
FAST COMPUTATION OF HYPERELLIPTIC CURVE ISOGENIES IN ODD
CHARACTERISTIC

ÉLIE EID

Abstract. Let p be an odd prime number and g ≥ 2 be an integer. We present an algorithm
for computing explicit rational representations of isogenies between Jacobians of hyperelliptic
curves of genus g over an extension K of the field of p-adic numbers Qp. It relies on an efficient
resolution, with a logarithmic loss of p-adic precision, of a first order system of differential
equations.

1. Introduction

After exploring elliptic curves in cryptography and their isogenies, and interest has been
raised to their generalizations. Researchers began to inspect principally polarized abelian vari-
eties, especially Jacobians of genus two and three curves and compute isogenies between them
[CR15, CE15, Mil19, Tia20]. Their main interest was to calculate the number of points of these
varieties over finite fields [GS12, LL06, BGG+17] and more recently to instantiate isogeny-based
cryptography schemes [FT19, CS20]. In this work, we concentrate on the problem of computing
explicitly isogenies between Jacobians of hyperelliptic curves over finite fields of odd character-
istic, this will be a generalization to [CE15] and [Mil19].
A separable isogeny between Jacobians of hyperelliptic curves of genus g defined over a field k
is characterized by its so called rational representation (see Section 2.2 for the definition); it is
a compact writing of the isogeny and can be expressed by 2g rational fractions defined over a
finite extension of k. These rational fractions are related. In fields of characteristic different
from 2, they can be determined by computing an approximation of the solution X(t) ∈ kJtKg of
a first order non-linear system of differential equations of the form

H (X(t)) ·X ′(t) = G(t) (1)

where H : kJtKg → Mg(kJtK) is a well chosen map and G(t)∈kJtKg. This approach is a general-
ization of the elliptic curves case [LV16] for which Equation (1) is solved in dimension one.
Equation (1) was first introduced in [CE15] for genus two curves defined over finite fields of odd
characteristic and solved in [KPR20] using a well-designed algorithm based on a Newton itera-
tion; this allowed them to compute X(t) modulo tO(`) in the case of an (`, `)-isogeny for a cost of
Õ(`) operations in k then recover the rational fractions that defines the rational representation
of the isogeny. This approach does not work when the characteristic of k is positive and small
compared to `, in which case divisions by p occur and an error can be raised while doing the
computations. We take on this issue similarly as in the elliptic curve case ([LS08, CEL20]) by
lifting the problem to the p-adics. We will always suppose that the lifted Jacobians are also
Jacobians for some hyperelliptic curves. It is relevant to assume this, even though it is not the
generic case when g is greater than 3 [OS86], since it allows us to compute efficiently the ratio-
nal representation of the multiplication by an integer which in this case the lifting can be done
arbitrarily. After this process, we need to analyze the loss of p-adic precision in order to solve
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Equation (1) without having a numerical instability. We extend the result of [LV16], by proving
that the number of lost digits when computing an approximation of the solution of Equation (1)
modulo tO(g`), stays within O

(
logp(g`)

)
. Our main theorem is the following.

Theorem. Let p be a prime number. Let K be a finite extension of Qp and OK be its ring of
integers. There exists an algorithm that takes as input:

• three positive integers n,g and N ,
• a map H : OKJtKg →Mg(OKJtK) such that H(0) ∈ GLg (OK),
• a vector G(t) ∈ OKJtKg,

and, assuming that the differential equation

H (X(t)) ·X ′(t) = G(t)

admits a unique solution in (tOKJtK)g, outputs an approximation of this solution modulo (pN , tn+1)

for a cost Õ (gωn), where ω ∈ [2, 3[ is the exponent of matrix multiplication, at precision
O(pM ) with M = max(N, 3) + blogp(n)c if p = 2, M = max(N, 2) + blogp(n)c if p = 3 and
M = N + blogp(n)c otherwise.

One can do a bit better for p = 2 and 3 if we follow the same strategy as [LV16], in this
case M is equal to max(N, 2) + blogp(n)c if p = 2 and N + blogp(n)c otherwise. For the sake of
simplicity, we will not prove this here.

Note that this technique does not allow to compute isogenies in characteristic two for several
reasons. First, the general equation of a hyperelliptic curve in characteristic two does not
have the same form as in odd characteristic. Moreover, the map H includes square roots of
polynomials which implies that solving Equation (1) will require to extract square roots at some
point. However, it is well known that extracting square roots in an extension of Q2 is an unstable
operation. Still, it is quite interesting to solve Equation (1) for p = 2 with the assumptions that
we made in the main theorem, even thought this approach does not lead to the computation of
isogenies between Jacobians of hyperelliptic curves.

2. Jacobians of curves and their isogenies

Throughout this section, the letter k refers to a fixed field of characteristic different from two.
Let k̄ be a fixed algebraic closure of k. In Section 2.1, we briefly recall some basic elements
about principally polarized abelian varieties and (`, . . . , `)-isogenies between them; the notion of
rational representation is discussed in Section 2.2. Finally, for a given rational representation,
we construct a system of differential equations that we associate with it.

2.1. (`, · · · , `)-isogenies between abelian varieties. Let A be an abelian variety of dimension
g over k and A∨ be its dual. To a fixed line bundle L on A, we associate the morphism λL

defined as follows
λL : A −→ A∨

x 7−→ t∗xL ⊗ L−1

where tx denotes the translation by x and t∗xL is the pullback of L by tx.
We recall from [Mil86] that a polarization λ of A is an isogeny λ : A −→ A∨, that is a surjective
homomorphism of abelian varieties of finite kernel, such that over k̄, λ is of the form λL for some
ample line bundle L on Ak̄ := A⊗Spec(k̄). When the degree of a polarization λ of A is equal to
1, we say that λ is a principal polarization and the pair (A, λ) is a principally polarized abelian
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variety. We assume in the rest of this subsection that we are given a principally polarized abelian
variety (A, λ). The Rosati involution on the ring End(A) of endomorphsims of A corresponding
to the polarization λ is the map

End(A) −→ End(A)

α 7−→ λ−1 ◦ α∨ ◦ λ.

The Rosati involution is crucial for the study of the division algebra End(A) ⊗ Q, but for our
purpose, we only state the following result.

Proposition 1. [Mil86, Proposition 14.2] For every α ∈ End(A) fixed by the Rosati involution,
there exists, up to algebraic equivalence, a unique line bundle LαA on A such that λLαA = λ ◦ α.

In particular, taking α to be the identity endomorphism denoted “1”, there exists a unique
line bundle L1

A such that λL1A = λ.
Using Proposition 1, we give the definition of an (`, . . . , `)-isogeny.

Definition 2. Let (A1, λ1) and (A2, λ2) be two principally polarized abelian varieties of dimen-
sion g over k and ` ∈ N∗. An (`, . . . , `)-isogeny I between A1 and A2 is an isogeny I : A1 −→ A2

such that
I∗L1

A2
= L`A1

,

where L`A1
is the unique line bundle on A1 associated with the multiplication by ` map.

We now suppose that A is the Jacobian of a genus g curve C over k. We will always make
the assumption that there is at least one k-rational point on C. Let r be a positive integer and
fix P ∈ C. We define C(r) to be the symmetric power of C and j(r)

P to be the map

C(r)
j
(r)
P−→ A ' J(C)

(P1, . . . , Pr) 7−→ [P1 + · · ·Pr − rP ].

If r = 1 then the map j(1)
P is called the Jacobi map with origin P .

We write j(r) for the map j(r)
P . The image of j(r) is a closed subvariety of A which can be also

written as r summands of j(1)(C). Let Θ be the image of j(g), it is a divisor on A and when P is
replaced by another point, Θ is replaced by a translate. We call Θ the theta divisor associated
to A.

Remark 3. If A is the Jacobian of a curve C and Θ its theta divisor, then L1
A = L(Θ), where

L(Θ) is the sheaf associated to the divisor Θ.

Using Remark 3, Definition 2 for Jacobian varieties gives the following

Proposition 4. Let ` ∈ N∗, A1 and A2 be the Jacobians of two algebraic curves over k and Θ1

and Θ2 be the theta divisors associated to A1 and A2 respectively. If an isogeny I : A1 −→ A2

is an (`, . . . , `)-isogeny then I∗Θ2 is algebraically equivalent to `Θ1.

Proof. For all x ∈ A1, the theorem of squares [Mil86, Theorem 5.5] gives the following relation

t∗`x L1
A1
⊗
(
L1
A1

)−1
= t∗x

(
L1
A1

)⊗` ⊗ ((L1
A1

)⊗`
)−1

.

By Proposition 1, the line bundle L`A1
is algebraically equivalent to

(
L1
A1

)⊗`, therefore I∗L1
A2

and(
L1
A1

)⊗` are algebraically equivalent. By Remark 3, I∗L1
A2

corresponds to I∗Θ2 and
(
L1
A1

)⊗`
corresponds to `Θ1. �
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2.2. Rational representation of an isogeny between Jacobians of hyperelliptic curves.
We focus on computing an isogeny between Jacobians of hyperelliptic curves. Let C1 (resp. C2)

be a genus g hyperelliptic curve over k, J1 (resp. J2) be its associated Jacobian and Θ1 (resp. Θ2)

be its theta divisor. We suppose that there exists a separable isogeny I : J1 −→ J2. For P ∈ C1,
let jP : C1 −→ J1 be the Jacobi map with origin P . Generalizing [KPR20, Proposition 4.1]
gives the following proposition

Proposition 5. The morphism I ◦ jP induces a unique morphism IP : C1 −→ C
(g)
2 such that

the following diagram commutes

C
(g)
2

C1

J2

IP

I◦jP

'

We assume that C1 (resp. C2) is given by the following singular model

v2 = f1(u) (resp. y2 = f2(x))

where f1 (resp. f2) is a polynomial of degree 2g + 1 or 2g + 2. Set Q = (u, v) ∈ C1 and
IP (Q) = {(x1, y1), . . . , (xg, yg)}. We use the Mumford’s coordinates to represent the element
IP (Q): it is given by a pair of polynomials (U(X), V (X)) such that

U(X) = Xg + σ1X
g−1 + · · ·+ σg

where
σi = (−1)i

∑
1≤j1<j2<···<ji≤g

xj1xj2 · · ·xji

and

V (X) = ρ1X
g−1 + · · ·+ ρg =

g−1∑
j=0

yj

 g−1∏
i=0,i 6=j

X − xi
xj − xi

.
The tuple (σ1, · · · , σg, ρ1, · · · , ρg) consists of rational fractions in u and v and it is called the
rational representation of I.

Remark 6. Since IP (u,−v) = −IP (u, v), the functions σ1, . . . , σg can be seen as rational fractions
in u and have the same degree bounded by deg(σ1)/2. Moreover, the functions ρ1/v, . . . , ρg/v

can also be expressed as rational fractions in u of degrees bounded by deg(ρ1)+3, . . . ,deg(ρg)+3

respectively.

In order to determine the isogeny I, it suffices to compute its rational representation (because
I is a group homomorphism), so we need to have some bounds on the degree of the rational
functions σ1, . . . , σg, ρ1/v, . . . , ρg/v. In the case of an (`, . . . , `)-isogeny, we adapt the proof of
[CE15, § 6.1] in order to obtain bounds in terms of ` and g.

Lemma 7. Let i ∈ {1, . . . , g}. The pole divisor of σi seen as function on J2 is algebraically
equivalent to 2Θ2. The pole divisor of ρi seen as function on J2 is algebraically equivalent to
(2i+ 1)Θ2 if deg(f2) = 2g + 1, and (2i+ 2)Θ2 otherwise.
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Proof. This is a generalization of [KPR20, Lemma 4.25]. Note that if deg(f2) = 2g + 1, then
σi has a pole of order one along the divisor {(R1, . . . , Rg−1,∞) ;Ri ∈ C2} which is algebraically
equivalent to 2Θ2. �

Lemma 8. [Mat59, Appendix] The divisor jP (C1) of J1 is algebraically equivalent to
Θg−1

1

(g − 1)!

where Θg−1
1 denotes the g − 1 times self intersection of the divisor Θ1.

Proposition 9. Let ` be a non-zero positive integer and i ∈ {1, . . . , g}. If I is an (`, . . . , `)-
isogeny, then the degree of σi seen as a function on C1 is bounded by 2g`. The degree of ρi seen
as a function on C1 is bounded by (2i+ 1)g` if deg(f2) = 2g + 1, and (2i+ 2)g` otherwise.

Proof. The degrees of σ1, . . . , σg, ρ1, . . . , ρg are obtained by computing the intersection of jP (C)

with their pole divisors. By Lemma 7, it suffices to show that

jP (C) ·Θ2 = `g.

Since I is an (`, . . . , `)-isogeny, Proposition 4 gives that I∗Θ2 is algebraically equivalent to `Θ1.
Moreover,

I∗
(
IP (C)

)
=
(
| ker(I)|

)
jP (C) = lgjP (C).

Using Lemma 8, we obtain
I∗
(
IP (C)

)
· I∗Θ2 = glg+1.

As
I∗
(
IP (C)

)
· I∗Θ2 = deg(I)

(
IP (C) ·Θ2

)
= lg(IP (C) ·Θ2

)
,

the result follows. �

2.3. Associated differential equation. We assume that char(k) 6= 2. We generalize [CE15,
§ 6.2] by constructing a differential system modeling the map FP = I ◦ jP of Proposition 5. The
map FP is a morphism of varieties, it acts naturally on the spaces of holomorphic differentials
H0(J2,Ω

1
J2

) and H0(C1,Ω
1
C1

) associated to J2 and C1 respectively, this action gives a map

F ∗P : H0(J2,Ω
1
J2) −→ H0(C1,Ω

1
C1

).

A basis of H0(C1,Ω
1
C1

) is given by

B1 =

{
ui
du

v
; i ∈ {0, . . . , g − 1}

}
.

The Jacobi map of C2 induces an isomorphism between the spaces of holomorphic differentials
associated to C2 and J2, so H0(J2,Ω

1
J2

) is of dimension g, it can be identified with the space
H0(Cg2 ,Ω

1
Cg2

)Sn (here the symmetric group Sn acts naturally on the space H0(Cg2 ,Ω
1
Cg2

)). With
this identification, a basis of H0(J2,Ω

1
J2

) is chosen to be equal to

B2 =


g∑
j=1

xij
dxj
yj

; i ∈ {0, . . . , g − 1}

 .

Let (mij)0≤i,j≤g ∈ GLg(k̄) be the matrix of F ∗P with respect of these two bases, we call it the
normalization matrix. Let Q = (uQ, vQ) ∈ C1 be a non-Weierstrass point different from P and
IP (Q) = {R1, . . . , Rg} such that IP (Q) contains g distinct points and does not contain neither
a point at infinity nor a Weierstrass point. The points Ri may be defined over an extension k′ of
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k of degree equal to O(g). Let t be a formal parameter of C1 at Q, then we have the following
diagram

Spec
(
k′JtK

)
Cg2

C1 C
(g)
2

t7→(Ri(t))i

IP

This gives the differential system

dx1

y1
+ · · · +

dxg
yg

=
(
m11 +m12 · u+ ...+m1g · ug−1

)du
v
,

x1 · dx1

y1
+ · · · +

xg · dxg
yg

=
(
m21 +m22 · u+ ...+m2g · ug−1

)du
v
,

...
...

xg−1
1 · dx1

y1
+ · · · +

xg−1
g · dxg
yg

=
(
mg1 +mg2 · u+ ...+mgg · ug−1

)du
v
,

y2
1 = f2(x1), · · · , y2

g = f2(xg) .

(2)

Equation (2) has been initially constructed and solved in [CE15] for g = 2. In this case, the
normalization matrix and the initial condition (x1(0), x2(0)) are computed using algebraic theta
functions. In a more practical way, we refer to [KPR20] for an easy computation of the initial
condition (x1(0), x2(0)) of Equation (2) and for solving the differential system using a Newton
iteration. However, in this case, the normalization matrix is determined by differentiating mod-
ular equations. There is a slight difference in Equation (2) between the two cases, especially
x1(0) and x2(0) are different in the first, and equal in the second. Let H be the g-squared matrix
defined by

H(x1, . . . xg) =

(
xi−1
j

1

yj

)
1≤i,j≤g

.

We suppose that g = 2. If the initial condition (x1(0), x2(0)) of Equation (2) satisfies x1(0) 6=
x2(0), then the matrix H(x1(0), x2(0)) is invertible in M2(k). Otherwise, its determinant is
equal to zero.
More generally, we prove that with the assumptions that we made on Q,R1, R2, . . . Rg−1 and
Rg, the matrix H(x1(0), . . . , xg(0)) is invertible in Mg(k). Let t be a formal parameter, Q(t)

the formal point on C1 (kJtK) that corresponds to t = u− uQ and {R1(t), . . . , Rg(t)} the image
of Q(t) by IP , then Equation (2) becomes

H(X(t)) ·X ′(t) = G(t) (3)

whereX(t) = (x1(t), . . . , xg(t)) andG(t) = v−1

(
g∑
i=1

miju
i−1

)
1≤j≤g

. Thus we have the following

proposition

Proposition 10. The matrix H(X(t)) is invertible in Mg(kJtK).
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Proof. The matrix H(X(t)) is sort of a generalization of the Vandermonde matrix, its determi-
nant is given by

det (H(X(t))) =

∏
1≤i<j≤g

(xj(t)− xi(t))

g∏
i=1

yi(t)

which is invertible inMg(kJtK) because xi(0) 6= xj(0) for all i, j ∈ {1, . . . , g} such that i 6= j. �

3. Fast resolution of systems of p-adic differential equations

In this section, we give a proof of the main theorem by solving efficiently the nonlinear system
of differential equations (1) in an extension of Qp for all prime numbers p even though it is not
useful for computing isogenies for p = 2. In Section 3.1, we introduce the computational model
that we use in our algorithm exposed in Section 3.2 and the proof of its correctness is presented
in Section 3.3.
Throughout this section the letter p refers to a fixed prime number and K corresponds to a fixed
finite extension of Qp. We denote by υp the unique normalized extension to K of the p-adic
valuation. We denote by OK the ring of integers of K, π ∈ OK a fixed uniformizer of K and e
the ramification index of the extension K/Qp. We naturally extend the valuation υp to quotients
of OK , the resultant valuation is also denoted by υp.

3.1. Computational model. From an algorithmic point of view, p-adic numbers behave like
real numbers: they are defined as infinite sequences of digits that cannot be handled by com-
puters. It is thus necessary to work with truncations. For this reason, several computational
models were suggested to tackle these issues (see [Car17] for more details). In this paper, we
use the fixed point arithmetic model at precision O(pM ), where M ∈ N∗, to do computations in
K. More precisely, an element in K is represented by an interval of the form a + O(pM ) with
a ∈ OK/πeMOK . We define basic arithmetic operations on intervals in an elementary way(

x+O(pM )
)
±
(
y +O(pM )

)
= (x± y) +O(pM ) ,(

x+O(pM )
)
×
(
y +O(pM )

)
= xy +O(pM ) .

For divisions we make the following assumption: for x, y ∈ OK/πeMOK , the division of x+O(pM )

by y + O(pM ) raises an error if υp(y) > υp(x), returns 0 + O(pM ) if x = 0 in OK/πeMOK and
returns any representative z +O(pM ) with the property x = yz in OK/πeMOK otherwise.

Matrix computation. We extend the notion of intervals to the K-vector space Mn,m(K): an
element in Mn,m(K) of the form A + O(pM ) represents a matrix

(
aij +O(pM )

)
ij

with A =

(aij) ∈Mn,m

(
OK/πeMOK

)
. Operations in Mn,m(K) are defined from those in K:(

A+O(pM )
)
±
(
B +O(pM )

)
= (A±B) +O(pM ),(

A+O(pM )
)
·
(
B +O(pM )

)
= (A ·B) +O(pM ).

For inversions, we use standard Gaussian elimination.

Lemma 11. [Vac15, Proposition 1.2.4 and Théorème 1.2.6] Let A be an invertible matrix in
Mn(OK) with entries known up to precision O(pM ). The Gauss-Jordan algorithm computes
the inverse A−1 of A with entries known with the same precision as those of A using O(n3)

operations in K.
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3.2. The algorithm. Let g be a positive integer, KJtK be the ring of formal series over K in t.
We denote byMg(k) the ring of square matrices of size g over a field k. Let f =

(
fij
)
i,j
∈Mg(KJtK)

and Hf be the map defined by (
tKJtK

)g Hf

−−−−−−−−−→ Mg(KJtK)(
x1(t), . . . , xg(t)

)
7−−−−−−−→

(
fij
(
xi(t)

))
ij
.

Given f ∈ Mg(KJtK) and G = (G1, . . . , Gg) ∈ KJtKg, we consider the following differential
equation in X = (x1, . . . , xg),

Hf ◦X ·X ′ = G. (4)

We will always look for solutions of (4) in
(
tKJtK

)g in order to ensure that Hf ◦X is well defined.
We further assume that Hf(0) is invertible in Mg(K).

Remark 12. Up to a change of variables, the differential system (3) fulfills all the assumptions
of Equation (4).

The next proposition guarantees the existence and the uniqueness of a solution of the differ-
ential equation (4).

Proposition 13. Assuming that Hf(0) is invertible in Mg(K), the system of differential equa-
tions (4) admits a unique solution in KJtKg.

Proof. We are looking for a vector X(t) =
∞∑
n=1

Xnt
n that satisfies Equation (4). Since X(0) = 0

and Hf(0) is invertible in KJtKg, then Hf

(
X(t)

)
is invertible in Mg(KJtK). So Equation (4) can

be written as
X ′(t) =

(
Hf(X(t))

)−1 ·G(t). (5)

Equation (5) applied to 0, gives the non-zero vector X1. Taking the n-derivative of Equation (5)
with respect to t and applying the result to 0, we observe that the coefficient Xn only appears
on the hand left side of the result, so each component of Xn is a polynomial in the components
of the Xi’s for i < n with coefficients in K. Therefore, the coefficients Xn exist and are all
uniquely determined. �

We construct the solution of Equation (4) using a Newton scheme. We recall that for Y =

(y1, . . . , yg) ∈ KJtKg, the differential of Hf with respect to Y is the function

dHf(Y ) : KJtKg −→ Mg(KJtK)

h 7−→ dHf(Y )(h) =
(
f ′ij (yi) · hi

)
1≤i,j≤g

.
(6)

We fix m ∈ N and we consider an approximation Xm of X modulo tm. We want to find a
vector h ∈ (tmKJtK)g, such that Xm + h is a better approximation of X. We compute

Hf (Xm + h) = Hf (Xm) + dHf(Xm)(h) (mod t2m) .

Therefore we obtain the following relation

Hf (Xm + h) · (Xm + h)′ −G =

Hf (Xm) ·X ′m +Hf (Xm) · h′ + dHf(Xm)(h) ·X ′m −G (mod t2m−1) .

So we look for h such that

Hf (Xm) · h′ + dHf(Xm)(h) ·X ′m = −Hf (Xm) ·X ′m +G (mod t2m−1) . (7)
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It is easy to see that the left hand side of Equation (7) is equal to ((Hf (Xm) · h)
′
, therefore

integrating each component of Equation (7) and multiplying the result by (Hf (Xm))−1 gives
the following expression for h

h = (Hf (Xm))−1
∫ (

G−Hf (Xm) ·X ′m
)
dt (mod t2m), (8)

where
∫
Y dt, for Y ∈ KJtKg, denotes the unique vector I ∈ KJtKg such that I ′ = Y and

I(0) = 0.
This formula defines a Newton operator for computing an approximation of the solution of
Equation (4). Reversing the above calculations leads to the following proposition.

Proposition 14. We assume that Hf(0) is invertible in Mg(K). Let m > 0 be an integer,
n = 2m and Xm ∈ KJtKg a solution of Equation (4) mod tm. Then,

Xn = Xm + (Hf (Xm))−1
∫ (

G−Hf (Xm) ·X ′m
)
dt

is a solution of Equation (4) mod tn+1.

It is straightforward to turn Proposition 14 into an algorithm that solves the nonlinear sys-
tem (4). We make a small optimization by integrating the computation of Hf(X)−1 in the
Newton scheme.

Algorithm 1: Differential Equation Solver
DiffSolve (G, f, n, g)

Input : G, f mod tn such that Hf(0) is invertible in Mg(K).
Output: The solution X of Equation (4) mod tn+1, Hf (X) mod tdn/2e

if n = 0 then
return 0 mod t, Hf(0)−1 mod t

m := dn−12 e;
Xm, Hm := DiffSolve(G, f,m, g);
Hn := 2Hm −Hm ·Hf(X) ·Hm mod tm+1

return Xm +Hn

∫
(G−Hf (Xm) ·X ′m) dt mod tn+1

According to Proposition 14, Algorithm 1 runs correctly when its entries are given with an
infinite p-adic precision; however it could stop working if we use the fixed point arithmetic model.
The next theorem guarantees its correctness in this type of models.

Theorem 15. Let n, g ∈ N, N ∈ 1
eZ
∗, G ∈ OKJtKg and f ∈ Mg(OKJtK). We assume that

Hf(0) is invertible in Mg(OK) and that the components of the solution of Equation (4) have
coefficients in OK . When the procedure DiffSolve runs with fixed point arithmetic at precision
O(pM ), with M = max(N, 3) + blogp(n)c if p = 2, M = max(N, 2) + blogp(n)c if p = 3 and
M = N + blogp(n)c otherwise. All the computations are done in OK and the result is correct at
precision O(pN ).

We give a proof of Theorem 15 at the end of Section 3.3. Right now, we concentrate on the
complexity of Algorithm 1. Let MM(g, n) be the number of arithmetical operations required to
compute the product of two g × g matrices containing polynomials of degree n with coefficients
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in K and M(n) := MM(1, n), therefore M(n) is the number of arithmetical operations required
to compute the product of two polynomials of degree n. According to [BCG+17, Chapter 8],
the two functions M(.) and MM(g, .) are related by the following formula

MM(g, n) = O (gωM(n)) , (9)

where ω ∈ [2, 3[ is the exponent of matrix multiplication. Furthermore, we denote by CH(n)

the algebraic complexity for computing H ◦ X mod tn for any map H : KJtKg → Mg(KJtK).
We assume that M(n) and CH(n) satisfy the superadditivity hypothesis

M(n1 + n2) ≥ M(n1) + M(n2),

CH(n1 + n2) ≥ CH(n1) + CH(n2), ∀n1, n2 ∈ N.
(10)

For instance, when H is given by a matrix (fij)i,j such that fij is an univariate polynomial of
degree d for every i, j ∈ {1, . . . , g}, then CH(n) = O

(
g2dM(n)

)
.

Remark 16. In the situation of Equation (2), the map H includes univariate rational fractions
of radicals of degree O(g); in this case, we compute y2

1, . . . , y
2
g mod tn, we use a Newton scheme

to compute y−1
1 , . . . , y−1

g mod tn, then we compute xiy−1
i , x2

i y
−1
i , . . . xg−1

i y−1
i mod tn for i =

1, . . . , g. The algebraic complexity CH(n) is therefore equal to CH(n) = O
(
g2M(n)

)
.

Proposition 17. Algorithm 1 performs O (MM(g, n) + CHf
(n)) operations in K.

Proof. The complexity of computing Hf(0)−1 is at most O(gω) operations in K. Let D denote
the algebraic complexity of Algorithm 1, then we have the following relation

D(n) ≤ D
(⌈

n− 1

2

⌉)
+O (MM(g, n) + CHf

(n)) .

Noticing that g is fixed and using Eqs. (9) and (10), we find D(n) = O (MM(g, n) + CHf
(n))

and the result is proved. �

Corollary 18. When performed with fixed point arithmetic at precision O(pM ), the bit com-
plexity of Algorithm 1 is O ((MM(g, n) + CHf

(n)) ·A(K;M)) where A(K;M) denotes an upper
bound on the bit complexity of the arithmetic operations in OK/πeMOK .

3.3. Precision analysis. The goal of this subsection is to prove Theorem 15. The proof relies
on the the theory of "differential precision" developed in [CRV14, CRV15]. We follow the same
strategy of [CEL20, LV16].
Let g be a fixed positive integer. We study the solution X of Equation (4) when G varies, with
the assumption Hf(0) is invertible in Mg(OK). Proposition 13 showed that Equation (4) has
a unique solution X(G) ∈ KJtKg. Moreover, if we examine the proof of Proposition 13, we see
that the n+ 1 first coefficients of the vector X(G) depends only on the first n coefficients of G.
This gives a well-defined function

Xn : (KJtK/ (tn))g −→
(
tKJtK/

(
tn+1

))g
G 7−→ X(G)

for a given positive integer n. In addition, the proof of Proposition 13 states that for G ∈
(KJtK/ (tn))g, Xn(G) can be expressed as a polynomial in G(0), G′(0), . . . , G(n−1)(0) with coef-
ficients in K, therefore Xn is locally analytic.

10



Proposition 19. For G ∈ (KJtK/ (tn))g, the differential of Xn with respect to G is the following
function

dXn(G) : (KJtK/ (tn))g −→
(
tKJtK/

(
tn+1

))g
δG 7−→ (Hf (Xn(G)))−1 ·

∫
δG.

Proof. We differentiate the equation Hf(Xn(G)) ·Xn(G)′ = G with respect to G, we obtain the
following relation

Hf(Xn(G)) ·
(
dXn(G)(δG)

)′
+ dHf(Xn(G))(dXn(G)(δG)) ·Xn(G)′ = δG (11)

where dHf(Xn(G)) is the differential of Hf at Xn(G) defined in (6). Making use of the relation(
(Hf(Xn(G)))·dXn(G)(δG)

)′
= Hf(Xn(G))·

(
dXn(G)(δG)

)′
+dHf(Xn(G))(dXn(G)(δG))·Xn(G)′,

Equation (11) becomes (
Hf(Xn(G)) · dXn(G)(δG)

)′
= δG.

Integrating the above relation and multiplying by (Hf(Xn(G)))−1 we get the result. �

We now introduce some norms on (KJtK/ (tn))g and (tKJtK/ (tn))g. We set En = (KJtK/ (tn))g

and Fn =
(
tKJtK/

(
tn+1

))g; for instance, Xn is a function from En to Fn.
First, we equip the vector space Kn := KJtK/ (tn) with the usual Gauss norm

‖a0 + a1t+ · · ·+ an−1‖Kn = max (|a0| , |a1| , . . . , |an−1|) .

We equip Mg(KJtK/(tn)) with the induced norm: for every A = (aij(t))ij ∈Mg(KJtK/(tn)),

‖A‖ = max
i

g∑
j=1

‖aij(t)‖Kn .

We endow Fn with the norm obtained by the restriction of the induced norm ‖.‖ on Fn: for
every X = (xi(t))i ∈ Fn,

‖x‖Fn = max
i
‖xi(t)‖Kn .

In the other hand, we endow En with the following norm: for every X = (xi(t))i ∈ En,

‖x‖En = ‖
∫
x ‖Fn = max

i
‖
∫
xi(t) ‖Kn .

Lemma 20. The induced norm on Mg(KJtK/(tn)) is compatible with the norm on Fn, in other
words we have

‖Ax‖Fn ≤ ‖A‖ ‖x‖Fn
for all A ∈Mg(KJtK/(tn)) and x ∈ Fn.

Proof. The result follows immediately from the sub-multiplicativity of the norm ‖.‖Kn . �

Lemma 21. Let G ∈ (OKJtK/ (tn))g. We assume that Xn(G) ∈ (tOKJtK/ (tn))g, then dXn(G) :

En −→ Fn is an isometry.

Proof. The assumptions Xn(G) ∈ (tOKJtK/ (tn))g and Hf(0) ∈ GLg
(
OK
)
guarantee the invert-

ibility of Hf(Xn(G)) inMg(OKJtK). Therefore, the norm ‖Hf(Xn(G))‖ is equal to one. It follows

from Lemma 20 that the product (Hf(Xn(G))) ·
∫
δG and

∫
δG have the same norm on Fn,

which is equal to ‖δG‖En . �
11



We define the following function:

τn : Fn × En −→ Hom(En, Fn)

(X , G) 7−→
(
δG 7→ (Hf(X))−1 ·

∫
δG

)
.

By Proposition 19, the map dXn is equal to τn ◦ (Xn, id), where id denotes the identity map
on En. We associate to a locally analytic function f the Legendre function associated to the
epigraph of f , Λ(f) : R∪{∞} −→ R∪{∞} (see [CRV14, Section 3.2] for an explicit definition).
Also, we define

Λ(f)≥2(x) = inf
y≥0

(Λ(f)(x+ y)−2y) .

Lemma 22. Let x ∈ R such that x < −2
log p

p− 1
, then Λ(Xn)≥2(x) < x.

Proof. One checks easily that Λ(id)(x) = x and Λ(τn)(x) ≥ 0 for all x ∈ R∗+. Applying [CRV15,

Proposition 2.5], we get Λ(Xn)≥2 (x) ≤ 2

(
x+

log p

p− 1

)
if x ≤ − log p

p− 1
. Therefore, Λ(Xn)≥2(x) <

x if x < −2
log p

p− 1
. �

Proposition 23. Let BEn(δ) (resp. BFn(δ)) be the closed ball in En (resp. in Fn) of center 0

and radius δ. Under the assumption of Lemma 21, we have for all δ < p
−2
p−1 ,

Xn(G+BEn(δ)) = Xn(G) +BFn(δ) .

Proof. As a direct consequence of [CRV14, Proposition 3.12] and Lemma 22, we have the fol-
lowing formula

Xn(G+BEn(δ)) = Xn(G) + dXn(G)(BEn(δ)) ,

for all δ < p
−2
p−1 . The result follows from Lemma 21. �

We end this section by giving a proof of Theorem 15.

Correctness proof of Theorem 15. Let G, f, n and g be the output of Algorithm 1. We first prove
by induction on n ≥ 1 the following equation

Hf(Xn) ·X ′n = G mod (tn, pM ).

Let m be a positive integer and n = 2m+ 1. Let em = G−Hf(Xm) ·X ′m. From the relation

Xn = Xm + (Hf(Xm))−1

∫
em dt mod (tn+1, pM ) ,

we derive the two formulas

Hf(Xm) ·Xn = Hf(Xm) ·Xm +

∫
em dt mod (tn+1, pM ) (12)

and

Hf(Xm) ·X ′n = Hf(Xm) ·X ′m + (Hf(Xm))′ · (Xm −Xn) + em mod (tn, pM )

= G+ (Hf(Xm))′ · (Xm −Xn) mod (tn, pM )

= G− (Hf(Xm))′ · (Hf(Xm))−1

∫
em dt mod (tn, pM ) .

12



Using the fact that the first m coefficients of em vanish, we get

Hf(Xn) ·X ′n = Hf(Xm) ·X ′n + dHf(Xm)

(
(Hf(Xm))−1

∫
em dt

)
·X ′m mod (tn, pM ) . (13)

In addition, one can easily verifies

dHf(Xm)

(
(Hf(Xm))−1

∫
em dt

)
·X ′m = (Hf(Xm))′ · (Hf(Xm))−1

∫
em dt

Hence, Equation (13) becomes

Hf(Xn) ·X ′n = G mod (tn, pM ).

Now, we define Gn = Hf(Xn) · X ′n so that we have Xn = Xn(Gn) and ‖G − Gn‖Fn ≤ p−M .
Therefore, ‖G−Gn‖En ≤ p−M+blogp(n)c. By Proposition 23, we have that

Xn(Gn) = Xn(G) mod (tn+1, pN ).

Thus Xn = Xn(G) mod (tn+1, pN ). �

4. Experiments

Using an implementation of both Algorithm 1 and the half-gcd variant given in [Tho03]
with the magma computer algebra system [BCP97], we compute the first g components σ1, . . . σg

of the associated rational representation for the multiplication by an integer ` for Jacobians of
genus 2 and 3, timings are detailed in Section 4.2. The calculations are done at p-adic precision
O(pM ) withM = 1+blogp(2g`)c. In addition to our implementation, we make use of Couveignes
and Ezome’s Algortihm [CE15] to compute explicit isogenies between Jacobians of genus two
curves over a finite extension of Fp by passing through a finite extension of Qp. A complete
example is given below.

4.1. An example. We consider the genus two curve given by C1/F19 : y2 = x5 +16x4 +11x3 +

3x2 + 5x+ 17 . Let J(C1) its Jacobian and ` be a prime number different from 19. We look for
a maximal isotropic subgroup V of J(C1)[`] which is invariant by the Frobenius endomorphism.
Such a group is found for ` = 11, therefore an (11, 11)-isogeny over F19 exists. Let us compute
its rational representation by applying Algorithm 1 to Equation (2).
The p-adic precision needed to do the calculations is therefore equal to 1 + blog19(110)c = 2.
We first lift C1 over Q19 as

C1/Q19 : y2 = x5 + (16 +O(192))x4 + (11 +O(192))x3+

(3 +O(192))x2 + (5 +O(192))x+ 17 +O(192) .

We lift the subgroup V as V in a finite extension of Q19 by lifting its two generators. Let C2

(resp C2) be the curve such that J(C2) = J(C1)/V (resp J(C1)/V). Using the main algorithm
of [CE15], we find an equation of C2,

C2/Q19 : y2 = (2 +O(192))x5 − (176 +O(192))x4

− (100 +O(192))x3 + (2546 +O(192))x2 − (68 +O(193))x ,

and the normalization matrix being equal to(
95 +O(192) 233 +O(192)

155 +O(192) 228 +O(192)

)
.

13



The computation of the normalization matrix is done by sending the formal point

P1(t) =
(
t+O(192), 146− 21 t+ 179 t2 +O

(
192, t3)

)
∈ C1 (Q19JtK)

to{
R1 =

(
−36 + 353 t+O

(
192, t2),−13 + 326 t+O

(
192, t2)

)
,

R2 =
(
−129 + 102 t+O

(
192, t2),−47 + 2 t+O

(
192, t2)

)}
in C2 (Q19JtK)(2). We can therefore choose X0 =

(
O(192), 146 +O(192)

)
as an initial condition

for the differential equation, then send it to the point
(
O(192), O(192)

)
by making the change of

variables X(t)← X(t)−X0 . Using the equation of the curve C1, we compute the y-coordinate
of P1(t) modulo (192, t111), then we compute G mod (192, t111).
A call from Algorithm 1, gives the series x1(t), x2(t), y1(t) and y2(t) modulo (192, t111). For
instance, the first 21 terms of x1(t) and x2(t) are given by

x1(t) = −36−8t−58t2−90t3−90t4−145t5−124t6−107t7−13t8−114t9+154t10+129t11+88t12

+ 103t13 − 22t14 − 147t15 − 178t16 + 168t17 + 144t18 − 166t19 − 77t20 +O(192, t21)

and

x2(t) = −129+102t+100t2+94t3+45t4+91t5+29t6+137t7−132t8−52t9+51t10+150t11+80t12

+ 90t13 − 124t14 − 163t15 + 90t16 + 102t17 + 55t18 + 44t19 + 23t20 +O(192, t21).

Applying the half-gcd algorithm to the series x1(t)+x2(t), x1(t) ·x2(t), (y2(t)−y1(t))/(x2(t)−
x1(t)) and (y1(t)·x2(t)−y2(t)·x1(t))/(x2(t)−x1(t)) modulo 19, we recover the rational functions
σ1, σ2, α1 and α2. For instance, the numerator N of −σ1 is given by

N = x20 + 8x19 + 12x18 + 4x17 + 16x16 + 2x15 + 18x14 + 2x13 + 18x12 + 16x11 + 13x10

+ 6x9 + 5x8 + 10x7 + 5x6 + 10x5 + 9x4 + 17x3 + 18x2 + 1

and its denominator D is equal to

D = 12x21 + 11x20 + 18x19 + 14x18 + 13x16 + 18x15 + 8x14 + 5x13 + 13x12 + 16x11 + 2x10

+ 5x9 + 3x8 + 4x7 + 6x6 + 5x5 + 18x4 + 11x3 + 16x2 + 9x+ 16.

4.2. Timings. We use an implementation in magma of Algortihm 1 to compute the components
σ1, . . . , σg of the rational representation of the multiplication by ` map in F7 for Jacobians of
hyperelliptic curves of genus 2 and 3 for some ` ∈ {0, . . . , 461}. Results are detailed on Figure 1.
The base ring of all our computations does not change, it is always Z/7λZ for λ = 1+blog7(2g`2)c,
so the timings for g = 3 are significantly larger than those of g = 2 by a small constant factor.
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