number of spikes
needed to encode information [15]. Both evoked reasons tip
the scales in temporal coding’s favour which quickens the
process with more strongly activated neurons firing earlier
[19].

D. Lateral inhibition

The use of STDP in WTA setting can be interpreted as an
implementation of Expectation-Maximisation for retracing the
causes of neuronal inputs [21]. This competition mechanism
consists in having the target Naff send a signal to other
neurons from the same layer in order to prevent them from
firing [9]. It was observed as part of cortical architecture
and implemented in ASNN to enhance network performance
and encourage selectivity. Indeed, the main goal of lateral
inhibition is to prevent too many efferent neurons to receive
too many spikes from an afferent particular region, thus
ensuring that different neurons code different inputs [24]. In
the brain, lateral inhibition leads to WTA situations, the most
commonly used being k-WTA rules, yet other forms exist
such as inter-group WTA competition instead of intra-group,
leading to a cohort of winner-neurons rather than a single
one. This latter approach falling outside the scope of this
extended abstract, we refer to Xie et al.’s [36] for a detailed
analysis of the dynamics of such system. We shall here focus
on staple neuron to neuron competition, leading to k-WTA
situations (where often k = 1). In this paradigm, only N
neurons are allowed to spike per either image or frame when



subdivided into local rule [9]. Despite WTA’s core purpose
being enhanced selectivity, it also increases feature sparsity [9]
and maintains synaptic weights within bounds [19]. In terms
of configuration, two aspects are at stake, namely choosing
the stage up to which lateral inhibition should be maintained
and determining its range of action. For a detailed discussion
on the latter, see Rolls and Milward’s work [24]. When it
comes to the former, it has been observed that once the neurons
are specialised, lateral inhibition should be discarded since it
could prevent target neurons to fire at the right stimuli because
of temporally overlapping features [1]. Moreover, as neurons
become more selective, lateral inhibition loses its importance
and becomes redundant once learning is stabilised as long
as STDP is deactivated too [1]. Lateral inhibition’s range
of action should be correlated to the afferent-efferent wiring
scheme, henceforth a local lateral inhibition rule with fully
connected layers would make little sense and allow multiple
Neff to spike with the same pattern. Experiments showed that
the best ratio for lateral inhibition radius within a layer was
approximately half of the breadth of the excitatory connections
[24]. Authors [9] suggest that the classical WTA inhibition rule
might be detrimental to the network since despite producing
sparsity it does not prevent neurons from adapting to similar
and therefore redundant features. In some cases though, WTA
can cause several output neurons to over-specialise [21]. Some
implementations use lateral inhibition proportionally to the
distance from the spike with a linear decrease [1].

E. Network architectures

The most common structure is a feed-forward one with vary-
ing degrees of connectivity between layers, the simplest one
being full connection. Bio-inspired SNNs are for now mostly
shallow networks since the transmission of synaptic weights is
still unstable. Networks usually consist of at least three layers
among which only the middle one is made of SNNs. The initial
pre-processing layer transforms pixel values into spike-trains
while the final supervised layer performs classification with
one to several pooling and convolutional layers in between.
Though network architectures impact learning performances
of networks, Sboev et al. [26] demonstrated that the type of
STDP used had a major impact on them too.

II. STDP LEARNING RULES

STDP is often considered as the implementation of Hebb’s
synaptic plasticity theory [22] boiling down to synapses being
either reinforced or depressed according to δ [15] and can be
modelled as a function of δ [17], combining simple features
into complex patterns based on statistics [19]. In other words,
STDP can be seen as a Hebbian rule in the temporal domain
[19] acting as a coincidence and correlation detector [1],
[20]. It mainly consists in augmenting synaptic weights of
afferent neurons involved in efferent neuron’s firing [19],
though some exceptions such as M-STDP are found. The
variety of STDP rules developed in computer science should
come as no surprise since in biological settings, several STDP
rules exist depending on the type of synapse (excitatory,

inhibitory) they interact with [17], [28]. For instance, the
inversion of LTP and LTD on synapses from the same neuron
can occur in biological settings depending on the distance
separating them from the soma [17]. The final goal of STDP
being to develop enough selectivity so as to minimise false
positives and maximise invariance in order to minimise missed
images [19]. Moreover, the process should be fast to preserve
neurobiological plausibility since processing of visual signal
in the brain takes at most 100ms [19].

A. Classical-STDP (C-STDP)

Both additive Ca-STDP and multiplicative Cm-STDP fall
within the scope of what we label as C-STDP. On the one
hand, additive STDP relies exclusively on δ and is therefore
unstable, requiring extra constraints in order to bind synaptic
weights which will ultimately result in a skewed distribution
with virtually all weights gathered around superior and inferior
bounds [22]. For further simplification, some instances of C-
STDP only use δ and not its value [1]. On the other hand,
multiplicative STDP is slightly more complex since it relies
on δ with an added notion of proportionality in terms of
weights [22]. In this case also termed soft bounds the larger the
synaptic weight, the more LTD increases in relation to LTP
[28]. Yet despite being more adaptive this rule also results
in a distribution of weights skewed towards the bounds. In
some variants [1], all the synapses which had not participated
directly in the post-synaptic potentiation were depressed while
those which had participated were potentiated. Applying LTD
to synapses which had not been activated at all (neither before
nor after post-synaptic neuron) contrasts with biological STDP
rules where only activated yet wrongly-timed synapses receive
a depression.

B. Mirror-STDP (M-STDP)

M-STDP’s main postulate is that the time window to be
analysed for correlation between afferent and efferent spikes
is to be centred on the efferent spike, opening the possibility
to correlating δ < 0 to LTP instead of LTD. This relies
on a simplification of complex unknown mechanisms that
systematically cause Neff and Naff to fire together, its
biological plausibility is unsatisfactory. The main advantage of
this implementation being that it brings together feed-forward
and feed-backward paradigms [5]. This STDP neglects the
causality underlined by Hebb [12] with ”takes part in fir-
ing” to instead account for correlated mechanisms with no
causality. For a detailed review on biological mechanisms
of STDP variations according to the nature of synapses -
excitatory/inhibitory- involved and why it is unlikely that
δ < 0 could induce LTP in biological setting for an excitatory
synapse, see Caporale et al. [7].

C. Probabilistic-STDP (P-STDP)

P-STDP was introduced by Tavanaei et al. [32] in 2016,
inspired by Masquelier and Thorpe [19]. With this rule, all



learning parameters are initialised at the same value and left
to evolve as the number of spikes grows.

P-STDP = ∆wi =

{
α+ · e−wi , ↔ δ ≥ 0 LTP
α−, ↔ δ < 0 LTD

(1)
Where α+ is the amplification parameter in the case of LTP
and α− is the amplification parameter in the case of LTD, their
magnitudes being kept within a 4/3 ratio. The major input of
P-STDP is its robustness to increased mathematical complexity
in the neuron model [32] since performances can be preserved
across several neuron models. P-STDP displayed robust results
when shifting from a non-leaky IF to an Izhikevich neuron
without hindering performances [32].

D. Reinforcement-STDP (R-STDP)
In biological learning, the brain’s reward system is

paramount in decision-making and neuromodulators such as
dopamine modify synaptic behaviour [20]. Introduced by
Mozafari et al. [20], this approach schematically relies on
Pavlov’s conditioning approach to learning which has been
shown to contribute, together with Hebb’s, to the neurobio-
logical approach to learning and is nowadays widely used in
Reinforcement Learning [29]. Namely from this perspective,
spiking of Naff should be considered in a wider temporal
span and not be limited to closely related spike times [10]. In
other words, spikes having participated at some earlier point in
the efferent neuron’s firing should be entitled to some reward
since there is a possibility that their action influenced the
spike, this is called eligibility trace [31]. Here causality is
tackled in terms of probability of participation. The main asset
of R-STDP is the network learning discriminating features
rather than repeating ones [20]. While classical STDP shines
at differentiating highly distinct objects, performances can
dwindle when dealing with objects presenting highly similar
features. By contrast, R-STDP allows error rates to drop since
the network is prompted to focus on diagnostic features which
are not present in all images rather than only on those repeating
[20]. P-STDP is used in combination with a WTA competition
rule, the first neuron to spike being therefore also the only
one to update its synaptic weights and the one which will
impact the final decision of the network. Moreover, dropout
can be used to force a maximal number of neurons into active
classification. The learning rule uses α parameter to quantify
the magnitude of weight change according to correlation
and reward/punishment and η parameter as the adjustment
factor to avoid over-fitting caused by unbalance in reward and
punishment in training. The reinforcement award/punishment
signal is given by last layer which compares the network’s
decision with its face value and sends the corresponding
conditioning signal. There are four cases for STDP summed
up in Table II, each formula corresponding to the following
pattern with chosen α.

η+ =
|missed samples|
|training samples|

(2)

η− =
|correctly labelled samples|
|training samples|

(3)

Reward signal Punishment
signal

Correlation (δ ≥ 0) αr+ > 0 αp+ > 0
η+ η−

No correlation (δ < 0) αr− < 0 αp− < 0
or silent pre-synaptic neuron η+ η−

TABLE II
α AND η R-STDP PARAMETERS ACCORDING TO CASE

R-STDP = ∆wi = α ·wi · (1−wi)+η · (α ·wi · (1−wi)) (4)

Note that (|missed| + |correctly labelled|) ≤ |training| since
some samples might go un-handled.

E. Reversed-STDP (Rev-STDP)

In the biological world, Rev-STDP is a particularly complex
type of STDP and though an extended demonstration falls
outside the scope of this paper and can be found in Burbank’s
paper [6], we shall focus on the key points for its adaptation to
computerised STDP. Rev-STDP occurs in top-down synapses
in the brain, i.e. those synapses where communication happens
in the opposite direction as is usual. This top-down commu-
nication often coexists with the more classical bottom-up one
and therefore mechanisms of weight adaptation should take
into account both the classical feed-forward communication
and the feed-backward one. Some confusion might arise from
the pre- and post- synaptic words, conceived as temporal ref-
erences when they actually rely on topological description. In
the brain topology, pre-synaptic –afferent– neurons are situated
topologically before post-synaptic –efferent– ones. Therefore,
when looking at spike timing, Naff should fire temporally
before Neff for LTP to take place because that is the only
case where there is a possibility for –though no insurance of–
causality and not solely correlation. This happens so in the
classical feed-forward journey of information. However, in the
rarer feed-backward case, communication is carried out in the
other way around. Neff –topologically situated after Naff–
fires first at T0 therefore sending a message to the neuron that
is next in its backward-going path: the Naff which receives
the spike at T+1. This feed-backward communication often
coexists with the classical feed-forward one and its modelling
seems to result in more stable weight distributions when the
learning is biased towards depression [6].

F. Stable-STDP (S-STDP)

A novel homeostasis parameter was introduced, which acted
as an excitability indicator [22] and has a padding effect to
adapt neural response to highly varying inputs. A post-synaptic
neuron linked to highly active pre-synaptic neurons would
have a low excitability since it would need more integration
before firing, conversely a post-synaptic neuron linked to idle
pre-synaptic ones would have a higher excitability in order to
get the chance to fire at some point. This mechanism aims
at handling the issue of slow and fast motion encoding of



AER. In this setting, all synaptic weights were initialised at
the same constant, prior to the learning process. LTP and LTD
were modified dynamically throughout the learning process
in correlation with the variations of synaptic weights. As the
synaptic weight grew larger, the effect of LTP decreased and
LTD increased and conversely as synaptic weights diminished,
the effect of LTD increased while that of LTP decreased,
resulting in a smooth unimodal distribution. This particular
process allows self-regulation of synaptic weights without
implementing explicit bounds. S-STDP also relied on WTA
rule maintained after the learning process was over. Similarly,
the neuron model consisted of a refractory period during which
afferent spikes had no effect.

G. Triplet-STDP (T-STDP)

This STDP is based on the main idea that motivation behind
LTP and LTD lies not only in the relationship between a pair
of post and pre synaptic spikes but between a triplet, either of
two pre and one post or the other way around, though literature
[28] suggests only the latter should be considered. Motivation
for this rule is based on studying the evolution of potentiation
with varying frequencies. Thinking in terms of sparse time
windows, then an afferent spike’s belonging is unequivocal:
it solely belongs to the nearest efferent neuron and should
influence its potential and no other neuron’s potential. Yet
complications arise when higher frequencies come into play,
the more spikes there are, the harder it becomes to model
which afferent spike should influence which efferent neuron
and an LTP-favourable pre-post pair could eventually result in
a virtual LTD-favourable post-pre pair [28] depending on the
time window. Experiments have shown that pre-synaptic spikes
which had participated in LTP for a particular efferent neuron
and should have resulted in virtual LTD for other efferent
neurons did not necessarily do so [28], hence suggesting that
some mechanism allowed the brain to access the information
of whether Neff ’s potential had been increased or decreased:
the triplet rule. In terms of implementation, this would suggest
first, working with synaptic traces, second that two of those
traces should be modelled. In his article, Krunglevicius showed
that T-STDP helped achieve synaptic weight stability in the
case of Schottky noise input [17].

III. PATTERN RECOGNITION TASKS

While many STDP benchmarks problems have been taken
from the static image field therefore following in the footsteps
of deep-learning, the recent interest in video input yielded
better results and has become the focus of increasing attention
in the field of SNNs. This being due to the temporal nature
of STDP, making it a first class approach for sequential data
rather than static.

Most static images are part of benchmark data sets such
as Caltech or MNIST therefore presenting two main issues
when compared with real-world images. First, the focus is
often set on the target object, making it a central item while
it is seldom the case in real-world images. Second, most
images from these datasets are highly sanitised, therefore

leaving aside the question of separating details of changing
backgrounds from the target object. Authors suggest that poor
decreased performance in face vs background classification
tasks could be caused by this phenomena [19]. Most of these
datasets offer non real-life images containing only one main
object abstracted from the real-world paraphernalia of details,
which might have minor significance when thinking about
transferability of neuron’s performance in detail-saturated real-
world images such as ImageNet for instance.

A. Static grey-scale images

Masquelier and Thorpe [19] present in 2007 the motivation
and main interest for combining STDP with temporal rank-
order coding of information to promote unsupervised learning.
Authors’ main focus was on feature extraction aiming to
extract ten class-specific features (complex combination of
edges) to which neurons belonging to the last layer before
the classifier would be sensitive. Input stimuli was propagated
in a discrete manner when real-life visual stream is continuous
and using convolutions restricted area fields when real-life
images would be wider, finally some feedback and top-down
information probably made available by the cortex in terms of
classification was overlooked. All in all, the extracted features
allowed to differentiate and perform binary classification with
results next to state of the art deep models, however these
results should be considered thoroughly since the data-sets
used consist in highly distinctive classes with almost no
jitter nor noise. A major limitation was the absence of intra-
class variance in the data-sets used, authors point out that
classification of images presenting more variability in their
essence (animals for instance) would require more training
examples to be learnt since key features might not be repeated
often enough in a smaller sample. Building invariance of shift
and scale into the network increases space complexity, it sure
decreases learning time but since one advantage of SNNs is to
be energy efficient (as well as bio-like), it might be interesting
to check the computational tradeoffs in both space and number
of calculations. When comparing results obtained from inter-
preting binary detection, quantifying membrane potential or
standard Hebbian approach, faces were consistently the best
performing category and background the worst. We might infer
that facial features are more distinguishable than others and
also conclude that the background category was harder to
detect because of its variability in content between images,
which might not allow discriminating features to arise.

In the work by Mozafari et al. in 2018 [20], the learning
paradigm presented is reinforcement, which aims at providing
a full-SNN network without external classifier. The network
presented is made of four layers A, B, C and D contrasted
with a CNN with similar architecture but classic categori-
sation layer. Categorisation tasks with a focus on object
invariance through perspective and lighting conditions. This
article demonstrated that it is possible to implement full-
SNN, locally-ruled networks without an external classifier if
one resorts to RL. Moreover, robustness over visual variation
has been demonstrated with ETH-80 and NORB data-sets.



Work conducted by Krunglevicious [17] in 2016 deals with
the question of how small a spatial pattern could be relative
to the total number of afferent neurons. When reducing input
size, T-STDP outperformed other variants and could follow
down to size 4 in a 64Hz/39Hz and size 8 in a 64Hz setting.
However, diminishing the size of the input pattern resulted
in loss of functionality since synaptic weights associated with
pattern were insufficient to reach the threshold and produce a
spike. Switches between LTP and LTD take place, which also
happens in biological setting. The triplet rule hereby presented
could be used to detect increase in firing rate instead of spatial
pattern, in the case of very small patterns.

Multiple layer SNNs capable of processing large-scale static
images were first introduced by Kheradpishesh et al. [15].
In their article, authors suggest that AER data could yield
interesting results for further investigation using their multi-
layered network. STDP learning took place in each convo-
lutional layer, only starting in the (n+ 1)th layer when it
had finished in the nth. WTA competition was used between
neurons of the same convolutional layer. It was enforced
globally for neurons pertaining to the same map and locally
across maps. Since computation of each neuron’s variables
is independent from its neighbours, convolution, pooling and
STDP were performed in parallel on a GPU. Though DCNNs
could outperform this network on large data-sets, they failed
to do so in medium to small data-sets which suggests this
network is more information-efficient since it manages to
extract distinctive features earlier in the training.

Nessler et al. [21] discussed in 2009 the interpretation of
synaptic weights as internal representations of salient visual
features. This was also more recently pointed out by Tavanaei
et al. [32] who showed that images could be reconstructed by
convolving the final weight matrix. The simple STDP rule was
sufficient since its more complex counterpart did not induce
any significant improvement. The WTA rule implemented
in the output layer induced over-specialisation of neurons
which tried to be performant by reducing their scope. On the
other hand, WTA favours online learning since neurons are
encouraged to search for new items that they would be better
fitted to detect. After learning, the internal weights represent a
probability distribution and can therefore be used to compute
a representation of the input data.

B. Static colour images

Static colour image recognition has been little exploited
as of now in SNNs and pattern recognition in general. A
detailed discussion of SNN vs auto-encoders approach can be
found in Falez et al. [9]. Since including colour represented
a relatively new challenge, authors experimented with several
information combinations to see which performed best. Ex-
periments showed that a combination of grey-scale and colour
yielded higher accuracy rates, therefore this combination was
adopted for the rest of the process. Temporal latency coding.
Multiplicative STDP with layer lateral WTA inhibition was
used with temporal latency information coding. While SNNs
needed more features than auto-encoders, they did manage

reach performances within a 3σ of their auto-encoders coun-
terparts with less features.

C. DVS camera and AER encoding

In their work, Bichler et al. [1] address two image-
recognition tasks, both involving motion (trajectory detec-
tion) and based on AER data. Because the sensor relies on
luminosity, it can model contrast. Robustness and tolerance
are the main features put forth by the authors in this paper.
Synaptic parameters could undergo a dispersion of 20% while
neuronal parameters could undergo a dispersion of 10% and
still be considered ”good” 75% of the time. Bichler et al. also
point that the size of the network was considerably smaller
than classical networks for similar tasks. Limitations were
particularly salient in the second task of car-counting since
among the six lanes from which vehicles had to be counted,
one was never learned by the network and at least one more
lane was not learned 9% of the time. To account for this lack
of learning, authors point at the role of random initialisation
of synaptic weights.

Paredes-Vallès et al. [22] seek in 2019 to stabilise STDP
through forcing synaptic weights to obey a unimodal distri-
bution instead of the severely bounds-skewed one obtained
with classical STDP where all synaptic weights either con-
verge to 0 or 1, making it almost binary. The particularity
of optical flow processing is that several updates can take
place simultaneously in different locations and need to be
processed. Their experiments used optical flow data in the
form of event sequences, both synthetic (simulation of vertical
and horizontal motion) and real (rotating disk and roadmap).
Authors relied on the concept of synaptic trace and its sta-
bilising role for synaptic weights and showed this resulted in
increased synaptic equilibrium. Single-Synaptic Convolutional
layer performed feature extraction while neighbourhood-WTA
mechanism was used during learning but only neuron-specific
WTA was maintained after. The synthetic data trial showed
that out of 16 kernels, about half of them specialised in
horizontal motion while the other half specialised in vertical
motion and each direction of motion was captured by at least
four kernels which specialised in different speed, therefore
behaving like local velocity detectors.

IV. CHALLENGES OF BIO-INSPIRED PATTERN
RECOGNITION

A. Biological plausibility

1) Correlation vs Causality: Among the most famous de-
bates in statistical ML is the correlation vs causality question,
here focused on the value of δ. Reinforcing synapses is based
on detecting correlations [15] and seems to adopt a classical
approach where any chronological hierarchy is banned. This
makes sense in purely mathematical modelling of STDP. How-
ever, behind detecting correlation, what is intended is often in
fact to detect the causality rule lying behind it, correlation only
being the tangible trace of its more elusive cousin. Despite
clear assertion that correlation does not imply causation [4],
[13], the latter still represents the holy grail of learning since



finding causal features would ensure better prediction. Because
causational inference is highly complex and only partially
observable in ML settings, research focuses on tracking asso-
ciational inference. Causality requires ruling out other causes
and being able to clearly differentiate A from ¬A, which
implies a deeper understanding than the one accessible in
current tasks. Withal statistical causal inference relying on
experimental practices might be an interesting solution to
this ordeal [13]. Though it might be considered sufficient to
rely on correlation for learning, causality would be a sturdier
alternative if correctly determined. Despite often settling for
correlation, most algorithms aspire to detect causation. In the
biological world and assuming time as linear, an event Ei
taking place before another event Ei+1 is a possible candidate
for causality with Ei ⇒ Ei+1, contrarily Ei+1 can not be
a causal candidate hence Ei ⇐ Ei+1 is false. A positive δ
corresponds to Ei taking place prior to Ei+1 on the linear time
continuum, therefore allowing for a possible causality on top
of correlation. On the other hand a negative δ corresponds
to Ei taking place after Ei+1 which prevents it from being a
causal candidate while still allowing for association. Therefore,
while δ ≥ 0 does not guarantee causation, δ < 0 guarantees
its absence, ergo if one tries to aim for biological plausibility,
approaches relying on δ < 0 should be discarded.

2) Locality: Simplifications required by computer simu-
lations make most biological phenomena overly complex.
Synaptic processes in the brain occur locally in general,
hence any biologically plausible learning rule must be bound
by some topological limitation. This makes multiple-layered
SNNs particularly difficult to implement. Moreover, certain
learning rules such as reversed or mirror STDP are sometimes
implemented in a way which does not fully coincide with the
current knowledge of neurobiology. Synaptic weight sharing,
though useful, since it allows to ensure location invariance
in pattern recognition [22], is unlikely to take place in the
brain [19] since it is a non local process and another approach
relying only on local weight-sharing would allow for increased
biological plausibility.

B. Generalising potential

Invariance is the key to generalisation. Focus is set on
several aspects of invariance, such as scale and shift [1] or
perspective and lighting conditions [20]. One way to tackle
invariance of shift and scale is through duplication of cells at
all positions and scales, therefore building in the structure of
the network rather than relying on training. This allows the
number of training examples to be reduced yet can not be
considered as biologically plausible [1]. Size invariance can
represent a major hurdle since in some cases hyper-parameters
required optimisation for each pattern size [17], implying
that the network was unable to generalise through size. The
question of bias in image data-sets has been abundantly
addressed, be it referring to social [16], [35] or geometrical
bias [33] such as object-centred point of view, which are
common in staple datasets used for benchmark tasks in pattern
recognition. The network’s ability to generalise features learnt

is often at stake. Categorisation tasks such as Cal-tech’s face-
motorbike focus on salient and common features [15] ignoring
the drastically changing backgrounds. Taking into account
the object-centric, canonical angle [33] of these data-sets, the
evolution of such results when faced with a wider variety of
angles and motorbike models all taken with the exact same
background would be of interest. Similarly, discrimination
tasks such as gender identification can represent hurdles for
SNNs which rely heavily on common features [15], [20] rather
than on diagnostic ones [20].

C. Information processing and coding

Image processing does not directly deal with real data
but with a simplified representation of it. This is as true in
artificial setting as it is in biological. That being said, the
goal is to encode reality in a way that allows for maximal
representativeness, minimal space complexity and minimal
loss. The two widely used options are rate and temporal coding
while population coding remains liminal, we refer the reader
to Brette’s paper [4] for an extensive discussion on this topic.
Issues arise right from encoding where the ON-centre/OFF-
centre image processing, for instance, results in information
loss [9]. Widely used ON-centre/OFF-centre and DoG filters
[9], [15] rely on edges to encode input spikes therefore
biasing filters towards edge-dominated features [9]. This, while
allowing for enhanced performance in shape detection, puts
SNNs at a disadvantage when tackling colour input [9] In
the same way, classical SNN pattern recognition only relies
on grey-scale images, therefore losing all colour information
[9]. Moreover, colour is not the only factor that should be
taken into account since dimensions of input pattern must meet
some criteria. Size should remain reasonable since diminishing
it too drastically ultimately results in neurons failing to act
selectively for combined synaptic signals’ strength associated
with pattern are insufficient to cause a spike [17]. In terms
of coding, differentiating horizontal and vertical edges from
other edges could prove optimal since both of these types are
common and seldom incarnate diagnostic features [19]. The
latter is coherent with the integration of spikes equations, since
Neff ’s threshold shan’t be lowered to avoid spiking because
of noise, too few Naff spiking with their favourite pattern can
not trigger a spike. Finally, AER encoding though better suited
to SNN’s temporal abilities, represents a specific challenge
since it is based on events. Data encoding therefore depends
on both the firing rate of the sensor and on the optical flow
and sensitivity settings of the camera. Fast and slow motion
encoding imply that the rate of input data can vary, hence
calling for adapted ω mechanisms [22].

CONCLUSION

This paper provides the first STDP-centred review in spiking
networks-based pattern recognition, to the best of our knowl-
edge. A synthesis is given in Table I. SNN and STDP benefit
from a range of promising features for pattern recognition and
yet, a number of challenges lie ahead before they become a
realistic alternative to deep CNN. The effective use of SNNs to



tackle modern pattern recognition problems is promising and
yet still in its infancy. We suggest the choice of the STDP rule
bears significant impact in the networks’ performance. Future
work focusing on the interplay between the type of neuron
and the choice of the STDP would bring decisive insight.

Though the most widely used type of STDP in SNNs for
computer-vision has been the C-STDP and particularly its
multiplicative variant which allows pondering, we advocate
that marginally explored STDP variants such as the proba-
bilistic [32] or reinforced one [20] deserve increased attention.
R-STDP presented by Mozafari et al. [20] yields promising
results, in particular when dealing with the extraction of
discriminative features. This STDP has received attention in
fields related to control theory such as autonomous vehicles
[2] and robotics [3], [27] where it allows for the advantages of
reinforcement learning to be combined with bio-inspiration. As
for Tavanaei et al.’s [32] P-STDP, the demonstrated robustness
against complex bio-inspired neurons is a valuable advantage
for future implementations willing to rely on complex neuron
models. An implementation of an activity-based P-STDP has
been exploited in reservoir computing [14] and displayed the
best performance, irrelevant of reservoir size.

Because of its transferability to other fields and combination
with the strong versatility and performances reinforcement
learning offers, we believe R-STDP could well become the
centre of attention in coming years and probably supplant its
current competitor C-STDP.
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[28] J. Sjöström and W. Gerstner. Spike-timing dependent plasticity. Schol-
arpedia, 5(2):1362, 2010. revision #184913.

[29] R. S. Sutton and A. G. Barto. Reinforcement Learning, An Introduction.
2018.

[30] A. Taherkhani, A. Belatreche, Y. Li, G. Cosma, L. P. Maguire, and T. M.
McGinnity. A review of learning in biologically plausible spiking neural
networks. Neural Networks, 12, 2020.

[31] B. Tanner and R. S. Sutton. Td(λ) networks: Temporal-difference
networks with eligibility traces. In Proceedings of the 22nd International
Conference on Machine Learning, ICML ’05, page 888–895, New York,
NY, USA, 2005. Association for Computing Machinery.

[32] A. Tavanaei, T. Masquelier, and A. S. Maida. Acquisition of visual
features through probabilistic spike-timing-dependent plasticity. In
Proceedings of the International Joint Conference on Neural Networks,
volume 2016-October, pages 307–314. Institute of Electrical and Elec-
tronics Engineers Inc., oct 2016.

[33] A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR
2011, pages 1521–1528, June 2011.

[34] S. J. Verzi, F. Rothganger, O. D. Parekh, and T.-T. Quach. Computing
with spikes: The advantage of fine-grained timing. Neural Computation,
30(10), 2018.

[35] T. Wang, J. Zhao, M. Yatskar, K.-W. Chang, and V. Ordonez. Balanced
datasets are not enough: Estimating and mitigating gender bias in
deep image representations. In The IEEE International Conference on
Computer Vision (ICCV), October 2019.

[36] X. Xie, R. H. R. Hahnloser, and H. S. Seung. Learning winner-take-all
competition between groups of neurons in lateral inhibitory networks. In
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 350–356. MIT Press, 2001.


