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Elusive Dzyaloshinskii-Moriya interaction in Fe 3 GeTe 2 monolayer

Using symmetry analysis and density functional theory calculations, we uncover the nature of Dzyaloshinskii-Moriya interaction in Fe3GeTe2 monolayer. We show that while such an interaction might result in small distortions of the magnetic texture on the short range, on the long range Dzyaloshinskii-Moriya interaction favors in-plane Néel spin-spirals along equivalent directions of the crystal structure. Whereas our results show that the observed Néel skyrmions cannot be explained by the Dzyaloshinskii-Moriya interaction at the monolayer level, they suggest that canted magnetic texture shall arise at the boundary of Fe3GeTe2 nanoflakes or nanoribbons and, most interestingly, that homochiral planar magnetic textures could be stabilized.

Introduction. Magnetism in low dimensions has received renewed interest in the past few years with the observation of remnant magnetization in two-dimensional van der Waals materials such as CrI 3 [START_REF] Huang | [END_REF] , VTe 2 2 , CrTe 2 3 , and Fe 3 GeTe 2 4 . Robust magnetic order at room temperature is appealing for spintronics applications, and among the ever-increasing family of candidate materials Fe 3 GeTe 2 stands out as a solid paradigm [4][5][6] . Indeed, spin-orbit torque 7,8 and anomalous Nernst effect 9,10 have been observed in bilayer heterostructures, and magnetoresistance has been reported in spin-valves 11,12 . Besides these experimental achievements, the recent reports of magnetic skyrmions and other chiral textures in thick Fe 3 GeTe 2 layers [13][14][15] are intriguing.

In fact, stable and metastable chiral magnetic textures require the existence of an antisymmetric exchange interaction, called Dzyaloshinskii-Moriya interaction 16,17 (DMI). This interaction only exists in materials lacking inversion symmetry and its specific structure determines the nature of the chiral magnetic structures it can stabilize 18 . For instance, in magnetic multilayers the interfacial symmetry breaking promotes an interfacial DMI of the form E DM = Dm • [(z × ∇) × m] that favors Néel skyrmions (e.g., see Ref. 19). Therefore, the observation of Néel-type skyrmions in thick Fe 3 GeTe 2 layers [13][14][15] is unexpected as the point group of Fe 3 GeTe 2 monolayer prevents the onset of "interfacial" DMI. Yet, the emergence of chiral effects is not entirely forbidden and Johansen et al. 20 recently showed that Fe 3 GeTe 2 monolayer exhibits a dampinglike spin-orbit torque of unusual symmetry. Since DMI and dampinglike torque are related to each other 21 , one expects a non-vanishing DMI of completely different nature compared to the interfacial one.

In this work, using symmetry analysis and density functional theory (DFT) calculations, we investigate the nature of DMI in Fe 3 GeTe 2 monolayer. We show that while such an interaction might result in small distortions of the magnetic texture on the short range, on the longwavelength limit DMI favors in-plane Néel spin-spirals along low-symmetry directions of the crystal. Whereas these results show that the observed Néel skyrmions cannot be explained by the DMI at the monolayer level, they suggest that a canted magnetic texture shall arise at the boundary of Fe 3 GeTe 2 nanoflakes and that homochiral planar magnetic textures can be stabilized.

Long-wavelength behavior. Let us first consider the crystal structure of Fe 3 GeTe 2 monolayer, depicted on Fig. 1. The crystal adopts the point group 6m2 and can be seen as a stack of three Fe hexagonal lattices in A-B-A configuration. In the following, the central Fe element is denoted Fe 2 and the Fe elements on the top and bottom planes are referred to as Fe 1,3 , respectively. These three inequivalent Fe elements are located in a chemical environment that lacks inversion symmetry. Therefore, one can expect each magnetic element to experience chiral effects such as DMI and spin-orbit torques in the presence of spin-orbit coupling (SOC). However, Fe 1 and Fe 3 are mirror partners, so any chiral physical quantity on one element is opposite on the other. In contrast, Fe 2 is located in the mirror plane of the crystal and therefore should experience chiral effects.

A first indication is provided by analyzing the point group of Fe 3 GeTe 2 monolayer. Applying these symmetries (improper six-fold rotation about [001], mirror symmetry normal to [110]) to the current-driven field response tensor 22 , one obtains an unusual non-zero dampinglike torque 20

T DL = ηm × [(m y E x + m x E y )x + (m x E x -m y E y )y]. (1) 
Here, η is the torque response coefficient and E is the applied electric field. This torque behaves like a nonequilibrium magnetocrystalline anisotropy term 20 whose influence on the magnetic texture of Fe 3 GeTe 2 is left to future studies. One can show that in the limit of small spatial gradients, i.e., in the long-wavelength limit, the Dzyaloshinskii-Moriya (DM) tensor has the same symmetry as the dampinglike torque response tensor 21 . Defining the torque response tensor χDL as T DL = χDL • E and the DM tensor D as

E DM = ij D ij e i • (m × ∂ j m)
, the linear response theory yields χDL ∝ D. Specifically,

χ6 m2 = η   -m z m x m z m y 0 m z y m z m x 0 m 2 x -m 2 y -2m y m x 0   ∝ D6 m2 , (2) 
which leads to the DM energy

E DM = D[-∂ x (m y m x ) + 1 2 ∂ y (m 2 x -m 2 y )]. (3) 
Since the DM energy is a total derivative, it does not stabilize chiral textures in the long-wavelength limit. However, one could wonder whether this interaction can stabilize magnetic twists at the edges of the magnetic layer, as discussed recently [23][24][25] . To investigate this possibility, we consider a magnetic ribbon with easy-plane anisotropy and embedded between two boundaries normal to the direction n. The system is translationally invariant along z×n and spatial gradients are only allowed along n, ∇ = ∂ xn n, where x n is the coordinate along n.

In the bulk of the ribbon, the magnetization m minimizes the energy functional

W = A(∂ xn m) 2 + K(m • z) 2 ,
where A is the exchange stiffness and K the easy plane anisotropy. The general solution is m = cos(ax n + φ)n + sin(ax n + φ)z × n. The boundary condition reads 24

2A(n • ∇)m + m × (Γ D × m) = 0, (4) 
where Γ D is the boundary-induced DM field, defined

Γ D = m i n j D ijk , with E DM = ijk D ijk m i ∂ j m k .
Solving Eq. ( 4) at the positions x n = x 1 and x n = x 2 , we obtain the condition

cos 2(ax 1,2 + φ) = (2A/D)a, (5) 
yielding the solution, sin(a(x

1 +x 2 )+2φ) sin(a(x 2 -x 1 )) = 0 ⇒ a = nπ/(x 2 -x 1 )
. The energy of this spin spiral is W = An 2 π 2 /L 2 , which is minimized for n = 0.

Therefore, the DM energy, Eq. ( 3), does not favor chiral magnetic textures even in the case of a planar ferromagnet. The present discussion only applies in the long-wavelength limit, though, and does not address the possible existence of short-wavelength magnetic textures. Structural analysis. Let us now take a different perspective and consider the atomistic DMI between neighboring magnetic moments. The relevant pairs of neighboring moments are displayed on Fig. 2 together with the DM vector D, defined in the atomistic spin limit E DM = D • (S 1 × S 2 ). The DM vector is determined by Moriya's rules 17 .

We first consider the Fe 1 -Fe 3 pair, located on each side of the (001) mirror plane [Fig. 2(a)]. Moriya's 1st rule states that the DM vector must lie in the (001) mirror plane, whereas Moriya's 5th rule states that the DM vector is necessarily along the axis of three-fold rotational symmetry. Combining both conditions, DMI necessarily vanishes. Let us now consider the interaction between two Fe 1 (or, equivalently, two Fe 3 ) belonging to the same layer [Fig. 2(b)]. Since a mirror plane passes perpendicularly through the center of the Fe 1 -Fe 1 segment, the DM vector lies in this plane (Moriya's 1st rule). Considering the three-fold rotational symmetry around [001], the DM vector is necessarily along z (5th rule). Notice that the DM vector also possesses an in-plane component that has three-fold symmetry. Moving on to the Fe 1 -Fe 2 pair [Fig. 2(c)], the same symmetry principles apply and we find that the DM vector must be perpendicular to the Fe 1 -Fe 2 segment. Notice that in the case of the Fe 3 -Fe 2 pair, the DM vector adopts the opposite orientation. Finally, the interaction between Fe 2 -Fe 2 [Fig. 2(d)] is similar to the one obtained for Fe 1 -Fe 1 so that the DM vector possesses a constant z component and a staggered planar component. Notice that the DMIs involving either Fe 1 or Fe 3 are systematically opposite to each other because of the (001) mirror plane. Therefore, one might expect small magnetization canting at the level of the unit cell that could explain the topological Hall effect reported in Ref. 26. However, no overall effect on the long range is expected, consistently with the absence of long-wavelength interaction emphasized above.

What is particularly interesting is that whereas the in-plane component of the DM vector is staggered, the perpendicular (z) component of the Fe 2 layer remains constant over the unit cell. Therefore, one expects that at intermediate range (i.e., beyond the size of a unit cell), the atomistic DM energy reads E DM = Dz • (S 1 × S 2 ). This interaction is carried by the central Fe elements and its magnitude is therefore associated with the electrostatic environment of Fe 2 . This is an important remark because the only heavy element of the structure is Te, which is located further away from Fe 2 . Therefore, one expects the overall DMI magnitude to remain small. Spin spiral calculations. To confirm the analysis provided above, we performed DFT calculations on Fe 3 GeTe 2 .

We used the full-potential linearized augmented-plane-wave (FLAPW) method as imple- mented in FLEUR software 27 . Applying the generalized Bloch theorem 28 , we first self-consistently compute the total energy of the system for spin spirals with different wavelengths q including the scalar-relativistic effects but in the absence of SOC, SR (q). Then, we turn on SOC and compute the spin spiral dispersion at the first order only, SOC (q). The scalar-relativistic dispersion SR (q) provides the exchange stiffness A, while the difference SOC (q) -SR (q) provides a measure of the magnetic anisotropy K (at q=0) and DM coefficient D [29][30][31] .

For the structural relaxation, we employed the generalized gradient approximation (GGA) 32 , obtaining a relaxed lattice constant of 4.01 Å for Fe 3 GeTe 2 monolayer. For the magnetic calculations, we used the local density approximation (LDA) 33 . In all calculations, we selected the radii of muffi-tin spheres around 2.1 a.u for Ge and Fe, and 2.6 a.u for Te, where a.u is the Bohr radius. The FLAPW basis functions included all wave vectors up to k max = 3.8 a.u -1 in the interstitial region and in the muffin-tin spheres, and basis functions including spherical harmonics up to l max = 8 were taken into account.

Collinear (non-collinear + SOC) calculations were performed on a dense mesh of 512 (1024) k-points in the full two-dimensional Brillouin zone.

Based on this procedure, we obtain the spin-and orbital-resolved magnetic moments displayed in Table I and a perpendicular magnetic anisotropy (PMA) K=1.3 meV/Fe. We have performed spin spiral dispersion calculation for three standard configurations 34 -Néel out-ofplane, Bloch out-of-plane and Néel in-plane -and found that only the latter displays DMI, consistently with the previous analysis. In addition, DMI only exists along ΓK (see Fig. 3) and vanishes along ΓM (not shown). Indeed, the former corresponds to a direction of mirror symmetry breaking in real space, whereas the latter corresponds to a direction of mirror symmetry, as illustrated on Fig. 4. Since DMI arises from the interference of Bloch electrons following clockwise and counterclockwise paths, it vanishes along ΓM due to the symmetric chemical environment (green arrows) and is finite along ΓK due to the symmetry breaking (red and blue arrows). To understand the microscopic origin of the perpendicular DMI, Fig. 5 displays the contribution of the various chemical elements on the antisymmetric spin spiral I, that is responsible for the observed DMI. In contrast, the Fe 1,3 elements hardly contribute because of their weak orbital moment (0.083µ B ).

We complete this analysis by discussing the potential influence of the perpendicular DMI of the stabilization of magnetic textures. It is clear that the large PMA of Fe 3 GeTe 2 hinders the stabilization of Néel in-plane spin spirals. Nevertheless, for the sake of the discussion let us disregard the role of the magnetic anisotropy and only focus on the influence of the DMI itself. Intriguingly, the antisymmetric dispersion [Fig. 5(c)] is quite different from the dispersion obtained at, e.g., transition metal interfaces 30,31,35 . In the latter, the antisymmetric contribution of the dispersion has a large slope around q = 0, from which the long-wavelength DM coefficient is usually extracted. In Fig. 5(c), the slope close to q = 0 vanishes and the antisymmetric dispersion only takes off away from the origin. Qualitatively, this quenching is associated to a partial compensation of the high-order DM coefficients, as illustrated on Fig. 4. For nearest neighbor DMI, electrons following clockwise (red solid arrow) and anticlockwise paths (blue solid arrow) pass either through Fe 1,3 (D 1,Fe ) or through Ge (D 1,Ge ), respectively. For next-nearest neighbor DMI though, the chemical environment is partly inverted as the clockwise path (blue dashed arrow) passes through Ge (D 2,Ge ), whereas the anticlockwise path (red dashed arrow) passes through Fe 1,3 (D 2,Fe ). As a result, the next-nearest neighbor DM vector partially compensates the nearest neighbor DM vector. By generalizing this reasoning to higher-order DM coefficients (beyond the next-nearest neighbor), one expects that the DM energy is quenched close to q = 0.

This feature means that the DMI has no impact in the long wavelength limit and is unlikely to stabilize large (>10 nm) chiral textures. Nonetheless, it does tend to stabilize short-wavelength spin spirals. Indeed, the dispersion is peaked around q ≈ π √ 3a . Considering that this dispersion is computed along the ΓK path, it means that DMI tends to stabilize planar homochiral spin spirals propagating along a low symmetry direction of the Fe 3 GeTe 2 crystal. Figure 6 shows such a planar spin spiral extended along the [100] direction of the crystal (dashed lines), characterized by broken mirror symmetry. 

Conclusion.

Using symmetry arguments and DFT calculations, we have shown that the DMI of Fe 3 GeTe 2 adopts the form Dz • (S 1 × S 2 ), with a DM vector normal to the (001) plane. This interaction is unable to stabilize the Néel skyrmions reported recently in thick Fe 3 GeTe 2 layers, but it possesses remarkable characteristics. It vanishes in the long wavelength limit and only survives for small textures as it tends to stabilize planar spin spirals with wave vector q ≈ π √ 3a and propagating along ΓK direction. Nonetheless, in realistic situations, the large PMA of Fe 3 GeTe 2 monolayers prevents the formation of such planar spin spirals, at least in the monolayer limit. Cancelling this PMA by surface engineering represents an appealing challenge as it could open avenues for the generation of unusual chiral textures. In fact, since magnetic anisotropy is driven by tiny details of the band structure 36 (from µeV to meV), it is highly sensitive to the band filling and can be tuned easily by doping 6 , Fe-Co alloying 37 or using a gate voltage 38 . Finally, the presence of current-driven magnetic anisotropy, Eq. ( 1), is expected to add new functionalities to Fe 3 GeTe 2 and its interplay with the perpendicular DMI reported in the present communication remains to be investigated in details.
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 1 FIG. 1. (Color online) (a) Top and (b) side view of Fe3GeTe2 monolayer. (x, y, z) are the cartesian coordinates and (a, b) are the equivalent crystallographic directions.

FIG. 2 .

 2 FIG. 2. (Color online) DM vector (black arrows) for various nearest neighbor interactions: (a) Fe1-Fe3, (b) Fe1-Fe2, (c) Fe1-Fe1 and (d) Fe2-Fe2. The chemical elements are designated by the same color code as in Fig. 1. In these figures, we only represented the atoms that contribute to defining the local symmetry of the environment and removed the other elements for better clarity.

FIG. 3 .

 3 FIG. 3. (Color online) Spin spiral dispersion for Néel in-plane along ΓK without (black) and with (red) SOC. The antisymmetric distortion upon turning on SOC is attributed to DMI. The vertical shift due to magnetic anisotropy has been removed manually for clarity, and the exchange stiffness is A=47 meV/Fe.

FIG. 4 .

 4 FIG. 4. (Color online) The mirror symmetry normal to the (110) plane (green line) results in a vanishing DM vector along ΓM, whereas the mirror symmetry breaking normal to the (100) plane (black lines) leads to uncompensated clockwise and anticlockwise paths (rounded arrows) and a finite DM vector along ΓK. Di,α denotes the path connecting ith nearest-neighbor Fe2 sites passing through element α.

FIG. 5 .

 5 FIG. 5. (Color online) Contribution of the different elements to the antisymmetric part of the spin spiral dispersion along ΓK for (a) Néel out-of-plane, (b) Bloch out-of-plane and (c) Néel in-plane configurations. (d) Kohn-Sham orbitals at Γpoint showing the strong Te 5pz-Fe2 3d z 2 hybridization responsible for the large perpendicular orbital moment on Fe2.

FIG. 6 .

 6 FIG. 6. (Color online) Example of a planar homochiral spin spiral propagating along the low symmetry [100] direction (dashed line), characterized by mirror symmetry breaking.

TABLE I .

 I Spin and orbital moments of the various elements (in units of µB).

	Element Spin moment Orbital moment
	Te1,2	-0.024	-0.02
	Fe1,3	2.267	0.083
	Fe2	1.287	0.19
	Ge	-0.06	0.0065
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