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Abstract. Investigating average thermodynamic quantities is not sufficient to

understand conformational transitions of a finite-size polymer. We propose that such

transitions are better described in terms of the probability distribution of some finite-

size order parameter, and the evolution of this distribution as a control parameter

varies. We demonstrate this claim for the coil-globule transition of a linear polymer and

its mapping onto a two-state model. In a biological context, polymer models delineate

the physical constraints experienced by the genome at different levels of organization,

from DNA to chromatin to chromosome. We apply our finite-size approach to the

formation of plectonemes in a DNA segment submitted to an applied torque and the

ensuing helix-coil transition that can be numerically observed, with a coexistence of

the helix and coil states in a range of parameters. Polymer models are also essential

to analyze recent in vivo experiments providing the frequency of pairwise contacts

between genomic loci. The probability distribution of these contacts yields quantitative

information on the conformational fluctuations of chromosome regions. The changes

observed in the shape of the distribution when the cell type or the physiological

conditions vary may reveal an epigenetic modulation of the conformational constraints

experienced by the chromosomes.
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1. Introduction

Recent advances of nanotechnologies and molecular-scale experiments, for instance

single-molecule micro-manipulations, FRET (fluorescence resonance exchange transfer)

or chromosome conformational capture, give a direct access to the microscopic

conformation of macromolecules [1, 2]. Data on the features of finite-size complexes

are now available, and the notions of conformation, conformational fluctuations and

conformational transitions of biopolymers are becoming central for unravelling their

biological functions. While opening a way to a mechanistic understanding at the scale

of individual molecules, the interpretation of such experimental data requires to stick to

a finite-size framework. A straightforward application of the standard thermodynamic

framework, in terms of statistical averages, to the conformational transitions of isolated

macromolecules is highly questionable. The relevant transitions mostly involve a finite

chain (e.g. the chain of amino-acids making a protein) or a finite region of a linear

filament (e;g. the DNA stretch embedding a gene and the associated regulatory

sequences), and strong finite-size effects are expected.

Linear polymer chains differ from standard many-body systems explored in

statistical physics: connectivity constraints make the polymers live in a very complex

conformational space. The number N of monomers is not only a measure of the linear

size of the polymer, it also controls their spatial extension in a non extensive way.

The limit N → ∞ does not have the same rigorous status as a thermodynamic limit,

defined e.g. in [3]. Lanford-Dobrushin-Ruelle conditions expressing the insensitivity to

surroundings of the state of a large enough subsystem, in turn ensuring the existence

of a well-defined thermodynamic limit and the extensivity of global thermodynamic

quantities like free energy or susceptibilities, fail to be satisfied.

The occurrence of conformational changes in a localized region of a filament is

in particular encountered in a biological context within chromatin loops, a higher-

level structure displayed by genomic DNA. Actually, in higher organisms (specifically

eukaryotic organisms, whose cells possess a nucleus), the DNA molecule is first wrapped

around protein cores, forming basic units called nucleosomes. The bead-on-string

structure thus formed is then folded into a fiber, the chromatin fiber, itself organized

in loops, up to the whole chromosome. Chromatin is thus the intermediary level of

genomic organization between DNA and chromosome. Each level can be described

in an effective way as a filament, within the framework of polymer physics. The

spontaneous conformational fluctuations at each level provide the dynamic setting in

which specific biological events occur. An open question is to unravel up to what point

the conformational constraints condition the occurrence, coordination and regulation of

the various functional processes involving the genome, for instance gene transcription.

In this paper, we demonstrate that an operational framework is to investigate the

size-dependent distribution of an appropriate order parameter, which allows to describe

quantitatively conformational transitions and their nature. We will see that it explains
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the experimentally or numerically observed coexistence of two distinct conformational

states. We apply this framework to complex conformational transitions of biomolecules,

for instance the formation of plectonemes on DNA and the epigenetic regulation of the

constrained conformational fluctuations of chromosome regions.

2. Conformational transitions of a linear polymer

2.1. A basic example: the coil-globule transition

In a polymer solution dilute enough to neglect interactions between the different

polymers, their conformation can be investigated as if each one were isolated. A first

important parameter is the numberN of monomers forming the polymer, directly related

to its length. However, we will see that N →∞ has not the status of a thermodynamic

limit, and N plays a more complex role in the physical behavior of the polymers.

The solvent also has an essential influence on the polymer conformation. If the

affinity between the solvent and the monomers is high (good solvent), the polymer adopts

a coil conformation. When the affinity between the solvent and the monomers decreases

below the mutual affinity between the monomers (bad solvent), the polymer collapses

onto itself and adopts a compact globule conformation. Actually, under the action of

thermal noise, the polymer conformation fluctuates. Accordingly, it is usually described

by its statistical features, for instance the root-mean-square end-to-end distance R or the

root-mean-square radius of gyration Rg (averages at thermal equilibrium over the whole

conformational space) [4, 5]. In a good solvent, these quantities scale with the chain

length N according to R(N) ∼ Rg(N) ∼ Nν where ν ≈ 3/5 is the Flory exponent. In

contrast, they scale as R(N) ∼ Rg(N) ∼ N1/3 in a bad solvent. The scaling is different

at the transition point (the so-called θ-point): R(N) ∼ Rg(N) ∼ N νθ [6, 7].

However, these average behaviors do not reflect the instantaneous conformation

adopted by the finite-size polymer nor the range of its fluctuations, that are observed in

a single-molecule experiment or a numerical simulation. Neither do they give insights on

what occurs at the coil-globule transition in terms of conformational space exploration.

We propose that a better understanding of the finite-size conformational transition is

provided by investigating the distributions of various quantities describing the polymer

conformation. Such distributions give account of the actual molecular conformations

adopted by the polymer and how often they are encountered. We will show that the

changes observed in the shape of the distributions as a control parameter varies is highly

informative about the transition and its nature.

The coil-globule transition is controlled by the relative strength of the solvent-

monomer interactions, that is, by the excluded volume of a monomer, in which the

center of no other monomer could enter: the excluded volume is large in a good solvent

and it decreases at decreasing solvent quality. Such a decrease of the solvent quality

is observed in general when the temperature decreases [4, 5]. In what follows we will
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thus investigate the changes in the conformational statistics observed when varying the

temperature.

2.2. Finite-size signature of the coil-globule transition

In a previous study [8], we evidenced that the relevant microscopic order parameter t

for describing the coil-globule transition of an isolated polymer chain of length N with

excluded-volume interactions is a power t = ρ1/(νd−1) of the density ρ = Nr−3
g , where rg

is the radius of gyration of the chain conformation and ν ≈ 3/5 is the Flory exponent.

In dimension d = 3, it comes

t =
(
N/r3

g

)5/4
. (1)

The larger t, the more compact the conformation is. The distribution PN(t) at infinite

temperature has been deduced from scaling arguments supplemented with numerical

simulation (Monte Carlo sampling on a cubic lattice) [8]. Choosing an energy U = −NJt
where J is a coupling constant, that accounts within a mean-field approximation for

attractive interactions at contacts [9], the Boltzmann-Gibbs distribution P
(β)
N (t) of the

chain conformation is:

P
(β)
N (t) ∼ tc e−A

′(Nt)−q e−N [(A−βJ)t+Btn] (2)

where A, A′, B, c and n are numerical constants fitted on simulation data, with n ≈ 2

and c ≈ −1.13. We introduce a reduced temperature:

τ = 1− θ/T = 1− βJ/A. (3)

According to the sign of τ , the dominant contribution to P
(β)
N (t) is located in different

domains of values of t. For τ > 0, the distribution is strongly peaked around a value

of t of order 1/N , corresponding to values of rg of order N ν , which leads to identify

this high temperature regime with a coil phase. For τ < 0, P
(β)
N (t) is now peaked in the

region where t is far larger, of order 1, corresponding to values of rg of order N1/d, which

leads to identify this low temperature regime with a globule phase. The temperature

θ = J/kBA gives a rough estimate of the transition temperature.

Focusing on the transition, we investigate more precisely the size and temperature

dependence of the distribution P
(β)
N (t). It involves a factor:

h(τ̂ , t̂) = t̂ce−Aτ̂ t̂−Bt̂
n

(4)

that is scale invariant insofar as it depends on the size N through the rescaled variables:

t̂ = tN1/n and τ̂ = τN1−1/n (5)

with n ≈ 2. The distribution now writes:

P̂N(τ̂ , t̂) =
h(τ̂ , t̂) e−A

′N−q(1−1/n) t̂−q

Ic(N, τ̂)
(6)

where the normalization factor Ic(N, τ̂) ensures that
∫∞

0
P̂N(τ̂ , t̂)dt̂ = 1. At first sight,

one might presume that a scaling regime would be obtained at fixed values of τ̂ when
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Figure 1. (a) Continuous coil-globule transition for a polymer of small size N < N0 =

45 (here N = 20). The evolution of the shape of P̂N (τ̂ , t̂) as the rescaled temperature

τ̂ decreases (respectively τ̂ = −2, τ̂ = −4.6 and τ̂ = −8) indicates a continuous

transition in which the characteristics of a single population evolves smoothly with

τ̂ . (b) Evidence of a first-order-like finite-size coil-globule transition on the shape of

P̂N (τ̂ , t̂), plotted with respect to the rescaled variable t̂ at fixed N > N0 = 45 (here

N = 2000) and for various τ̂ . For τ̂ = −2, only a coil peak is present. For τ̂ = −8,

only a globule peak is present. The inset shows an enlarged view of the coil region

(t̂ < 10). The presence of two well-separated peaks in the distribution for τ̂ = −4.6

reveals the first-order-like coexistence of two distinct populations in dilute solution.

N →∞. However, due to the value c < −1, the limiting function h(τ̂ , t̂) = t̂ce−Aτ̂ t̂−Bt̂
n

is not integrable in t̂ = 0. The relevance of the size-dependent contribution factor

e−A
′N−q(1−1/n) t̂−q in Ic(N, τ̂) breaks the scale invariance, and compels to focus on the

finite-size distribution P̂N(τ̂ , t̂).

For N smaller than N0(c) ∼ |c|−4 (N0 = 45 for c = −1.13), the distribution

P
(β)
N (t) displays only one peak, which slowly shifts from the coil region towards the

globule region as temperature decreases, as seen on Figure 1a. In this case, the coil-

globule transition is continuous and no transition temperature can be clearly defined.

For N ≥ N0(c), a globule peak is present for rescaled temperatures τ̂ < τ̂g(N), where

τ̂g(N) slightly decreases from a critical value τ̂0 = τ̂g(N0) < 0 to an asymptotic value

τ̂g(∞) ∼ −|c|(n−1)/n (with n ≈ 2). The actual parameter value c = −1.13 gives

τ̂0 ≈ −3.2 and τ̂g(∞) ≈ −4. A coil peak exists as soon as τ > τc(N) where τc(N)

rapidly increases from τ0 towards an asymptotic value τc(∞) < 0 independent of N (here

τc(∞) ≈ −0.4). The rescaled bound |τ̂c| thus behaves as N1−1/n, so that a coil peak

always exists in the scaling region (τ̂ finite) for N large enough. Accordingly, P
(β)
N (t)
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Figure 2. Phase diagram of the polymer conformation in (τ̂ , logN)-space. The

vertical straight line τ̂ = τ̂g bounds above the temperature domain where a well-

identified globule state (a globule peak) exists. The bold curve corresponding to the

coexistence in equal proportions of coil and globule populations (κ = 1 in equation

(7)) behaves as
√

logN for large N . The other curves bound the coexistence region

(κ = 10 on the globule side and κ = 0.1 on the coil side), which displays a width

∆τ̂(N) ∼ 1/
√

logN for large N . A first-order coil-globule transition occurs when τ̂

increases at fixed N or when N increases at fixed τ̂ < τ̂g.

displays two peaks in some range of temperatures. The bimodal shape of this finite-

size single-molecule distribution is straightforwardly related to the statistics describing

a dilute solution: it indicates that a coil population and a globule population coexist

in the interval of rescaled temperatures [τ̂c(N), τ̂g(N)]. As represented Figure 1b, the

transition at fixed N proceeds through an exchange of weight between the two peaks.

A crucial point is that their positions t̂c and t̂g remain well-separated when temperature

varies: they are located on each side of a value x̂(N) increasing with N from x̂0 towards

an asymptotic value x̂∞ = [|c|/n(n − 1)B]1/n (in our case, x̂0 ≈ 13 and x̂∞ ≈ 26).

Accordingly, our model predicts a first-order-like coil-globule transition for polymer

sizes N0 < N <∞.

2.3. Assessing the order of the conformational transition

A first caveat concerns the experimental reality of the coil-globule coexistence. It is

actually possible to distinguish two populations only if the height of P̂N(τ̂ , t̂) at the

minimum t̂m located between t̂c and t̂g differs significantly from the height of the peaks.

We have checked that it is true for N not too small. It is then sensible to partition the
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Figure 3. Plot of the average order parameter 〈t〉 with respect to the relative

temperature T/θ for N = 20 (+), N = 100 (� ) and N = 1000 (�); in the limit as

N → ∞, the curve exhibits the typical shape of a second-order transition, recovering

the thermodynamic prediction [6, 7].

configuration space in two disjoint macro-states: a coil state {t̂ < x̂(N)} and a globule

state {t̂ > x̂(N)} as the peaks remain located on each side of x̂(N) as soon as they

exist, even alone. Coexistence is actually observed if the fractions of molecules in each

state, i.e. the areas of the two peaks, have comparable values. The ratio

κ(τ̂ , N) =
globule peak area

coil peak area
(7)

is the equilibrium constant of the transition between the two states. This view recovers

the standard two-state model developed to describe the conformation of macromolecules.

In particular, the equilibrium constant κ can be deduced from various experimental (e.g.

calorimetric) data [10].

The coexistence curve τ̂coex(N), corresponding to the coexistence condition

κ(τ̂ , N) = 1, and the associated phase diagram are shown in Figure 2. Coexistence

in equal proportions of coil and globule phases is observed only for large enough

chains, and τ̂coex(N) behaves as logN for large N . The coexistence region has a width

∆τ̂ ∼ 1/
√

logN : it tends to 0 as N → ∞, so that it makes sense to speak of a phase

transition in the infinite-size limit [11]. Another signature is the behavior of the densities

along the coexistence curve limN→∞ ρg/ρc = ∞, showing that the physical difference

between the phases increases with the size N . As expected, τcoex = τ̂coexN
−(1−1/n) tends

to 0 as N → ∞, supporting the estimate θ = J/kBA of the transition temperature.
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The shape of the coexistence curve shows that N is not only the size but also a control

parameter ruling the transition: increasing N at fixed τ̂ leads into the coil phase.

Coming back to the unscaled variable t, the minimal distance between the two

peaks in the coexistence region satisfies ∆t < x̂N−(1−1/n), hence tends to 0 as N tends

to infinity. The globule density right at the transition point tends to 0 as ρg ∼ N−2/5.

This means that in the infinite-size limit, the transition occurs at τ = 0 and both coil

and globule densities vanish. In this respect, in infinite-size, this coil-globule transition

displays some features of a second-order transition. Also the shape of the mean order

parameter 〈t〉 with respect to the reduced temperature τ has the characteristic shape of

a second-order transition, as shown on Figure 3. Nevertheless, the transition occurs

through the coexistence of a coil population, whose statistics is controlled by the

size N , and a globule population, whose statistics is scale-invariant and controlled by

the rescaled temperature τ̂ . The first-order nature of the transition originates in the

incompatible scale behaviors of the two sets of conformations. Hence, it is likely to be

observed whatever the underlying model, provided the shape of the distribution PN(t)

(infinite-temperature distribution, describing the purely entropic contribution), gives

enough weight to the coil region.

Our point is that the coexistence of two populations in the transition region cannot

be detected on the behavior of 〈t〉. This shortcoming of the standard approach based

on average thermodynamic quantities, and the ensuing need to investigate the order

parameter distribution are not only due to the finite length N of the macromolecule.

Rather, it originates in the special status of this length variable N . De Gennes has

shown a formal analogy between the statistical scaling properties of a linear polymer

and those predicted by the n-vector model for a system of spins (with a spin value

||~s||2 = n), in the limit n→ 0 [4, 5]. In this analogy, the end-to-end distance plays the

role of the spin system correlation length and the inverse polymer size 1/N the role of

the reduced temperature, i.e. the control parameter. Flory exponent is then analogous

to the critical exponent ν of the correlation length. The formulation of this analogy is

quite technical and out of our scope. However, it underlines that in adapting concepts

developed for describing phase transitions of spatially extended many-body systems to

the conformational transitions of a macromolecule, the length N of the molecule does

not at all play the role of a reference extensive variable like the volume or the number

of elements. Accordingly, the limit N → ∞ has not the status and the properties of a

standard thermodynamic limit [3].

The first-order features of the finite-size coil-globule transition allows to describe

this transition within a two-state model, well-suited for analyzing experimental

observations. The bimodal probability distribution reflects the fraction of

macromolecules in each conformational state in a dilute solution. Experimental

data available in the literature confirm the above theoretical scenario. For

instance, Yoshikawa, Baigl and their collaborators have experimentally investigated

the conformation (in dilute solution) of DNA segments, marked all along their length
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Figure 4. Empirical notion of first-order conformational transition in finite size

(sketch). What makes sense for a finite-size system, in particular a biological system,

is the distribution P (a) of some molecular property a. The first-order signature is the

exchange of importance between two well-separated peaks at roughly fixed positions,

when the control parameter T (for instance, but not necessarily, the temperature)

varies. Strikingly, aobs, 〈a〉 and amax do not match in the transition region.

with fluorescent probes for direct visualization [12, 13, 14]. They evidenced that DNA

displays a coil-globule transition when the concentration of an additional chemical in the

solution increases, by observing a change in the DNA length distribution, passing from a

distribution peaked at large lengths to a distribution peaked in the small-length region.

In the transition region, the length distribution displays a bimodal shape with two well-

separated coil and globule peaks, corresponding to the coexistence of two populations of

macromolecules, either in the coil or in the globule state. The transition is revealed as an

exchange of weights between the peaks while their positions do not change significantly

[14]. As underlined above, such experimental two-state coexistence cannot be accounted

for in the standard thermodynamical picture [6, 7].

2.4. A finite-size framework: the order parameter distribution

Our study demonstrates that in numerical simulation studies of macromolecule

conformational transitions, the relevant quantity to be analyzed is the shape of

distribution of an order parameter (denoted generally a in Figure 4) when a control

parameter T varies. This control parameter is not necessarily the temperature but

for instance some feature of the solvent or the strength of a constraint applied to

the polymer. The thermodynamic approach relying on the analysis of the distribution

moments is not sufficient to reveal the finite-size features of the transition nor its nature.

The framework presented here also provides a guideline for experimental studies in

suggesting to investigate the distribution PT (a) of some finite-size, molecular quantity

a as a control parameter T varies. For instance, single-molecule techniques [1] allow a

direct determination of the distribution of the length of the molecule.

The standard two-state model used in an experimental context for the description

of macromolecule conformations and conformational transitions [10] is recovered in case

of a first-order-like transition, associated with a bimodal order parameter distribution

PT (a) and an exchange of importance between two peaks as the control parameter

T varies. It is to note that the peaks of PT (a) correspond to the wells of the free
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energy FT (a) = − logPT (a). The set of conformations corresponding to each peak

of PT (a) (respectively each well of FT (a)) defines each of the two states, providing

a microscopic rooting of this effective model. Importantly, such a mapping onto

a two-state model relates the theoretical description based on the knowledge of the

configurational statistics and the experimental observations through a coarse-graining

of the configuration space, and not through a thermodynamic limit.

3. DNA conformational transitions

We mentioned in the previous section the experimental observation of a coil-globule

transition for DNA when monitoring the chemical composition of the solvent[14], which

is compatible with the prediction of our theoretical investigation. We here extend the

scope of these studies, with the aim of understanding conformational transitions of DNA

and their biological role, that is, the role they play in the fulfillment and regulation of

biological functions.

3.1. An interplay of mechanics, electrostatics, topology and thermal noise

DNA is more complicated than the model linear polymer considered in the previous

section. It is a polyelectrolyte, with a negative density of charge, meaning that

electrostatics matters, for instance most DNA features display a salt dependence

[15]. Observations of knotted DNA, supplemented with single-molecule experiments

have revealed DNA non trivial elastic properties, partly coupled to electrostatics. As

regards its response to an applied force, DNA can be considered as a semi-flexible

polymer described within the worm-like-chain model and characterized by its (bending)

persistence length [5]. However, DNA also displays torsional elasticity, characterized

by a second (twist) persistence length. This additional feature implies that DNA

conformation and mechanical properties will be affected by topological constraints. A

closed or fixed-end stretch of DNA possesses a topological invariant: its linking number

Lk defined as the number of turns one strand makes around the other. The number

of extra turns with respect to the relaxed state (with linking number L0
k) defines the

supercoiling σ = (Lk−L0
k)/L

0
k. The conservation of Lk reflects in particular in the trade-

off between torsion and formation of plectonemes (braids reminiscent of those observed

in old telephone wires).

Overall, DNA conformational properties thus follow from geometric, mechanical,

electrostatic and topological constraints, in interplay with thermal noise and the

action of specific biological factors like DNA-binding proteins, inducing local structural

deformations, or topo-isomerases able to relax torsional stress. We argue that

accordingly, our framework based on the analysis of the distribution of finite-size

quantities will be more insightful than a thermodynamic approach based on the analysis

of asymptotic (infinite-size) average quantities.
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Figure 5. DNA helix-coil transition observed in an in silico magnetic tweezer

experiment. (A) DNA is seen as a flexible but physically constrained filament, and

modeled as a chain of short rigid sticks linked by ball-in-socket joints. (B-D) At

increasing applied torque Γ (from left to right), the supercoiling σ of the DNA segment

increases and plectonemes appear in the DNA conformation (see also Figure 6).

3.2. Helix-coil transition upon application of a torque

Single-molecule micro-manipulations with magnetic tweezers, now available, allow

to investigate the response of DNA to an applied torque [16]. The increase in

torsional energy density monitored by the magnetic tweezers triggers the appearance

of plectonemes and an helical state in the considered DNA segment (Figure 5, right).

(Figure 5, right). Such experiments have been recently reproduced in silico, using

novel simulation method. In this simulation, DNA is represented as an array of small

rigid sticks linked by articulated joints accounting for the mechanical and topological

constraints experienced by DNA (Figure 5, left). The dynamics is based on physics

engines used in video games supplemented with thermal noise [17].

Here the control parameter is the applied torque Γ, at fixed applied stretching force,

and the finite-size order parameter is the supercoiling σ or the relative extension λ of the

DNA segment. The helix-coil transition is revealed by the exchange of weight between

the coil region and the helix region on either the supercoiling distribution P
(Γ)
N (σ) or

the length distribution P
(Γ)
N (λ) when the torque Γ increases (Figure 6). The presence of

two well-separated peaks in P
(Γ)
N (σ), identified respectively with a coil state and helix

state, demonstrates the coexistence of two distinct populations in the transition region

(around Γc = 9.8 pN.nm for an applied stretching force of 0.74 pN). The same two-state

signature is observed on P
(Γ)
N (λ) (Figure 6). Although a transition is visible on the

behavior of the average supercoiling 〈σ〉 as a function of the applied torque Γ (with a

plateau at the transition value Γc, as presented in [17]), only an investigation of the

finite-size distribution P
(Γ)
N (σ) allows to pinpoint what occurs in terms of individual

DNA conformation at the transition. These numerical results recover the experimental

observations by Brutzer et al. [16] on the distribution of the relative extension of a finite

segment of DNA at varying torque values, in a magnetic tweezer experiment.
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Figure 6. In silico first-order helix-coil transition of a finite-size DNA segment (Left

column) Simulated distribution P
(Γ)
N (σ) of DNA supercoiling σ at fixed applied torque

Γ and DNA length N . A transition between a coil state and a helix state where

DNA forms plectonemes is observed when the applied torque Γ is varied at fixed

applied stretching force (of 0.74 pN) and fixed length (top: Γ = 9.6 pN.nm, middle=

Γ = Γc = 9.8 pN.nm, bottom Γ = 10 pN.nm). The first-order nature of the finite-size

helix-coil transition is assessed by the coexistence of two populations at the transition,

reflecting in the bimodal shape of P
(Γ)
N (σ) in the transition region. (Right column)

Distribution P
(Γ)
N (λ) of the DNA relative extension λ at fixed applied torque Γ (same

simulation and Γ values as in the left panel) and a fixed applied stretching force of

about 1 pN. The distribution similarly displays a bimodal shape in the transition

region, and the transition corresponds to a weight exchange between the peaks.

4. DNA higher levels of organization and their conformations

As underlined in introduction, DNA is only the first level of organization of the genome

within an eukaryotic cell. We now consider the next level of organization, namely the

chromatin fiber, and its tridimensional conformation within the cell nucleus.
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4.1. Conformational transitions of the chromatin fiber

A challenge in genomics is to understand the functional DNA folding into a chromatin

fiber, capable at the same time to achieve a high degree of DNA compaction and to

preserve the access and binding to genes (or regulatory DNA sequences) of various

biological factors and machineries. An essential step is to quantitatively determine the

physical properties of the chromatin fiber [15, 18], namely its bending and twisting

persistence lengths as well as its compaction α (in bp.nm−1). Integrated scenarios can

describe theoretically how the interplay between the physical features of the chromatin

fiber conformation and the action of specific biological factors could achieve genomic

functions [19]. Here again, the finite-size of the involved genomic regions and the finite

number of interacting factors have to be taken into account. The inherent stochasticity

generated by thermal noise is still perceptible in the observed processes, which promotes

approaches based on the probability distribution of local features.

4.2. In vivo experiments: chromosome conformational capture technologies

Recent experimental techniques achieve the in vivo measurement of pairwise contacts

between genomic loci, that is, the identification of pairs of DNA sites that are

distant along DNA but in vivo very close in the tridimensional space. The initial

technology, known as chromosome conformational capture (3C) [2], has been improved

into quantitative 3C-qPCR [20] or genome-wide (but at a coarser resolution) HiC

experiments [21]. Contrary to single-molecule experiments, these technologies provide an

ensemble average over a cell population of tridimensional DNA-DNA contacts at a given

time. However, according to an ergodic hypothesis, the data are presumed to reflect

time average fluctuations of the chromatin tridimensional conformation, and thus to

provide local information about the chromatin conformational dynamics. Overall, they

open a new direction to investigate the biological role of chromatin fiber conformational

transitions. As such, they require a dedicated finite-size framework for their formulation

and interpretation.

Raw data consist in numbers of contacts between well-identified genomic loci. In

3C technology, the considered pairs of loci are composed of a given DNA site and sites

located at a varying distance s along DNA (Figure 7, [20]). In contrast, HiC technology

considers pairwise contacts within a set of loci spanning the whole genome, however the

cost of the measure prevents to reliably identify all possible pairs and only a sample is

actually obtained [21]. Raw data are then normalized by a reference number of contacts

[22] and processed into a curve s → q(s) describing for each s the relative contact

frequency q(s) for DNA loci separated by a genomic distance s (where s is measured

in number of DNA base pairs). Although q(s) is obtained in experiments over a cell

population, i.e. for a population of macromolecules, the ergodic assumption allows to

interpret q(s) as a quantity accumulated over time for a single chromatin fiber. It thus

essentially captures a finite-size feature of the chromatin fiber, namely its finite-range
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looping in a living cell.

3C observation of complex contact distributions q(s) in mammals reveals the

presence of constraints on chromatin conformational fluctuations, biasing its random

exploration of the conformational space upon the effect of thermal noise [23]. The

conformational constraints would also reflect in the average chromatin conformation. As

3C data are not directly meaningful in terms of tridimensional structures, the statistical

shape of the considered chromatin segment is derived through the fit of a polymer

model [2]. The idea is to consider a polymer model of the chromatin fiber, and to

fit its prediction qth(s) for the contact frequency at a genomic distance s with the

experimental data. The first step is to compute the statistical average q̃(L) over the

polymer conformations (at equilibrium) of the fraction of instances where two given

sites, separated by a distance L along the filament modeling the chromatin fiber, are

in contact in the tridimensional space. The value q̃(L) varies between 0 (its value if

a contact would never occur between the sites) and 1 (its value if the sites would be

permanently grafted). The second step is to relate the separation L along the chromatin

and the separation s along the embedded DNA, from which qth(s) = q̃[L(s)] follows.

The prediction of the simplest semi-flexible polymer model writes [2]:

qth(s) ∼ [L(s)/Lp]
−3/2 exp[−2(Lp/L(s)]2] (8)

where Lp is the fiber bending persistence length and L(s) = s/α. The fit of this formula

on the experimental distribution q(s), up to an overall normalization factor, yields the

fiber bending persistence length Lp and compaction α. However, this formula does not

take into account excluded volume, nor possible pre-constraints (e.g. intrinsic bending)

of the polymer, and more refined polymer models have to be developed. In particular,

using a model accounting for helical constraints, we have shown that some portions of

the mammalian chromatin, encompassing few hundred of kilo-bases (kb) of DNA (and

deprived of locus-specific interactions), tend to adopt, statistically, a helix shape [23].

The issue is now to identify the physical constraints and the biological factors biasing

the conformational space exploration.

This analysis would strictly relate to our proposed framework, if we would consider

a probability distribution P (s), that is, a normalized curve s → P (s) such that∑
s P (s) = 1. The value P (s) would then give the contribution of distance s (in base

pairs) to the DNA-DNA contacts within an in vivo chromatin fiber. In this view, the

genomic distance s would appear as an individual order parameter, roughly describing

the genomic size of a chromatin loop, and P (s) as its probability distribution. Note that

s is not exactly an order parameter since it takes several values in a single conformation,

however P (s) is a true probability distribution. The analysis of such a distribution

would determine which genomic distances contribute most to contacts, i.e. whether the

chromatin folding consists in short loops or large-scale loops. In particular, it could be

interesting to evaluate the weight P (s > s0) of long-range contacts (for some threshold

s0) and to investigate how it is modulated by the presence of specific interactions or

epigenetic modifications. As in the case of a plain polymer, changes in the shape of P (s)
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Figure 7. Using the 3C-qPCR approach [20, 23], the relative contact frequencies

are measured along the Pyruvate dehydrogenase beta (Pdhb) gene locus, on mouse

chromosome 14. Globally, contact frequencies are observed to decrease as site

separation is increasing. Noteworthy, a locus-specific interaction is visualized as a

local peak in the graph (point underlined as a white square), where contact frequency

is much higher than that measured at surrounding sites (points underlined as white

circles). Errors bars are obtained with three independent biological replicates.

would reflect conformational transitions of the chromatin fiber. However, achieving

the normalization of the experimental curves is delicate, since the abscissas s of the

experimental points are prescribed by the technology (specific DNA sites responding to

the action of an enzyme) and distributed in a non controlled and heterogeneous way. We

suggest that a possibility would be to consider a model qth(s) fitting the experimental

curve q(s); in the model, all values of s could be considered, hence qth(s) could be

normalized into a true probability distribution Pth(s) = qth(s) /
∑

s′ qth(s
′).

In any cases, the shape of the curves q(s) and P (s) are the same, hence it is yet

informative to investigate the s-dependence of the curve q(s).

3C experiments evidence contacts following from chromatin folding and loop

formation (Figure 7). The physical contacts are often stabilized by locus-specific factors

bound locally to specific DNA sequences. Such locus-specific interactions are detected

in 3C-qPCR experiments as local-peaks that display high contact frequencies compared

to the surrounding regions. Figure 7 displays an example of a locus-specific interaction

observed in a 3C-qPCR experiment performed in mouse liver cells at the Pdhb gene locus,

on chromosome 14. 3C experiments moreover show that the tridimensional conformation

of the chromatin in mammals is actually very dynamic. For example, at the Igf2/H19

gene locus, on the mouse chromosome 7, we have shown that chromatin can alternate

between two mutually exclusive conformations mediated by locus-specific interactions

[24].

Note that the simulation tools that have been recently developed for DNA (see
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Figure 8. (Color online) Simulation of chromatin conformational dynamics. (Left)

The chromatin fiber can be seen as a constrained linear polymer, and its behavior

is strongly reminiscent of DNA. (Right) An enlarged view displays what is actually

simulated: rigid sticks representing either linker DNA (in black) or nucleosomal DNA

(in color/grey) are linked together by articulated joints reproducing the mechanical

and topological constraints experienced by DNA within the chromatin organization;

the colors/levels of grey of the sticks describing nucleosomal DNA vary with the type

of bound histones.

section 3.2) can be extended, at a coarser scale, to the chromatin fiber [17]. Figure 8

shows a snapshot of a plectoneme made up of chromatin fiber. Pairwise contacts

between genomic loci inside plectonemes are stabilized by supercoiling constraints.

The probability distribution function of such contacts at thermal equilibrium can be

simulated and compared to available 3C data.

When varying the cell type (in a given organism), the contact frequencies are

observed to change. This has been observed for instance in the mouse, in comparing

embryonic stem cells and liver cells. The differences are best summarized in the

statistical shape: the statistical helix observed in liver cells is considerably stretched

in embryonic stem cells (Ea et al., manuscript in preparation). The change in

the probability distribution of contacts reflects a change in the physical constraints

experienced by the chromosome and biasing its exploration of the conformational space.

Understanding the determinants, for instance the epigenetic determinants, influencing

this conformational bias, is yet a challenge. It opens a direction to investigate epigenetic

regulation of genomic functions, as the occurrence of contacts is a prerequisite for specific

biological interactions, involving the binding of dedicated proteins and the assembly of

protein complexes.

4.3. Physical mechanisms mediating the epigenetic regulation of gene expression

Confrontation of chromosome conformation capture experiments with polymer model

predictions allows to identify the physical component of genome dynamics and to

pinpoint specific regulatory events. We suggest that physical folding is in fact a transient

trend to fold, stabilized by specific interactions. In other words, physics is what makes
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specific interactions possible or not. Physical constraints would control the possible

events, which would then be selected and completed by specific biological factors. Such

a mixed physical/biological approach opens a new research direction to understand

what is termed the epigenetic regulation of gene expression. The word epigenetic

refers to various local sequence-preserving chemical modifications of DNA or histones

presumed to regulate DNA-templated processes, e.g. to underlie cell differentiation

and gene regulation. 3C experiments in different cell types, or considering chromatin

domains endowed with different epigenetic status, have demonstrated an epigenetic of

tuning contact frequency. The challenge behind epigenetics is considerable, leading to

issues such as cell differentiation (how cells with identical genomes can display such

differences in shape and physiology) or pathological changes (cancer cells phenotype

is not only explained by their modified genome). Important ingredients are provided

by the conformational transitions experienced by the genome at each of its levels of

organization, and the ensuing changes in their topological and mechanical properties.

5. Conclusion

With the advances of nanotechnologies and micro-manipulations, the notions

of conformation, conformational fluctuations and conformational transitions of

(bio)polymers are becoming central, with a need of developing a proper framework

to investigate their finite-size behavior. Considering the infinite-size limit may yield a

misleading simplified view. We have here demonstrated that an operational framework

for understanding conformational transitions of a finite-size macromolecule is to study

the order parameter distribution.

In a biological context, physical modeling allows to identify the constraints

underlying macromolecule conformations. In particular, the functional conformational

dynamics of the chromosome appears to involve an interplay between global generic

physical properties and local specific biological factors, at several levels of organization.

These results emphasize the importance of understanding the part of the physical

properties in the chromosome biological functions.
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Captions

Figure 1: (a) Continuous coil-globule transition for a polymer of small size N < N0 =

45 (here N = 20). The evolution of the shape of P̂N(τ̂ , t̂) as the rescaled temperature τ̂

decreases (respectively τ̂ = −2, τ̂ = −4.6 and τ̂ = −8) indicates a continuous transition

in which the characteristics of a single population evolves smoothly with τ̂ . (b) Evidence

of a first-order-like finite-size coil-globule transition on the shape of P̂N(τ̂ , t̂), plotted

with respect to the rescaled variable t̂ at fixed N > N0 = 45 (here N = 2000) and for

various τ̂ . For τ̂ = −2, only a coil peak is present. For τ̂ = −8, only a globule peak

is present. The inset shows an enlarged view of the coil region (t̂ < 10). The presence

of two well-separated peaks in the distribution for τ̂ = −4.6 reveals the first-order-like

coexistence of two distinct populations in dilute solution.

Figure 2: Phase diagram of the polymer conformation in (τ̂ , logN)-space. The vertical

straight line τ̂ = τ̂g bounds above the temperature domain where a well-identified globule

state (a globule peak) exists. The bold curve corresponding to the coexistence in equal

proportions of coil and globule populations (κ = 1 in equation (7)) behaves as
√

logN

for large N . The other curves bound the coexistence region (κ = 10 on the globule

side and κ = 0.1 on the coil side), which displays a width ∆τ̂(N) ∼ 1/
√

logN for large

N . A first-order coil-globule transition occurs when τ̂ increases at fixed N or when N

increases at fixed τ̂ < τ̂g.

Figure 3: Plot of the average order parameter 〈t〉 with respect to the relative

temperature T/θ for N = 20 (+), N = 100 (� ) and N = 1000 (�); in the limit as

N → ∞, the curve exhibits the typical shape of a second-order transition, recovering

the thermodynamic prediction [6, 7].

Figure 4: Empirical notion of first-order conformational transition in finite size

(sketch). What makes sense for a finite-size system, in particular a biological system,

is the distribution P (a) of some molecular property a. The first-order signature is the

exchange of importance between two well-separated peaks at roughly fixed positions,

when the control parameter T (for instance, but not necessarily, the temperature) varies.

Strikingly, aobs, 〈a〉 and amax do not match in the transition region.

Figure 5: DNA helix-coil transition observed in an in silico magnetic tweezer

experiment. (A) DNA is seen as a flexible but physically constrained filament, and

modeled as a chain of short rigid sticks linked by ball-in-socket joints. (B-D) At

increasing applied torque Γ (from left to right), the supercoiling σ of the DNA segment

increases and plectonemes appear in the DNA conformation (see also Figure 6).

Figure 6: In silico first-order helix-coil transition of a finite-size DNA segment (Left

column) Simulated distribution P
(Γ)
N (σ) of DNA supercoiling σ at fixed applied torque

Γ and DNA length N . A transition between a coil state and a helix state where
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DNA forms plectonemes is observed when the applied torque Γ is varied at fixed

applied stretching force (of 0.74 pN) and fixed length (top: Γ = 9.6 pN.nm, middle=

Γ = Γc = 9.8 pN.nm, bottom Γ = 10 pN.nm). The first-order nature of the finite-size

helix-coil transition is assessed by the coexistence of two populations at the transition,

reflecting in the bimodal shape of P
(Γ)
N (σ) in the transition region. (Right column)

Distribution P
(Γ)
N (λ) of the DNA relative extension λ at fixed applied torque Γ (same

simulation and Γ values as in the left panel) and a fixed applied stretching force of about

1 pN. The distribution similarly displays a bimodal shape in the transition region, and

the transition corresponds to a weight exchange between the peaks.

Figure 7: Using the 3C-qPCR approach [20, 23], the relative contact frequencies

are measured along the Pyruvate dehydrogenase beta (Pdhb) gene locus, on mouse

chromosome 14. Globally, contact frequencies are observed to decrease as site separation

is increasing. Noteworthy, a locus-specific interaction is visualized as a local peak in

the graph (point underlined as a white square), where contact frequency is much higher

than that measured at surrounding sites (points underlined as white circles). Errors

bars are obtained with three independent biological replicates.

Figure 8: (Color online) Simulation of chromatin conformational dynamics. (Left) The

chromatin fiber can be seen as a constrained linear polymer, and its behavior is strongly

reminiscent of DNA. (Right) An enlarged view displays what is actually simulated: rigid

sticks representing either linker DNA (in black) or nucleosomal DNA (in color/grey)

are joined by articulated joints reproducing the mechanical and topological constraints

experienced by DNA within the chromatin organization; the colors/levels of grey of the

sticks describing nucleosomal DNA vary with the type of bound histones.


