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Abstract

Molecular structure is often considered as emerging from the decoherence effect of

the environment. Electrons are part of the environment of the nuclei in a molecule.

Here, we investigate their contribution to the classical-like geometrical relationships

often observed between nuclei in molecular systems. Our numerical computations of

reduced density matrix (RDM) elements are made from accurate all-particle wave

functions. However, we found that, as in the Born-Oppenheimer picture, the elec-

trons play an essential rôle in localizing nuclei in specific ”equilibrium” geometries.

Although the electronic environment alone cannot explain molecular symmetry-

broken isomers, it can contribute to their dynamical stability by significantly reduc-

ing off-diagonal RDM elements.
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1 Introduction

The usual approach for reconstructing or recognizing molecular structural elements from

a wave function follow the observation of Claverie and Diner [1], that classical structures

can be identified with nuclear configurations for which appropriately defined density

functions have maxima. Within such a view, based on Born’s probabilistic interpretation

of the square modulus of the wave function, molecules do exhibit clear structural features

as demonstrated by accurate calculation of their full i.e. ”all-particle” wave functions,

in the sense that inter-nuclei geometrical parameter distributions are peaked at definite

values [2,3].

Decoherence effects by the environment [4] are often invoked to explain why molecule

behave as near classical objects with structural features related to those maximal density

configurations, that chemists can use without having usually to worry about any quan-

tum mechanical interference or tunelling phenomena. The environment of a molecular

system has undoubtly some decoherence effects and something to do with the localization

of the system in a state with “quasi-classical” characteristics. But when we are thinking

about molecules, it is hard to imagine a completely generic environment. How to for-

mulate in mathematical expressions such a general i.e non specific environment? There

have been proposals to consider the photon vacuum field as an ubiquitously present en-

vironment, responsible for the stability of isolated, chiral molecules [5]. However, it has

been shown that the proposed mechanism was only valid at zero temperature [6]. In the

early years of the development of decoherence ideas in connection with the molecular

structure problem, Claverie and Jona-Lasinio [7,8] used external random noise to simu-

late localization in a double potential well (which is a typical toy model for the ammonia

“umbrella” inversion or molecular chirality-breaking). However, the reaction field mech-

anism of these authors is a collective effect, hard to invoked for quasi-isolated, single

molecules, as can be found in astrophysical conditions, where densities of one molecule

per cubic centimeters or less, are observed. Davies argued that, for a collection of identi-

cal molecules (at least two), there exists metastable approximate eigenstates in the form

of a tensor product of one and the same molecular state, which are both close to the gen-
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uine eigenstates of the whole collection of molecules, and symmetry-broken with respect

to the individual molecule symmetry [9]. However, it remains to justify why the whole

system would be in such an approximate product state rather than in a true eigenstate.

The spin-boson model can encompass a variety of environements, such as the electro-

magnetic radiation field, as long as they can be represented by a set of model harmonic

oscillators within some simplifying hypotheses [10]. Hornberger and co-workers simulated

the stabilization of chiral molecules upon collisions [11,12,13]. Recent and more realistic

decoherence simulations demonstrate that different environment models have different

decoherence properties that affect different degrees of freedom differently [14]. These re-

alistic simulations are very interesting, because the systematic and accurate calculation

of the decoherence times for a variety of molecular processes, in interaction with a series

of “standard” environment models, could be useful for controlling decoherence in real

systems and designing better quantum computers (using molecular qubits).

In the present work, we prefer to confine ourself to the sole molecular system: we are

seeking the furthermost point, one can reach in resolving the molecular structure co-

nundrum, without explicitly considering any specific kind of environment. By molecular

structure, we understand the relative localization of the nuclei in the three dimensional

space. However, a molecule consist of not only nuclei but also of electrons. So, it is ap-

propriate to ask to which extent the electrons play a rôle in the localization of the nuclei

by their continuous monitoring. The idea is that nuclei are constantly ”measured” by

electrons through their Coulomb interactions. So, electrons should impose a decoherence

time scale on nuclei of τdecoherence ≈ ~
<V e−n

Coulomb
>

expected to be much shorter than that of

the nuclei dynamics. This agrees with Ref. [15], where the initial decoherence time due

to electrons is found to be of the order of a few femtoseconds, whereas the time scale

for nuclear motion is rather of the order of the nanoseconds. However, using only two

electronic basis functions obtained as eigenfunctions of a clamped nuclei Hamiltonian,

as in [15], is questionable. Time propagation of an initial pure state would lead to the

ground state of the system, as in Monte-Carlo simulation, and such a state should be

decomposed on a complete, infinite dimensional basis set of electronic states. The pur-

pose of this work is to study the localization and decoherence effects of the electrons on
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the nuclei, by using highly accurate all-particle wave functions.

The article is organized as follows: In the next section, we introduce the concept of

‘pointer states’, define what we mean by a ”classical-like” molecular structure and present

the notion of “purity” of the reduced density matrix (RDM), for the nuclei of a molecule,

the electrons, considered as the environment of the latter, being traced out. Since, this

electronic environment corresponds only to a finite set of degrees of freedom, we cannot

expect superselection rules to emerge, but we are curious about what kind of conclusions

can be drawn within this setup. This is investigated in the third section, before concluding

in the last section.

2 Theoretical tools to quantify the classicality of molecular structure

Let us first define in a very pedestrian way, the basic theoretical tools, we will rely on in

the rest of the paper.

2.1 Pointer states

When measuring a property of a quantum system, the needle of an (idealized) measuring

device points to one of the possible outcome values. In a satisfactory theory of quantum

measurement, an experimental setup, although macroscopic, should be amenable to a

quantum treatment. Hence, the idea to associate a quantum state to every position of

the needle. These states were termed “pointer state” by Zurek [16], and their apparent

classical behaviour was assumed to be due to the decoherence effect of the environement.

At present, in decoherence theory, the concept of “pointer states” has been extended to

a wider context, where there is not necessarily a bona fide experimental setup. The envi-

ronment of a quantum system is assumed for all practical purposes, to break the unitary

invariance of the quantum mechanical representation of the system, by selecting a spe-

cial basis in which the “coherences” i.e. the non diagonal elements of the density matrix,

decrease exponentially with time. The “pointer states” are defined as the pure states
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belonging to the basis set selected by the environment, the latter constantly destructing

their superposition.

There is no general theory to determine the pointer states of a quantum system in a given

environment. For each microscopic environment modelling, one has to tackle the task of

finding the proper pointer states [16,13]. However, in many cases, such as macroscopic

objects which appear perfectly localized in space, the representation selected by the

environment is the so-called “direct representation”, the pointer states corresponding to

Dirac distributions in configuration space.

2.2 Reduced density and transition operator matrices for nuclear degrees of freedom

(DOFs)

Let |Ψ〉 be a molecular, normalized wave function in Dirac ket notation. The associated

(pure state) density operator, |Ψ〉〈Ψ|, will be denoted as ρ̂. The representation selected

by an environment being often the “direct representation”, let us consider it first to

express the density operator matrix. In the direct representation, denoting collectively

by r the electronic DOFs coordinates and by R the nuclear ones, we have,

ρ̂=
∫
dr dR |r R〉〈r R| · |Ψ〉〈Ψ| ·

∫
dr′ dR′ |r′ R′〉〈r′ R′|

=
∫
dr dR dr′ dR′ |r R〉〈r R|Ψ〉〈Ψ|r′ R′〉〈r′ R′|

=
∫
dr dR dr′ dR′ Ψ∗(r′,R′)Ψ(r,R) |r R〉〈r′ R′|. (1)

To study the nuclear structure, we integrate out the electronic degrees of freedom that

are considered as the environment for the nuclei. The resulting reduced density matrix

operator for the nuclear motion is
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ρ̂nuc = Trel [ρ̂]

=
∫
dr′′ 〈r′′|Ψ〉〈Ψ|r′′〉

=
∫
dr′′ dr dR dr′ dR′ Ψ∗(r′,R′)Ψ(r,R) 〈r′′|r R〉〈r′ R′|r′′〉

=
∫
dr′′ dr dR dr′ dR′ Ψ∗(r′,R′)Ψ(r,R) δr′′r′δr′′r|R〉〈R′|

=
∫
dR dR′

(∫
dr′′ Ψ∗(r′′,R′)Ψ(r′′,R)

)
|R〉〈R′|, (2)

so that,

ρnuc(R,R
′) := 〈R|ρ̂nuc|R′〉 =

∫
dr′′ Ψ∗(r′′,R′)Ψ(r′′,R) (3)

If the wave function assumes a BO form, ΨBO(r,R) = Ψe(r,R)ΨN(R), then Eq. (3)

becomes

〈R|ρ̂nuc|R′〉=
(∫

dr′′ Ψ∗e(r
′′,R′)Ψe(r

′′,R)
)

Ψ∗N(R′)ΨN(R) , (4)

that is to say, the interference amplitude between pointer states |R〉 and |R′〉 for the nu-

clear system depends upon the overlap of the BO electronic functions,
∫
dr′′ Ψ∗e(r

′′,R′)Ψe(r
′′,R).

In the case of Refs. [15,22,23] an all-particle wave function is written in a tensor product

basis as, ΨTPB(r,R) =
∑
i,I
λi,IΨ

i
e(r)Ψ

I
N(R), (all basis sets are taken orthonormal). Then

Eq. (3) reads

〈R|ρ̂nuc|R′〉=
∑
i,I,j,J

λ∗i,Iλj,J

(∫
dr′′ Ψ∗ie (r′′)Ψj

e(r
′′)
)

Ψ∗IN (R′)ΨJ
N(R)

=
∑
i,I,j,J

λ∗i,Iλj,Jδi,jΨ
∗I
N (R′)ΨJ

N(R)

=
∑
I,J

(∑
i

λ∗i,Iλi,J

)
Ψ∗IN (R′)ΨJ

N(R) . (5)

This shows that all electronic functions contribute to the interference amplitude between

pointer states |R〉 and |R′〉 through
∑
i
λ∗i,Iλi,J , which is nothing but the reduced density

matrix element in the
(
ΨI
N

)
I

basis:
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〈ΨJ
N |ρ̂nuc|ΨI

N〉=
∑
i

λ∗i,Iλi,J , (6)

as can be seen by comparing Eq. (5) with the change of representation formula:

〈R|ρ̂nuc|R′〉=
∑
I,J

〈R|ΨJ
N〉〈ΨJ

N |ρ̂nuc|ΨI
N〉〈ΨI

N |R′〉 . (7)

We note in passing, that, would the pointer state basis be a general one, such as Bnuc :=(
ΨI
N

)
I
, instead of (|R〉)R, the corresponding reduced density matrix elements could be

easily derived owing to this transformation.

Remark 1: One can define reduced transition matrices (RTM) in a similar fashion. Let

|Ψ1〉〈Ψ2| be the transition operator from molecular state Ψ2 to Ψ1, the reduced transition

matrix elements in the direct representation are,

〈R|RTMnuc|R′〉 =
∫
dr′′ Ψ∗2(r

′′,R′)Ψ1(r
′′,R) . (8)

When Ψ1 and Ψ2 are decomposed on a tensor product basis set, Ψ1(r,R) =
∑
i,I
λ1i,IΨ

i
e(r)Ψ

I
N(R)

and Ψ2(r,R) =
∑
i,I
λ2i,IΨ

i
e(r)Ψ

I
N(R), one obtains,

〈R|RTMnuc|R′〉=
∑
I,J

(∑
i

λ2
∗

i,I λ
1
j,J

)
Ψ∗IN (R′)ΨJ

N(R) . (9)

In the case of two BO wave functions, Ψ1(r,R) = Ψ1
e(r,R)Ψ1

N(R) and Ψ2(r,R) =

Ψ2
e(r,R)Ψ2

N(R) one has more simply,

〈R|RTMnuc|R′〉=
(∫

dr′′ Ψ2 ∗

e (r′′,R′)Ψ1
e(r
′′,R)

)
Ψ2 ∗

N (R′)Ψ1
N(R) . (10)

Time dependence has only been implicit, so far. If Ψ1 and Ψ2, are stationary eigenstates

of the total Hamiltonian associated to eigenvalues E1 and E2, the RTM will oscillate as

e−
i(E1−E2)·t

~ , while the RDM of a stationary state will be time independent.

Remark 2: For a molecule in a general environment, the definition of the reduced density
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matrix operator for the nuclear motion, ρ̂nuc, is formally identical. We only need to start

from the total wave function of the molecule plus its environment, and to integrate out

both the electronic and environmental DOFs.

2.3 Classical-like molecular structure

We will say that a property of a quantum system is ”classical-like”, to distinguish it

from ”truly quantum” or from ”chaotic”, if the outcomes of its measurement have a

narrow distribution, compatible with what one would expect for a plausible experimental

uncertainty distribution of a classical property measurement.

This implies two constraints on the reduced density operator of the system after tracing

out the environment degrees-of-freedom: (i) In the ”pointer state” basis representation

where the RDM is diagonal, all the significant eigenvalues (which give the probabilities

to obtain the corresponding eigenstate) must correspond to eigenstates which gives ex-

pectation values for the property falling within a narrow distribution (ii) Decoherence

must rapidly lead to the decay of any superposition of pointer states (related to the

environment monitoring) back to the mixture of (i), after a perturbation of the system

such as the measurement of the property of interest (which would project the system to a

pointer state associated to the property measuring device, so a priori to a superposition

of environment-selected pointer states).

2.4 Purity

The less pointer states with a significant probability, the easier to fulfill condition (i).

The limit case, where one pointer state has probability close to one, and therefore all

the others have a probability close to zero, is the most favorable to deal with, because

then one can assume that the environment will select this pointer state and one has just

to verify that the property has a narrow distribution of possible measurement outcomes

for that pointer state.
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The “purity” of a RDM is a number which provides a sufficient condition to demonstrate

that the RDM is dominated by a single state. The purity concept is widely used in quan-

tum information theory [17]. It can be used as both an entanglement and a decoherence

assessment tool [18]. It is defined for the nuclear motion reduced density operator as

P = Tr[ρ̂2nuc] . (11)

We easily see that P can take values between 1, when a pointer state has probability

one and all the others zero, and 1
Ndim

, when all pointer states are equiprobable.

Note that P does not depend upon the basis set, so it can be evaluated even if the pointer

state basis has not been determined. A value close to one implies that one eigenvalue

of ρ̂nuc dominates all the others. The associated eigenstate can be considered as the

dominant pointer state.

In the BO approach, for example, the purity of ρ̂nuc is exactly 1, since only the ΨN appear-

ing in Eq. (4) is populated. Such a state, at least the vibrational ground state (omitting

rotational and translational DOFs), is usually well-localized in the neighbourhood of the

so-called equilibrium geometry of the system. So, a molecular structure is recovered in

this sense. However, it is often pointed out that recovering molecular structure from the

BO approach is not a great achievement, since it is put in from the start.

2.5 Environment classes defined by pointer states

We have seen that decoherence theory associate to a given environment a set of pointer

states (defined up to unitary transformations within equiprobable subsets). Here we

consider the inverse mapping. Assume that we have a set of orthonormal states, S, of an

isolated quantum system, we define the class, E , of environments of this system such that

S is a set of pointer states for the system in each of these environments. That is to say,

the nuclear RDM, ρ̂nuc, after tracing out the environment DOFs as explained in Remark

2, in set S representation, has non diagonal element decaying exponentially with time.
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In the following, we will extend this definition to a set, S, of Dirac distribution and

assume that its associated environment class, E , is non empty.

3 Decoherence by the electronic environment

In this section, we consider a stationary eigenstate of the total system (electrons plus

nuclei) Hamiltonian, and study the decoherence effect on nuclear motion of the electrons,

the latter being considered as the environment of the former. As noted above, the density

operator and consequently, the reduced density matrices of such an eigenstate are time

independent. Therefore, they are not appropriate to explore the dynamics of the system

or to determine isomer lifetimes.

We will assess the decoherence effect in two complementary ways. First, we will consider

the electrons as the sole environment of the nuclei. In this context, the pointer states

of interest for the molecular structure problem, are the eigenstates of ρ̂nuc. They can be

readily obtained and analysed. Second, we will assume that the molecule is in an external

environment that localize the nuclei in space, so that the pointer states of interest are now

the Dirac distributions of the direct representation. We will calculate the contribution

of the electronic environment to the suppression of interferences between these pointer

states.

We will limit our study to H2 isotopologues, as we want to deal with accurate all-particle

wave functions.

3.1 Purity of ρ̂nuc for H2 isotopologues

In this section, we consider a translation-free system whose rotational DOFs have been

separated out and give only an effective, J-dependent term in the potential for the

internal coordinate. The nuclear configuration R appearing in ρ̂nuc is specified by the

internuclear distance only.
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In Electron-Nucleus Full Configuration Interaction (EN-FCI) calculations [22,23] a basis

set of electronic states, obtained at one and the same clamped nuclei configuration, is

used to build direct product, electron-nucleus basis sets. In Ref. [22,23], the basis set

was not complete, but uses typically tens of thousands of electronic states for H2, so

many more than in [15]. Computing the vibration-reduced density matrix for electronic

degrees of freedom, or the electron-reduced density matrix for the vibrational degrees

of freedom, we find that the approximate (J = 0)-ground state basis function bears a

population of about 99% for H2, while the largest coherence between the approximate

ground state and excited states basis functions are of the order of a few percents. For

the second excited state, the approximate first excited vibrational basis function bears

a population of about 97% for H2.

Let us focus now on a representation-free quantity: The purity of the RDM for the

vibrational DOF, ρ̂nuc, (identical to that for the electrons by duality), is reported in Tab.1

for selected, molecular eigenstates. The latter are primarily those previously published

in Ref.[22], for which we are confident, that the relative differences in the purity numbers

are reliable with respect to the exact results. The entries in italics correspond to a priori

less accurate, approximate molecular states. (Note that the label ”1Σ+
g 0→ 1” in Tab.VI

of [22] was somewhat misleading, it was referring to the transition X1Σ+
g → B1Σ+

u in

the notation used here).

The first observation is that all purity numbers are close to, but not equal to one, so

that all the corresponding molecular eigenstates are reasonably, but not perfectly pure.

There are two clear tendencies. Firstly, following every row, we note that purity numbers

increase. This is not surprising: it is related to the decrease of the De Broglie wave length

with increasing mass of the system, and the concomitant increase in state localization,

well-illustrated in Fig.3 of Ref.[23]. Secondly, across every column, purity tends to de-

crease for successive excited ro-vibrational states of a given approximate electronic state,

and for successive approximate electronic states of a given approximate ro-vibrational

state. For example, for H2, the purity is found to be 0.983 for the lowest ro-vibrational

states of the first singlet, approximate, electronic, excited state, B1Σ+
u ν = 0, J = 0 and

J = 1, while it is 0.989 for states X1Σ+
g ν = 0, J = 0 and J = 1. In fact, there are
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States H2 D2 T2

X1Σ+
g ν = 0, J = 0 0.988841 0.992048 0.993479

X1Σ+
g ν = 0, J = 1 0.988830 0.992044 0.993476

X1Σ+
g ν = 0, J = 2 0.988807 0.992036 0.993472

X1Σ+
g ν = 0, J = 3 0.988773 0.992024 0.993466

X1Σ+
g ν = 0, J = 4 0.988728 0.992009 0.993458

X1Σ+
g ν = 1, J = 0 0.966507 0.976131 0.980428

X1Σ+
g ν = 1, J = 1 0.966473 0.976120 0.980420

X1Σ+
g ν = 1, J = 2 0.966406 0.976097 0.980409

X1Σ+
g ν = 1, J = 3 0.966306 0.976062 0.980390

X1Σ+
g ν = 1, J = 4 0.966173 0.976016 0.980365

X1Σ+
g ν = 2, J = 0 0.944993 0.960590 0.967589

X1Σ+
g ν = 2, J = 1 0.944935 0.960571 0.967579

X1Σ+
g ν = 2, J = 2 0.944822 0.960535 0.967558

X1Σ+
g ν = 2, J = 3 0.944655 0.960480 0.967527

X1Σ+
g ν = 2, J = 4 0.944440 0.960408 0.967486

B1Σ+
u ν = 0, J = 0 0.983095 0.987301 0.989288

B1Σ+
u ν = 0, J = 1 0.983104 0.987308 0.989119

Table 1
Purity of ρ̂nuc for selected molecular eigenstates. The values italicized are those that we find
less reliable, and that are not used to draw any conclusion in the main text. J is the total
angular momentum quantum number, ν an approximate vibrational quantum number, and the
first label of each row designates the approximate electronic state.

exceptions to this trend, for example, for D2, the purity of B1Σ+
u ν = 0, J = 1 is slightly

larger than that of B1Σ+
u ν = 0, J = 0. The same phenomenon occurs between states

(not reported here) of increasing vibrational quantum numbers for fixed approximate

electronic state and angular momentum quantum number. However, all the exceptions

encountered so far, involve molecular eigenstates whose accuracy is probably not suf-

ficient to draw definite conclusions, and may be artefacts of an incomplete eigenstate

description.

The purity of our ρ̂nuc is quite different to what is found in the simple dynamical model,

reduced to the first two electronic states of Ref.[15]. 1 The purity of the ρ̂nuc of low-lying

molecular eigenstates is always found to be quite high, so that the outcome of nuclear

1 It seems that there is a normalization issue in this work, because χ0 and χ1 should not be
normalized to one, as implicitly assumed in the formula for P (after Eq. (14) of [15]).
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position measurements will be distributed according to the module square of the most

populated eigenstate of ρ̂nuc with high probability. The larger the mass of the system,

the larger the probability and the localization of the distribution. So, the pointer states

for the electronic environment alone, that is to say, the eigenstates of ρ̂nuc, will tend to

Dirac distributions only at the infinite mass limit. The (J = 0)-pointer states of the main

isotopologue are depicted in Fig.1. There are quite similar in shape to the vibrational

eigenstates one would obtain in the BO approach.
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Figure 1. Main pointer state (in arbitrary units) of the two lowest ”electronic” singlet states of
H2 as a function of the internuclear distance q (in Bohr). The Kratzer potential curve, V , (in
cm−1 ) of the vibrational Hamiltonian whose lowest eigenfunctions were used as the nuclear
motion basis set, is also represented. Note that the positions of the pointer states with respect
to the minimum of the potential curve, and with respect to each other, have been chosen ad
hoc.

14



Such an analysis can be generalized to polyatomic molecules. One can obtain a nuclear

motion RDM by tracing over electronic states. It is not always possible to separate out

rotational motion from the other nuclear degrees of freedom [19]. However, one can leave

out these very special systems for which a classical point of view is probably irrelevant.

So far, we have ignored nuclear spin DOFs, although they can prove important to take

into account, when studying localization issues [24]. For dihydrogen, one can form two

nuclear spin states, a singlet and a triplet, which by Pauli principle are only coupled to

odd and even J-values, respectively. So, the (J = 0)-state is associated to the nuclear

spin singlet (”parahydrogen”) while the (J = 1)-state, which is higher by about 1.6

kJ/mol, is associated to the nuclear spin triplet (”orthohydrogen”). So, even at very low

temperature, an ensemble density matrix instead of a pure state one, may be necessary

to account for the three degenerate triplet components of orthohydrogen. However, in

most common situations, the appropriate description of the three triplet components

will be a the combination with equal weights of their three pure state density matrices.

After integration over the electronic DOFs, the ρ̂nuc so-obtained will also contain such a

combination of pure state components. Even in this case, it is expected that by further

reducing ρ̂nuc over nuclear spin, the picture of a quasi pure vibrational state will still

emerge, since the latter will be similar for all nuclear spin components.

In contrast, note that when the molecular state is degenerate because it is an electron-(

rather than a nuclear)-spin multiplet, the ensemble, density matrix corresponding to the

convex combination with equal weights of the degenerate components, will not necessarily

produce such a sum after tracing over electronic DOFs, it may give a quasi-pure ρ̂nuc.

So, to conclude this section, the electronic environment is able to explain at least par-

tially the classical-like internal structure of a molecule, since repeated measurements

will find consistently, internuclear geometrical parameters within a reasonably narrow

range of values. However, such an approach cannot explain the non observation of the

superposition of parity-broken enantiomers, nor the breaking of molecular orientational

symmetry, simply because a whole molecular system, electrons plus nuclei, does not

break parity nor SO(3)-symmetry. An external environment has to be invoked to induce
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superselection rules partitioning the Hilbert space of the system into different sectors.

3.2 Interference damping of rotational pointer states

So, we assume now that we have such an external environment. However, we do not

specify it explicitly. We just consider that we know the set of pointer states, S, for

our system and that there exists at least one hypothetical environment leading to these

pointer states, that is to say, the associated environment class, E , is non-empty.

To evaluate the contribution of the electronic subsystem to nuclear position decoherence,

we take the example of four-particle systems {mZ+,mZ+, e−, e−} made of two electrons

and two (possibly fictitious) particles of mass m and positive charge +Z. Real systems

include H2 = {p+, p+, e−, e−} and Ps2 = {e+, e+, e−, e−}. To quantify the decoherence

effect of the electrons alone, we use the ρ̂nuc of the ground rovibronic eigenstate with zero

total angular momentum of the isolated system, so that the molecular wave function

is spherically symmetric, and only the relative angular difference between two pointer

states matters. Then, fixing the internuclear distance between the two positively charged

particles and a plane, P , containing them, this allows us to restrict the set, S to the set

of configuration-centered delta distributions corresponding to positively charged particle

positions rotated around their center-of-mass within P . They can be specified by a single

angle parameter, α.

More precisely, we denote by ± ~R0

2
the position vectors of the two positively charged

particles with respect to their center of mass at some reference position, and by |ξ0〉 :=

|δ
−
~R0
2

〉 ⊗ |δ
+
~R0
2

〉 the pointer state corresponding to this reference nuclear configuration.

Next, we define the pointer states |ξα〉 := |δ
− Ôα

~R0
2

〉 ⊗ |δ
+
Ôα ~R0

2

〉 where Ôα is the rotation

operator of angle α around the internuclear center in plane P . We study orientational

decoherence due to the electrons by calculating the damping of ρ̂nuc cross-terms between

these pointer states as a function of their angular distance, see Fig.2.

The ground-state wave function of the four-particle systems was computed using an

explicitly correlated Gaussian basis set and the QUANTEN computer program [25] (see
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Figure 2. Measure for orientational localization in {2mZ+, 2m−el}-type four-particle systems
including the H2 and the Ps2 molecules and a series of hypothetical systems. Increase of the
mass and the electric charge leads to suppression of the interference terms among rotated
structures. WARNING: this figure is a draft, there are convergence issues to be improved in a
forthcoming version.

also Refs. [2,3] relevant for this work). The aim was to get accurate RDM matrix elements

for the ground state of these system with zero total angular momentum (N = 0), natural

parity (p = +1), and zero spin for the pair of electrons, and of positive particles. We

managed to converge the corresponding energies up to the order of a 1 mEh range and

we believe that this is sufficient for the purpose of studying the RDM matrix elements

as a function of particle masses and charges.

In Fig.2, we have displayed the off-diagonal elements of the nuclear reduced density

matrix in the pointer state basis, 〈ξ0|ρnuc|ξα〉. For the sake of simplicity, we have fixed

plane P to define the angle α, and the pointer states |ξα〉. However, thank to the spherical

symmetry, we may as well consider that the coordinates of the two positively charged

particles are at antipodal points of a sphere centered around their midpoint. In practice,

calculations were made by freezing two of the three Euler angles.

To understand when the interference terms get small and the localization of the nuclei
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by the electrons efficient, it is convenient to return to the Born–Oppenheimer approxi-

mation, Eq. (4):

〈ξ0|ρ[BO]
nuc |ξα〉 =∫ dr′′ Ψ∗el(r

′′,−Ôα
~R0

2
,+

Ôα
~R0

2
)Ψel(r

′′,−vecR0

2
,+

~R0

2
)

Ψ∗nuc(−
Ôα

~R0

2
,+

Ôα
~R0

2
)Ψnuc(−

~R0

2
,+

~R0

2
) .

(12)

If the overlap of the electronic wave function corresponding to the rotated nuclear struc-

tures is small, then 〈ξ0|ρ[BO]
nuc |ξα〉 is also small. More generally, interferences are damped

if the electronic cloud of the molecular wave function changes significantly between the

rotated nuclear configurations.

The results of Fig.2, shows that for rotated H2 structures the contribution of electrons

to interference suppression is tiny, with only 5-10 % suppression at 90◦. It is even less for

the lighter Ps2 system: the pair of positive (and symmetrically negative) particles retain

full coherence with respect to orientational changes with a 1-2 % suppression only at

90◦. .

To see a more significant effect, we have experimented with increasing the charge of the

protons and computed hypothetical H2-like ions with {pZ+, pZ+, e−, e−}. The increased

nuclear charge makes the attractive potential energy and the electrons’ monitoring effect

stronger. For values Z = 2, 5 and 10 the interference between structures rotated by 90◦

is suppressed by 20 %, 90 %, and 99 % respectively.

Alternatively, we can play with the mass of the positive particles to increase their local-

ization by decreasing their kinetic energy.

4 Conclusion

As concluding remarks, it is important to recall that the concept of the structure of

a molecule with fixed values of geometrical parameters, makes no sense in traditional
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quantum mechanics. The only thing that can make sense, is the structure attached to a

given molecular state. Because, even for the simplest molecules, the average geometrical

parameters can depend drastically upon the molecular state considered. For example,

the equilibrium geometry of HeH+, the first molecule to have appeared in the universe,

is ≈ 1.43 bohr whereas in its first excited 1Σ+ electronic state, it is ≈ 5.53.

One could argue that the concept of stable excited states makes no sense in QED, since,

because of spontaneous emission, only the GS is potentially stable. However, invoking

QED to focus on GS-only structural properties, is quite far-fetched, given the fruitfulness

of the concept of excited state in molecular sciences.

In this work, we have attempted to better understand the contribution of the electronic

subsystem to the internal nuclear structure of molecules, by starting out from accurate

molecular (electrons plus nuclei) wave function, beyond the BO-approximation. ”Patho-

logical” systems for which it is difficult to assign a classical-like structure experimentally,

are out-of-the scope of our study. We only consider molecules that appear classical-like

to chemists.

We have used two complementary ways to assess the electronic influence to the apparent

classical character of molecular structure. First, we have shown on symmetrical H2-

isotopologues that isolated, semi-rigid molecules in their low-lying states are dominated

by a single pointer state providing nuclear geometrical parameter distributions with well

defined peaks. Then, assuming that there exist at least one environment of a molecule

giving a set of fully localized pointer states, we have quantified the suppression of the non-

diagonal density matrix elements between these pointer states due to the electronic part

of the wave function. We have shown that, both increasing the potential energy through

a charge effect, or decreasing the kinetic energy through a mass effect, can facilitate

localization by damping interference terms, hence limiting the dynamical instability due

to the superpositions.

It is obvious from electrostatic considerations, that without electrons, the nuclei would

not be bound. Their wave functions would be plane waves, and no structure would

emerge. In this paper, we have been one step further, showing that, in general, electrons
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help to project nuclei in an almost pure vibrational state, closely related to their apparent

classical molecular structure.
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[21] P. Cassam-Chenäı, Chem. Phys. Lett. 420, 354-357, 2006.
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