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We consider the drift-diffusion equation

in the whole space with global-in-time solutions bounded in all Sobolev spaces; for simplicity, we restrict ourselves to the model case K(x) = -|x|. We quantify the mass concentration phenomenon, a genuinely nonlinear effect, for radially symmetric solutions of this equation for small diffusivity ε studied in our previous paper [3], obtaining optimal sharp upper and lower bounds for Sobolev norms.

Introduction

We study the nonlinear nonlocal equation

u t -ε∆u + ∇ • (u ∇K * u) = 0, x ∈ R N , t > 0, (1) 
where ε > 0 is the diffusivity. We consider the simplest case of a pointy potential. In other words, to clarify the presentation we restrict ourselves to the radially symmetric kernel K(x) = -|x| which has a mild singularity at the origin. Equation (1) belongs to a class of models describing numerous phenomena from biology and astrophysics; see the review [START_REF] Hillen | A user's guide to PDE models for chemotaxis[END_REF] and [START_REF] Biler | Singularities of solutions to chemotaxis systems[END_REF]Introduction] for further references.

We make the following assumptions on the initial condition u(•, 0) ≡ u 0 :

(A) The function u 0 is C ∞ -smooth, bounded and integrable along with all its derivatives. In other words,

u(•, 0) ≡ u 0 ∈ k≥0, 1≤p≤∞ W k,p (R N ),
where W k,p (R N ) are the usual Sobolev spaces (see Section 2).

(B) The function u 0 is non-negative and radially symmetric.

(C) The mass of u 0 is sufficiently concentrated:

R n |x|u 0 (x)dx < ∞. (2) 
Since ( 1) is globally well-posed in any space W k,1 (R N ) for k ∈ N, see [START_REF] Li | Wellposedness and regularity of solutions of an aggregation equation[END_REF], using Sobolev embeddings, it follows that the solutions u to (1) belong to C([0, ∞), W k,p (R N )) for all k ≥ 0 and p ∈ [1, ∞]. Also, u(•, t) remains nonnegative and radially symmetric for all t ≥ 0, and moreover we also have the mass conservation property, see [START_REF] Biryuk | Spectral properties of solutions of the Burgers equation with small dissipation[END_REF] below. For more details on the wellposedness and regularity issues for (1), we refer to [START_REF] Karch | Blow-up versus global existence of solutions to aggregation equations[END_REF][START_REF] Li | Wellposedness and regularity of solutions of an aggregation equation[END_REF].

In the limit case ε = 0, the solution to (1) blows up after a finite time, provided the initial condition is sufficiently concentrated in a neighbourhood of the origin [START_REF] Biler | Blowup of solutions to a diffusive aggregation model[END_REF]. For more results about blow-up depending on the choice of the kernel K, see [START_REF] Bedrossian | Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion[END_REF], [START_REF] Biler | Global and exploding solutions for nonlocal quadratic evolution problems[END_REF], [START_REF] Carrillo | Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations[END_REF], [START_REF] Carrillo | The Filippov characteristic flow for the aggregation equation with mildly singular potentials[END_REF], [START_REF] Karch | Blow-up versus global existence of solutions to aggregation equations[END_REF], [START_REF] Lafleche | Fractional Keller-Segel equation: global well-posedness and finite time blow-up[END_REF]. For a more comprehensive review of the results and open problems, see the very recent book of the first author [START_REF] Biler | Singularities of solutions to chemotaxis systems[END_REF], especially Chapter 5, Section 4.

In our work, we are concerned with the behaviour of solutions to (1) for 0 < ε 1. In our previous paper [START_REF] Biler | Concentration phenomena in a diffusive aggregation model[END_REF], we obtained optimal estimates for Lebesgue norms of u. Heuristically, after the solution is allowed enough time to concentrate in a neighbourhood of zero, the behaviour of the (time-averaged) Lebesgue norms of u is given by u

p ∼ ε -N (1-1/p) .
More rigorously, we proved that there are constants ε * , T * > 0, which only depend on the solution through the total mass and an additional parameter, such that for 0 < ε ≤ ε * ,

T * 0 R N u p (x, t) dx 1/p dt ∼ ε -N (1-1/p) , 1 ≤ p < ∞; (3) 
moreover, this result remains true if we integrate over x in a ball of radius Cε instead of the whole space. For the precise formulation, see Theorem 2.3, Corollary 2.4 and Lemma 4.1 in [START_REF] Biler | Concentration phenomena in a diffusive aggregation model[END_REF].

To understand better small-scale behaviour of the solutions, it is relevant to look at norms beyond the Lebesgue setting. The Sobolev norms -which are natural candidates -have attracted much attention in models with physical motivation. Namely, in the pioneering works of Kuksin [START_REF] Kuksin | On turbulence in nonlinear Schrödinger equations[END_REF] and [START_REF] Kuksin | Spectral properties of solutions for nonlinear PDEs in the turbulent regime[END_REF], upper and lower estimates of these norms for solutions of the nonlinear Schrödinger equation (with or without a random term) in a small dispersion regime have been obtained. After these seminal papers, study of the Sobolev norms in dispersive equations has become a very important field (see for example the paper [START_REF] Colliander | Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation[END_REF] and the references therein).

Denoting by • a time-average, dimensional analysis tells us that quantities of the type

u Ḣm u Ḣm+1 , m ≥ 0, (4) 
(see Section 2 for the notation) provide a characteristic length scale of the solution. For a discussion, see the already mentioned papers of Kuksin [START_REF] Kuksin | On turbulence in nonlinear Schrödinger equations[END_REF] and [START_REF] Kuksin | Spectral properties of solutions for nonlinear PDEs in the turbulent regime[END_REF], as well as [START_REF] Boritchev | One-dimensional turbulence and the stochastic Burgers equation[END_REF]Chapter 6].

The main results of our paper, Theorem 1 and Theorem 2, state that, for the same ε * and T * as in the statement of (3), provided 0 ≤ ε ≤ ε * , we have

T * 0 u(t) Ḣm dt ∼ ε -(2m+N )/2 , m ∈ N. (5) 
Consequently, up to averaging in time, all the quantities given by (4) are of order ε, as is the radius of the balls on which at least an ε-independent proportion of mass is concentrated. To the best of our knowledge, our paper is the first one which studies systematically models from mathematical biology using all-order Sobolev norms.

Moreover, our results for these norms -and therefore for the length scaleare sharp. Indeed, the upper and lower estimates only differ by a multiplicative constant which only depends on the initial condition through a finite number of parameters. This is a remarkable phenomenon, only previously observed in the Burgers equation and its generalisations. For more complex PDEs such as the 2D Navier-Stokes or the nonlinear Schrödinger equation, such results are beyond the reach of today's mathematics.

Our results are indeed similar to those obtained for the simpler Burgers equation and its fractional-dissipation and multidimensional analogues by the second author [START_REF] Boritchev | Decaying turbulence in the generalised Burgers equation[END_REF][START_REF] Boritchev | Turbulence in the generalised Burgers equation[END_REF][START_REF] Boritchev | Multidimensional potential Burgers turbulence, and Erratum[END_REF][START_REF] Boritchev | Decaying turbulence for the fractional subcritical Burgers equation[END_REF]. These papers were themselves inspired by the ideas and first results due to Biryuk [START_REF] Biryuk | Spectral properties of solutions of the Burgers equation with small dissipation[END_REF]. Indeed, for Burgers-type equations the length scale is again the small parameter ε, and we have sharp Sobolev norm estimates. More precisely, up to a rescaling factor corresponding to the dimension N , -u has the same behaviour with respect to Lebesgue and Sobolev norms as the derivative of a Burgers solution. In particular, the positivity of u seems to play a role analogous to that of Oleinik's upper bound on the positive part of the gradient for a solution of the Burgers equation. Heuristically, it seems that the rescaling N -dependent factor in the power of ε is due to a difference of geometry of the singular zones in the limit ε → 0. Indeed, for (1) regions where the inviscid solution is not regular are of dimension zero (only the origin) and not shocks of codimension one as for the generalised Burgers equation.

Our methodology is essentially a combination of the approach used by the second author to study Sobolev norms in the papers cited above and of the arguments used by the three other authors to prove explosion under the concentration assumption in the paper [START_REF] Biler | Blowup of solutions to a diffusive aggregation model[END_REF] (see also [START_REF] Karch | Spikes and diffusion waves in a one-dimensional model of chemotaxis[END_REF]). The most delicate issue is to estimate the contribution of the nonlinearity in the energy estimates, which requires a subtle analysis of the convolution term using the classical Hardy-Littlewood-Sobolev inequality along with the Gagliardo-Nirenberg inequality within the admissible ranges for the exponents.

Notation, functional spaces and inequalities

We denote by M the total mass and recall that it is conserved by the flow of the equation ( 1):

R n u(x, t)dx = M := R n u 0 (x)dx. (6) 
For multiindices i, j ∈ Z N + , provided i k ≤ j k , 1 ≤ k ≤ N (which we denote as i ≤ j), we use the generalised binomial coefficient notation

j i = N k=1 j k i k .
For N = 1 and a positive integer k, u (k) denotes the k-th spatial derivative of u, while we use the notation

∂ i u := ∂ i1 x1 . . . ∂ i N x N u when N > 1 and i = (i k ) 1≤k≤N is a multiindex.
For m ≥ 0 and p ∈ [1, ∞], we will consider Lebesgue spaces L p (R N ) and Sobolev spaces W m,p (R N ). The Lebesgue norms will be denoted

• p . As usual, we set H m (R N ) = W m,2 (R N ), m ∈ N. For m ∈ N and p ∈ [1, ∞], we denote the homogeneous seminorm in W m,p (R N ) by u Ẇ m,p := |i|=m ∂ i u p with • Ḣm = • Ẇ m,2 .
Throughout the paper, the notation C and C i , i ≥ 1, is used for various positive numbers which may vary from line to line. These numbers depend only on the dimension N , and on the initial condition u 0 through the total mass M and the quantity Λ (see the beginning of the proof of Theorem 2). The dependence upon additional parameters will be indicated explicitly. Now we recall two classical inequalities.

Lemma 21 (The Gagliardo-Nirenberg Inequality, [START_REF] Brezis | Where Sobolev interacts with Gagliardo-Nirenberg[END_REF]) For a C ∞ -smooth function v on R N , we have

v Ẇ β,r ≤ C v θ Ẇ m,p v 1-θ q ,
where m > β ≥ 0, and r is defined by

N r = β -θ m - N p + (1 -θ) N q ,
under the assumption β/m ≤ θ < 1 and with the exception of the case when β = 0, r = q = ∞ and m -N/p is a nonnegative integer.

The constant C depends also on m, p, q, β, N .

Lemma 22 (The Hardy-Littlewood-Sobolev Inequality.)

[23, Theorem 4.3];[24, V.1.3.] For a C ∞ -smooth function v on R N , provided 1 < p, q < ∞, 1/p + λ/N = 1/q + 1, 0 < λ < N, we have |x| -λ * v q ≤ C v p .
where * denotes the convolution. The constant C depends on p, λ, N .

Upper estimates

The results proved in this section still hold without the radial symmetry assumption on the initial condition, and also without the concentration assumption (C). Nevertheless, in that case we do not have corresponding lower estimates with the same power of the parameter ε proved in the next section. The scheme of the proof is very similar to that of the particular case N = 1, m = 1 already treated in [START_REF] Biler | Concentration phenomena in a diffusive aggregation model[END_REF].

Theorem 1 For m ∈ N and t ≥ 0, we have

u(t) Ḣm ≤ max u 0 Ḣm , C(m)M (N +2m+2)/2 ε -(N +2m)/2 .
Proof The case m = 0 is dealt with in [START_REF] Biler | Concentration phenomena in a diffusive aggregation model[END_REF], to which we refer, see [START_REF] Biler | Concentration phenomena in a diffusive aggregation model[END_REF]Lemma 4.1] for p = 2. From now on, we assume that m ≥ 1. The case N = 1. Integrating by parts and using that for any

p ∈ [1, ∞], (K * v) x = -2v for v ∈ L p (R N ), we obtain 1 2 d dt u 2 Ḣm = -ε u 2 Ḣm+1 - R u (m) (u (K * u)) (m+1) dx = -ε u 2 Ḣm+1 - R u (m) u (m+1) (K * u)dx - m k=0 R m + 1 k u (m) u (k) (K * u (m-k) ) x dx = -ε u 2 Ḣm+1 + 1 2 R (u (m) ) 2 (K * u) x dx - m k=0 R m + 1 k u (m) u (k) (K * u (m-k) ) x dx = -ε u 2 Ḣm+1 - R (u (m) ) 2 u dx Am + m k=0 R 2 m + 1 k u (m) u (k) u (m-k) dx B km .
We first get, using the Hölder and then the Gagliardo-Nirenberg inequalities, as well as [START_REF] Biryuk | Spectral properties of solutions of the Burgers equation with small dissipation[END_REF],

|A m | ≤ u 2 Ẇ m,∞ u 1 ≤ C(m)( u 1/(2m+3) 1 u (2m+2)/(2m+3) Ḣm+1 ) 2 u 1 = C(m)M (2m+5)/(2m+3) u (4m+4)/(2m+3) Ḣm+1
.

Similarly, we obtain

|B km | ≤C(k, m) u Ẇ m,∞ u Ḣk u Ḣm-k ≤C(k, m) u 1/(2m+3) 1 u (2m+2)/(2m+3) Ḣm+1 × u (2m+2-2k)/(2m+3) 1 u (2k+1)/(2m+3) Ḣm+1 × u (2k+2)/(2m+3) 1 u (2m-2k+1)/(2m+3) Ḣm+1 =C(k, m)M (2m+5)/(2m+3) u (4m+4)/(2m+3) Ḣm+1
.

Consequently,

1 2 d dt u 2 Ḣm ≤ -ε u 2 Ḣm+1 + C(m)M (2m+5)/(2m+3) u (4m+4)/(2m+3) Ḣm+1 . (7) 
Now we observe that, interpolating u(t) Ḣm between u(t) Ḣm+1 and u(t) 1 using the Gagliardo-Nirenberg inequality, we get, thanks to [START_REF] Biryuk | Spectral properties of solutions of the Burgers equation with small dissipation[END_REF],

u(t) 2/(2m+3) Ḣm+1 ≥ C GN (m)M -4/(2m+1)(2m+3) u(t) 2/(2m+1) Ḣm . ( 8 
)
Our goal is now to show that the inequality [START_REF] Boritchev | Decaying turbulence in the generalised Burgers equation[END_REF] implies that, for all t ≥ 0,

u(t) Ḣm ≤ U m (9) ≡ max u 0 Ḣm , C GN (m) -(2m+1)/2 C(m) (2m+1)/2 M (2m+3)/2 ε -(2m+1)/2 ,
with C(m) is the same as in [START_REF] Boritchev | Decaying turbulence in the generalised Burgers equation[END_REF] and C GN (m) the same as in [START_REF] Boritchev | Turbulence in the generalised Burgers equation[END_REF]. Indeed, for δ > 0, consider the set

A δ := {t ≥ 0 : u(t) Ḣm ≤ U m + δ} .
Clearly, 0 ∈ A δ and the time continuity of u in H m (R N ) ensures that

τ δ := sup{t ≥ 0 : [0, t] ⊂ A δ } ∈ (0, ∞].
Assume now for contradiction that τ δ < ∞. The definition of τ δ implies that

u(τ δ ) 2 Ḣm = (U m + δ) 2 ≥ u(t) 2 Ḣm for all t ∈ (0, τ δ ). Hence, d dt u(τ δ ) 2 Ḣm ≥ 0. (10) 
We next infer from ( 7), [START_REF] Boritchev | Turbulence in the generalised Burgers equation[END_REF] and the definition of

U m that 1 2 d dt u(τ δ ) 2 Ḣm ≤ε u(τ δ ) (4m+4)/(2m+3) Ḣm+1 -u(τ δ ) 2/(2m+3) Ḣm+1 + C(m)M (2m+5)/(2m+3) ε -1 ≤ε u(τ δ ) (4m+4)/(2m+3) Ḣm+1 -C GN (m)M -4/(2m+1)(2m+3) u(τ δ ) 2/(2m+1) Ḣm + C(m)M (2m+5)/(2m+3) ε -1 < 0,
which contradicts [START_REF] Boritchev | Decaying turbulence for the fractional subcritical Burgers equation[END_REF]. Consequently, τ δ = ∞ and A δ = [0, ∞) for all δ > 0.

Letting δ → 0 completes the proof of [START_REF] Boritchev | Multidimensional potential Burgers turbulence, and Erratum[END_REF].

The case N ≥ 2. Let i = (i k ) 1≤k≤N ∈ N N be a multiindex with |i| = m.
By applying Leibniz' formula, it follows from (1) that ∂ i u solves

(∂ i u) t = ε∆ (∂ i u) -∇ • 0≤j≤i i j ∂ j u (∇K * ∂ i-j u) .
Multiplying the above equation by ∂ i u, integrating over R N , summing over all multiindices i of length m and then integrating by parts, we get

1 2 d dt u 2 Ḣm = -ε |i|=m ∇(∂ i u) 2 2 + |i|=m 0≤j≤i i j R N ∂ j u (∇K * ∂ i-j u) • ∇∂ i u dx = -ε u 2 Ḣm+1 + |i|=m R N ∂ i u (∇K * u) • ∇∂ i u dx - |i|=m 0≤j<i i j R N ∇∂ j u • (∇K * ∂ i-j u) ∂ i u dx - |i|=m 0≤j<i i j R N ∂ j u (∆K * ∂ i-j u) ∂ i u dx, using that div(∇K * ∂ i-j u) = ∆K * ∂ i-j u. Since we can write 0≤j<i i j R N ∇∂ j u • (∇K * ∂ i-j u) ∂ i u dx = 0≤j<i i j N k=1 R N ∂ x k ∂ j u (∂ x k K * ∂ i-j u) ∂ i u dx = |l|≤m N r=1 N s=1 C 1 (i, l, r, s) R N ∂ l u (∂ xr ∂ xs K * ∂ i-l u) ∂ i u dx
for some constants C 1 (i, l, r, s) ∈ R and

0≤j<i i j R N ∂ j u (∆K * ∂ i-j u) ∂ i u dx = |l|≤m N r=1 C 2 (i, j, r) R N ∂ l u ∂ 2 xr K * ∂ i-l u ∂ i u dx
for some constants C 2 (i, j, r) ∈ R, we obtain, after another integration by parts,

1 2 d dt u 2 Ḣm = -ε u 2 Ḣm+1 - 1 2 |i|=m R N (∂ i u) 2 (∆K * u) dx + |i|=m |l|≤m R N ∂ l u (P (i, l)K * ∂ i-l u) ∂ i u dx, (11) 
where P (i, l) are constant-coefficient differential operators of second order. We now split the last term of (11) to find, after moving partial derivatives inside the convolutions in an appropriate way,

|i|=m |l|≤m R N ∂ l u (P (i, l)K * ∂ i-l u) ∂ i u dx = |i|=m m-N +2≤|l|≤m R N ∂ l u (∂ i-l P (i, l)K * u) ∂ i u dx + |i|=m |l|≤m-N +1 R N ∂ l u (P (i, l)K * ∂ i-l u) ∂ i u dx.
For the second term on the right hand side of the above identity, we observe that the conditions |i| = m and |l| ≤ m -N + 1 guarantee that |i -l| ≥ N -1 and we can move N -2 partial derivatives from ∂ i-l u on P (i, l)K in the convolution P (i, l)K * ∂ i-l u to find

|i|=m |l|≤m R N ∂ l u (P (i, l)K * ∂ i-l ) ∂ i u dx = |i|=m m-N +2≤|l|≤m R N ∂ l u (∂ i-l P (i, l)K * u) ∂ i u dx + |i|=m |l|≤m-N +1 |j|=m-|l|-N +2 R N ∂ l u (Q(i, l, j)K * ∂ j u) ∂ i u dx,
where Q(i, l, j) are constant-coefficient differential operators of order N . Inserting the above identity in [START_REF] Boritchev | One-dimensional turbulence and the stochastic Burgers equation[END_REF] and computing the partial derivatives of K leads to

1 2 d dt u 2 Ḣm ≤ -ε u 2 Ḣm+1 + N -1 2 |i|=m R N (∂ i u) 2 |x| -1 * u dx A i + |i|=m m-N +2≤|l|≤m C(i, l) R N |∂ l u| |x| -(m-|l|+1) * u |∂ i u| dx D i,l + |i|=m |l|≤m-N +1 C(i, l) |j|=m-|l|-N +2 R N |∂ l u| |x| -(N -1) * |∂ j u| |∂ i u| dx E i,l
. Now it remains to estimate all the terms using first the Hölder, and then the Gagliardo-Nirenberg and the Hardy-Littlewood-Sobolev inequalities, along

From this energy inequality combined with the following consequence of the Gagliardo-Nirenberg inequality

u 2/(2m+N +2) Ḣm+1 ≥ C(m) M -4/(2m+N )(2m+N +2) u 2/(2m+N ) Ḣm
we deduce, arguing as in the case N = 1, that

u(t) Ḣm ≤ max u 0 Ḣm , C(m)M (N +2m+2)/2 ε -(N +2m)/2 , t ≥ 0,
as announced.

Remark 31 After any given time τ > 0, the estimates above will hold with a τ -dependent upper bound as a consequence of an interplay between the smoothing properties of the heat kernel and a genuinely nonlinear effect. Moreover, this upper bound will only depend on u 0 through the single quantity M . To obtain this result, one uses the same method as for the u 0 -uniform upper estimates for the H m -norms given by [7, Lemma 53] for solutions of the Burgers equation.

Lower estimates for Sobolev norms

Here -unlike in the previous section -the positivity and radial symmetry assumptions (B) as well as the concentration assumption (C) on the initial condition u 0 play a crucial role.

Theorem 2 Let m ∈ N. For some explicit numbers ε * > 0, T * > 0 and C * (m) > 0, independent of ε, the following inequality holds true:

T * 0 u Ḣm dt ≥ C * (m)ε -(2m+N )/2
, for all ε ∈ (0, ε * ).

Proof For m = 0, see [START_REF] Biler | Concentration phenomena in a diffusive aggregation model[END_REF]Corollary 2.4] for p = 2. Indeed, if (2) is true, then there exists Λ > 0 such that the assumption on the initial condition [3, Eq. (2.8)] holds true; see also [START_REF] Biler | Concentration phenomena in a diffusive aggregation model[END_REF]Remark 2.7].

For m ≥ 1, we infer from the Gagliardo-Nirenberg inequality that u(t) 

2 ≤ 1 .

 21 C GN (m) u(t)Hence, by[START_REF] Biryuk | Spectral properties of solutions of the Burgers equation with small dissipation[END_REF],u(t) Ḣm ≥ C GN (m) -(N +2m)/N M -2m/N u(t) (N +2m)/N 2 , t ≥ 0,and it follows from Hölder's inequality and the already established lower bound[START_REF] Brezis | Where Sobolev interacts with Gagliardo-Nirenberg[END_REF] for m = 0 that )M -2m/N T -(N +4m)/2N * ε -(N +2m)/2 ,which completes the proof.
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with the mass conservation [START_REF] Biryuk | Spectral properties of solutions of the Burgers equation with small dissipation[END_REF]. First,

.

Next, when l satisfies 0 ≤ m -|l| ≤ N -2,

, where

, where

Summing up all the above estimates, we get .