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Abstract We consider the drift-diffusion equation

ut − ε∆u+∇ · (u ∇K ∗ u) = 0

in the whole space with global-in-time solutions bounded in all Sobolev spaces;
for simplicity, we restrict ourselves to the model case K(x) = −|x|.
We quantify the mass concentration phenomenon, a genuinely nonlinear effect,
for radially symmetric solutions of this equation for small diffusivity ε studied
in our previous paper [3], obtaining optimal sharp upper and lower bounds for
Sobolev norms.
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1 Introduction

We study the nonlinear nonlocal equation

ut − ε∆u+∇ · (u ∇K ∗ u) = 0, x ∈ RN , t > 0, (1)

where ε > 0 is the diffusivity. We consider the simplest case of a pointy po-
tential. In other words, to clarify the presentation we restrict ourselves to the
radially symmetric kernel K(x) = −|x| which has a mild singularity at the ori-
gin. Equation (1) belongs to a class of models describing numerous phenomena
from biology and astrophysics; see the review [16] and [2, Introduction] for fur-
ther references.

We make the following assumptions on the initial condition u(·, 0) ≡ u0:

(A) The function u0 is C∞-smooth, bounded and integrable along with all its
derivatives. In other words,

u(·, 0) ≡ u0 ∈
⋂

k≥0, 1≤p≤∞

W k,p(RN ),

where W k,p(RN ) are the usual Sobolev spaces (see Section 2).

(B) The function u0 is non-negative and radially symmetric.

(C) The mass of u0 is sufficiently concentrated:∫
Rn
|x|u0(x)dx <∞. (2)

Since (1) is globally well-posed in any space W k,1(RN ) for k ∈ N, see [22],
using Sobolev embeddings, it follows that the solutions u to (1) belong to
C([0,∞),W k,p(RN )) for all k ≥ 0 and p ∈ [1,∞]. Also, u(·, t) remains non-
negative and radially symmetric for all t ≥ 0, and moreover we also have
the mass conservation property, see (6) below. For more details on the well-
posedness and regularity issues for (1), we refer to [18,22].

In the limit case ε = 0, the solution to (1) blows up after a finite time,
provided the initial condition is sufficiently concentrated in a neighbourhood
of the origin [4]. For more results about blow-up depending on the choice of
the kernel K, see [1],[5],[13],[14],[18],[21]. For a more comprehensive review of
the results and open problems, see the very recent book of the first author [2],
especially Chapter 5, Section 4.

In our work, we are concerned with the behaviour of solutions to (1) for
0 < ε � 1. In our previous paper [3], we obtained optimal estimates for
Lebesgue norms of u. Heuristically, after the solution is allowed enough time to
concentrate in a neighbourhood of zero, the behaviour of the (time-averaged)
Lebesgue norms of u is given by ‖u‖p ∼ ε−N(1−1/p).

More rigorously, we proved that there are constants ε∗, T∗ > 0, which only
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depend on the solution through the total mass and an additional parameter,
such that for 0 < ε ≤ ε∗,∫ T∗

0

(∫
RN

up(x, t) dx
)1/p

dt ∼ ε−N(1−1/p), 1 ≤ p <∞; (3)

moreover, this result remains true if we integrate over x in a ball of radius
Cε instead of the whole space. For the precise formulation, see Theorem 2.3,
Corollary 2.4 and Lemma 4.1 in [3].

To understand better small-scale behaviour of the solutions, it is relevant
to look at norms beyond the Lebesgue setting. The Sobolev norms - which are
natural candidates - have attracted much attention in models with physical
motivation. Namely, in the pioneering works of Kuksin [19] and [20], upper
and lower estimates of these norms for solutions of the nonlinear Schrödinger
equation (with or without a random term) in a small dispersion regime have
been obtained. After these seminal papers, study of the Sobolev norms in
dispersive equations has become a very important field (see for example the
paper [15] and the references therein).

Denoting by 〈·〉 a time-average, dimensional analysis tells us that quantities
of the type

〈‖u‖ ˙Hm〉
〈‖u‖Ḣm+1〉

, m ≥ 0, (4)

(see Section 2 for the notation) provide a characteristic length scale of the
solution. For a discussion, see the already mentioned papers of Kuksin [19]
and [20], as well as [11, Chapter 6].

The main results of our paper, Theorem 1 and Theorem 2, state that, for
the same ε∗ and T∗ as in the statement of (3), provided 0 ≤ ε ≤ ε∗, we have∫ T∗

0

‖u(t)‖ ˙Hm dt ∼ ε−(2m+N)/2, m ∈ N. (5)

Consequently, up to averaging in time, all the quantities given by (4) are
of order ε, as is the radius of the balls on which at least an ε-independent
proportion of mass is concentrated. To the best of our knowledge, our paper is
the first one which studies systematically models from mathematical biology
using all-order Sobolev norms.

Moreover, our results for these norms - and therefore for the length scale -
are sharp. Indeed, the upper and lower estimates only differ by a multiplicative
constant which only depends on the initial condition through a finite number
of parameters. This is a remarkable phenomenon, only previously observed in
the Burgers equation and its generalisations. For more complex PDEs such as
the 2D Navier–Stokes or the nonlinear Schrödinger equation, such results are
beyond the reach of today’s mathematics.

Our results are indeed similar to those obtained for the simpler Burgers
equation and its fractional-dissipation and multidimensional analogues by the
second author [7,8,9,10]. These papers were themselves inspired by the ideas
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and first results due to Biryuk [6]. Indeed, for Burgers-type equations the
length scale is again the small parameter ε, and we have sharp Sobolev norm
estimates. More precisely, up to a rescaling factor corresponding to the dimen-
sion N , −u has the same behaviour with respect to Lebesgue and Sobolev
norms as the derivative of a Burgers solution. In particular, the positivity of
u seems to play a role analogous to that of Oleinik’s upper bound on the pos-
itive part of the gradient for a solution of the Burgers equation. Heuristically,
it seems that the rescaling N -dependent factor in the power of ε is due to a
difference of geometry of the singular zones in the limit ε→ 0. Indeed, for (1)
regions where the inviscid solution is not regular are of dimension zero (only
the origin) and not shocks of codimension one as for the generalised Burgers
equation.

Our methodology is essentially a combination of the approach used by the
second author to study Sobolev norms in the papers cited above and of the
arguments used by the three other authors to prove explosion under the con-
centration assumption in the paper [4] (see also [17]). The most delicate issue is
to estimate the contribution of the nonlinearity in the energy estimates, which
requires a subtle analysis of the convolution term using the classical Hardy–
Littlewood–Sobolev inequality along with the Gagliardo–Nirenberg inequality
within the admissible ranges for the exponents.

2 Notation, functional spaces and inequalities

We denote by M the total mass and recall that it is conserved by the flow of
the equation (1): ∫

Rn
u(x, t)dx = M :=

∫
Rn
u0(x)dx. (6)

For multiindices i, j ∈ ZN+ , provided ik ≤ jk, 1 ≤ k ≤ N (which we denote
as i ≤ j), we use the generalised binomial coefficient notation(

j

i

)
=

N∏
k=1

(
jk
ik

)
.

For N = 1 and a positive integer k, u(k) denotes the k-th spatial derivative
of u, while we use the notation ∂iu := ∂i1x1

. . . ∂iNxNu when N > 1 and i =
(ik)1≤k≤N is a multiindex.

For m ≥ 0 and p ∈ [1,∞], we will consider Lebesgue spaces Lp(RN ) and
Sobolev spaces Wm,p(RN ). The Lebesgue norms will be denoted ‖ · ‖p. As
usual, we set Hm(RN ) = Wm,2(RN ), m ∈ N. For m ∈ N and p ∈ [1,∞], we
denote the homogeneous seminorm in Wm,p(RN ) by

‖u‖Ẇm,p :=
∑
|i|=m

‖∂iu‖p with ‖ · ‖Ḣm = ‖ · ‖Ẇm,2 .
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Throughout the paper, the notation C and Ci, i ≥ 1, is used for various
positive numbers which may vary from line to line. These numbers depend
only on the dimension N , and on the initial condition u0 through the total
mass M and the quantity Λ (see the beginning of the proof of Theorem 2).
The dependence upon additional parameters will be indicated explicitly.

Now we recall two classical inequalities.

Lemma 21 (The Gagliardo–Nirenberg Inequality, [12]) For a C∞-smooth
function v on RN , we have

‖v‖Ẇβ,r ≤ C‖v‖θẆm,p‖v‖1−θq ,

where m > β ≥ 0, and r is defined by

N

r
= β − θ

(
m− N

p

)
+ (1− θ)N

q
,

under the assumption β/m ≤ θ < 1 and with the exception of the case when
β = 0, r = q =∞ and m−N/p is a nonnegative integer.
The constant C depends also on m, p, q, β,N .

Lemma 22 (The Hardy–Littlewood–Sobolev Inequality.)
[23, Theorem 4.3];[24, V.1.3.]
For a C∞-smooth function v on RN , provided

1 < p, q <∞, 1/p+ λ/N = 1/q + 1, 0 < λ < N,

we have ∥∥∥ |x|−λ ∗ v∥∥∥
q
≤ C‖v‖p.

where ∗ denotes the convolution. The constant C depends on p, λ,N .

3 Upper estimates

The results proved in this section still hold without the radial symmetry as-
sumption on the initial condition, and also without the concentration assump-
tion (C). Nevertheless, in that case we do not have corresponding lower esti-
mates with the same power of the parameter ε proved in the next section.

The scheme of the proof is very similar to that of the particular case
N = 1, m = 1 already treated in [3].

Theorem 1 For m ∈ N and t ≥ 0, we have

‖u(t)‖Ḣm ≤ max
{
‖u0‖Ḣm , C(m)M (N+2m+2)/2ε−(N+2m)/2

}
.
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Proof The case m = 0 is dealt with in [3], to which we refer, see [3, Lemma 4.1]
for p = 2. From now on, we assume that m ≥ 1.
The case N = 1. Integrating by parts and using that for any p ∈ [1,∞],
(K ′ ∗ v)x = −2v for v ∈ Lp(RN ), we obtain

1

2

d

dt
‖u‖2

Ḣm

=− ε‖u‖2
Ḣm+1 −

∫
R
u(m)(u (K ′ ∗ u))(m+1)dx

=− ε‖u‖2
Ḣm+1 −

∫
R
u(m)u(m+1)(K ′ ∗ u)dx

−
m∑
k=0

∫
R

(
m+ 1

k

)
u(m)u(k)(K ′ ∗ u(m−k))xdx

=− ε‖u‖2
Ḣm+1 +

1

2

∫
R

(u(m))2(K ′ ∗ u)xdx

−
m∑
k=0

∫
R

(
m+ 1

k

)
u(m)u(k)(K ′ ∗ u(m−k))xdx

=− ε‖u‖2
Ḣm+1 −

∫
R

(u(m))2 u dx︸ ︷︷ ︸
Am

+

m∑
k=0

∫
R

2

(
m+ 1

k

)
u(m)u(k)u(m−k)dx︸ ︷︷ ︸
Bkm

.

We first get, using the Hölder and then the Gagliardo–Nirenberg inequalities,
as well as (6),

|Am| ≤ ‖u‖2Ẇm,∞‖u‖1 ≤ C(m)(‖u‖1/(2m+3)
1 ‖u‖(2m+2)/(2m+3)

Ḣm+1
)2‖u‖1

= C(m)M (2m+5)/(2m+3)‖u‖(4m+4)/(2m+3)

Ḣm+1
.

Similarly, we obtain

|Bkm| ≤C(k,m)‖u‖Ẇm,∞‖u‖Ḣk‖u‖Ḣm−k

≤C(k,m)
(
‖u‖1/(2m+3)

1 ‖u‖(2m+2)/(2m+3)

Ḣm+1

)
×
(
‖u‖(2m+2−2k)/(2m+3)

1 ‖u‖(2k+1)/(2m+3)

Ḣm+1

)
×
(
‖u‖(2k+2)/(2m+3)

1 ‖u‖(2m−2k+1)/(2m+3)

Ḣm+1

)
=C(k,m)M (2m+5)/(2m+3)‖u‖(4m+4)/(2m+3)

Ḣm+1
.

Consequently,

1

2

d

dt
‖u‖2

Ḣm
≤ −ε‖u‖2

Ḣm+1 + C(m)M (2m+5)/(2m+3)‖u‖(4m+4)/(2m+3)

Ḣm+1
. (7)
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Now we observe that, interpolating ‖u(t)‖Ḣm between ‖u(t)‖Ḣm+1 and ‖u(t)‖1
using the Gagliardo–Nirenberg inequality, we get, thanks to (6),

‖u(t)‖2/(2m+3)

Ḣm+1
≥ CGN (m)M−4/(2m+1)(2m+3)‖u(t)‖2/(2m+1)

Ḣm
. (8)

Our goal is now to show that the inequality (7) implies that, for all t ≥ 0,

‖u(t)‖Ḣm ≤ Um (9)

≡ max
{
‖u0‖Ḣm , CGN (m)−(2m+1)/2C(m)(2m+1)/2M (2m+3)/2ε−(2m+1)/2

}
,

with C(m) is the same as in (7) and CGN (m) the same as in (8). Indeed, for
δ > 0, consider the set

Aδ := {t ≥ 0 : ‖u(t)‖Ḣm ≤ Um + δ} .

Clearly, 0 ∈ Aδ and the time continuity of u in Hm(RN ) ensures that

τδ := sup{t ≥ 0 : [0, t] ⊂ Aδ} ∈ (0,∞].

Assume now for contradiction that τδ <∞. The definition of τδ implies that

‖u(τδ)‖2Ḣm = (Um + δ)2 ≥ ‖u(t)‖2
Ḣm

for all t ∈ (0, τδ).

Hence,

d

dt
‖u(τδ)‖2Ḣm ≥ 0. (10)

We next infer from (7), (8) and the definition of Um that

1

2

d

dt
‖u(τδ)‖2Ḣm

≤ε‖u(τδ)‖(4m+4)/(2m+3)

Ḣm+1

(
−‖u(τδ)‖2/(2m+3)

Ḣm+1
+ C(m)M (2m+5)/(2m+3)ε−1

)
≤ε‖u(τδ)‖(4m+4)/(2m+3)

Ḣm+1

(
− CGN (m)M−4/(2m+1)(2m+3)‖u(τδ)‖2/(2m+1)

Ḣm

+ C(m)M (2m+5)/(2m+3)ε−1
)
< 0,

which contradicts (10). Consequently, τδ = ∞ and Aδ = [0,∞) for all δ > 0.
Letting δ → 0 completes the proof of (9).

The case N ≥ 2. Let i = (ik)1≤k≤N ∈ NN be a multiindex with |i| = m.

By applying Leibniz’ formula, it follows from (1) that ∂iu solves

(∂iu)t = ε∆ (∂iu)−∇ ·
[ ∑
0≤j≤i

(
i

j

)
∂ju (∇K ∗ ∂i−ju)

]
.
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Multiplying the above equation by ∂iu, integrating over RN , summing over all
multiindices i of length m and then integrating by parts, we get

1

2

d

dt
‖u‖2

Ḣm

=− ε
∑
|i|=m

‖∇(∂iu)‖22

+
∑
|i|=m

∑
0≤j≤i

(
i

j

)∫
RN

∂ju (∇K ∗ ∂i−ju) · ∇∂iudx

=− ε‖u‖2
Ḣm+1 +

∑
|i|=m

∫
RN

∂iu (∇K ∗ u) · ∇∂iudx

−
∑
|i|=m

∑
0≤j<i

(
i

j

)∫
RN
∇∂ju · (∇K ∗ ∂i−ju) ∂iudx

−
∑
|i|=m

∑
0≤j<i

(
i

j

)∫
RN

∂ju (∆K ∗ ∂i−ju) ∂iudx,

using that div(∇K ∗ ∂i−ju) = ∆K ∗ ∂i−ju. Since we can write

∑
0≤j<i

(
i

j

)∫
RN
∇∂ju · (∇K ∗ ∂i−ju) ∂iudx

=
∑

0≤j<i

(
i

j

) N∑
k=1

∫
RN

∂xk∂ju (∂xkK ∗ ∂i−ju) ∂iudx

=
∑
|l|≤m

N∑
r=1

N∑
s=1

C1(i, l, r, s)

∫
RN

∂lu (∂xr∂xsK ∗ ∂i−lu) ∂iudx

for some constants C1(i, l, r, s) ∈ R and∑
0≤j<i

(
i

j

)∫
RN

∂ju (∆K ∗ ∂i−ju) ∂iudx

=
∑
|l|≤m

N∑
r=1

C2(i, j, r)

∫
RN

∂lu
(
∂2xrK ∗ ∂i−lu

)
∂iudx

for some constants C2(i, j, r) ∈ R, we obtain, after another integration by
parts,

1

2

d

dt
‖u‖2

Ḣm
=− ε‖u‖2

Ḣm+1 −
1

2

∑
|i|=m

∫
RN

(∂iu)
2

(∆K ∗ u) dx

+
∑
|i|=m

∑
|l|≤m

∫
RN

∂lu (P (i, l)K ∗ ∂i−lu) ∂iudx,

(11)
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where P (i, l) are constant-coefficient differential operators of second order. We
now split the last term of (11) to find, after moving partial derivatives inside
the convolutions in an appropriate way,

∑
|i|=m

∑
|l|≤m

∫
RN

∂lu (P (i, l)K ∗ ∂i−lu) ∂iudx

=
∑
|i|=m

∑
m−N+2≤|l|≤m

∫
RN

∂lu (∂i−lP (i, l)K ∗ u) ∂iudx

+
∑
|i|=m

∑
|l|≤m−N+1

∫
RN

∂lu (P (i, l)K ∗ ∂i−lu) ∂iudx.

For the second term on the right hand side of the above identity, we observe
that the conditions |i| = m and |l| ≤ m−N + 1 guarantee that |i− l| ≥ N − 1
and we can move N − 2 partial derivatives from ∂i−lu on P (i, l)K in the
convolution P (i, l)K ∗ ∂i−lu to find

∑
|i|=m

∑
|l|≤m

∫
RN

∂lu (P (i, l)K ∗ ∂i−l) ∂iudx

=
∑
|i|=m

∑
m−N+2≤|l|≤m

∫
RN

∂lu (∂i−lP (i, l)K ∗ u) ∂iudx

+
∑
|i|=m

∑
|l|≤m−N+1

∑
|j|=m−|l|−N+2

∫
RN

∂lu (Q(i, l, j)K ∗ ∂ju) ∂iudx,

where Q(i, l, j) are constant-coefficient differential operators of order N . In-
serting the above identity in (11) and computing the partial derivatives of K
leads to

1

2

d

dt
‖u‖2

Ḣm
≤ −ε‖u‖2

Ḣm+1 +
N − 1

2

∑
|i|=m

∫
RN

(∂iu)2
(
|x|−1 ∗ u

)
dx︸ ︷︷ ︸

Ai

+
∑
|i|=m

∑
m−N+2≤|l|≤m

C(i, l)

∫
RN
|∂lu|

(
|x|−(m−|l|+1) ∗ u

)
|∂iu|dx︸ ︷︷ ︸

Di,l

+
∑
|i|=m

∑
|l|≤m−N+1

C(i, l)
∑

|j|=m−|l|−N+2

∫
RN
|∂lu|

(
|x|−(N−1) ∗ |∂ju|

)
|∂iu|dx︸ ︷︷ ︸

Ei,l

.

Now it remains to estimate all the terms using first the Hölder, and then the
Gagliardo–Nirenberg and the Hardy–Littlewood–Sobolev inequalities, along
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with the mass conservation (6). First,

|Ai| ≤‖(∂iu)2‖2N/(2N−1)
∥∥|x|−1 ∗ u∥∥

2N
≤ C(m)‖∂iu‖24N/(2N−1)‖u‖2N/(2N−1)

≤C(m)‖u‖2
Ẇm,4N/(2N−1)‖u‖2N/(2N−1)

≤C(m)
(
‖u‖3/(2m+N+2)

1 ‖u‖(4m+2N+1)/(2m+N+2)

Ḣm+1

)
×
(
‖u‖(2m+N+1)/(2m+N+2)

1 ‖u‖1/(2m+N+2)

Ḣm+1

)
≤C(m)M (2m+N+4)/(2m+N+2)‖u‖(4m+2N+2)/(2m+N+2)

Ḣm+1
.

Next, when l satisfies 0 ≤ m− |l| ≤ N − 2,

|Di,l| ≤ ‖∂lu‖2N/(N−m+|l|)

∥∥∥|x|−(m−|l|+1) ∗ u
∥∥∥
4N/(2m−2|l|+1)

‖∂iu‖4N/(2N−1)

≤ C(i, l)‖u‖Ẇ |l|, 2N/(N−m+L)‖u‖4N/(4N−2(m−|l|)−3)‖u‖Ẇm,4N/(2N−1)

≤ C(i, l)(‖u‖1−α1 ‖u‖α
Ḣm+1)(‖u‖1−β1 ‖u‖β

Ḣm+1
)(‖u‖1−γ1 ‖u‖γ

Ḣm+1
)

≤ C(i, l)M (2m+N+4)/(2m+N+2)‖u‖(4m+2N+2)/(2m+N+2)

Ḣm+1
,

where

α =
m+ |l|+N

2m+N + 2
, β =

2(m− |l|) + 3

2(2m+N + 2)
, γ =

4m+ 2N + 1

2(2m+N + 2)
.

Finally, when (l, j) satisfies m− |l| ≥ N − 1 and |j| = m− |l| −N + 2,

|Ei,l| ≤ ‖∂lu‖(4m+4)/(2m−1)

∥∥∥|x|−(N−1) ∗ |∂ju|∥∥∥
4m+4

‖∂iu‖(2m+2)/(m+2)

≤ C(i, l)‖u‖Ẇ |l|,(4m+4)/(2m−1)‖u‖Ẇm−|l|−N+2, N(4m+4)/(N+4m+4)

× ‖u‖Ẇm,(2m+2)/(m+2)

≤ C(i, l)(‖u‖1−δ1 ‖u‖δ
Ḣm+1)(‖u‖(1−δ

′)
1 ‖u‖δ

′

Ḣm+1)

× (‖u‖1/(m+1)
1 ‖u‖m/(m+1)

Ḣm+1
)

≤ C(i, l)M (2m+N+4)/(2m+N+2)‖u‖(4m+2N+2)/(2m+N+2)

Ḣm+1
,

where

δ =
2(m+ 1)(2L+N) + 3N

2(2m+N + 2)(m+ 1)
, δ′ =

4(m+ 1)(m− L+ 1)−N
2(2m+N + 2)(m+ 1)

.

Summing up all the above estimates, we get

1

2

d

dt
‖u‖2

Ḣm

≤− ε‖u‖2
Ḣm+1 + C(m)M (2m+N+4)/(2m+N+2)‖u‖(4m+2N+2)/(2m+N+2)

Ḣm+1

=‖u‖(4m+2N+2)/(2m+N+2)

Ḣm+1

×
(
C(m)M (2m+N+4)/(2m+N+2) − ε‖u‖2/(2m+N+2)

Ḣm+1

)
.
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From this energy inequality combined with the following consequence of
the Gagliardo–Nirenberg inequality

‖u‖2/(2m+N+2)

Ḣm+1
≥ C(m) M−4/(2m+N)(2m+N+2)‖u‖2/(2m+N)

Ḣm

we deduce, arguing as in the case N = 1, that

‖u(t)‖Ḣm ≤ max
{
‖u0‖Ḣm , C(m)M (N+2m+2)/2ε−(N+2m)/2

}
, t ≥ 0,

as announced.

Remark 31 After any given time τ > 0, the estimates above will hold with a
τ -dependent upper bound as a consequence of an interplay between the smooth-
ing properties of the heat kernel and a genuinely nonlinear effect. Moreover,
this upper bound will only depend on u0 through the single quantity M . To
obtain this result, one uses the same method as for the u0-uniform upper esti-
mates for the Hm-norms given by [7, Lemma 53] for solutions of the Burgers
equation.

4 Lower estimates for Sobolev norms

Here — unlike in the previous section — the positivity and radial symmetry
assumptions (B) as well as the concentration assumption (C) on the initial
condition u0 play a crucial role.

Theorem 2 Let m ∈ N. For some explicit numbers ε∗ > 0, T∗ > 0 and
C∗(m) > 0, independent of ε, the following inequality holds true:∫ T∗

0

‖u‖Ḣm dt ≥ C∗(m)ε−(2m+N)/2, for all ε ∈ (0, ε∗). (12)

Proof For m = 0, see [3, Corollary 2.4] for p = 2. Indeed, if (2) is true,
then there exists Λ > 0 such that the assumption on the initial condition [3,
Eq. (2.8)] holds true; see also [3, Remark 2.7].
For m ≥ 1, we infer from the Gagliardo–Nirenberg inequality that

‖u(t)‖2 ≤ CGN (m)‖u(t)‖N/(N+2m)

Ḣm
‖u(t)‖2m/(N+2m)

1 .

Hence, by (6),

‖u(t)‖Ḣm ≥ CGN (m)−(N+2m)/NM−2m/N ‖u(t)‖(N+2m)/N
2 , t ≥ 0,

and it follows from Hölder’s inequality and the already established lower bound
(12) for m = 0 that(∫ T∗

0

‖u(t)‖2
Ḣm

dt

)1/2

≥ C(m)M−2m/N

(∫ T∗

0

‖u(t)‖2(N+2m)/N
2 dt

)1/2

≥ C(m)M−2m/N T
−(N+4m)/2N
∗

(∫ T∗

0

‖u(t)‖2 dt

)(N+2m)/N

≥ C(N+2m)/N
∗ C(m)M−2m/N T

−(N+4m)/2N
∗ ε−(N+2m)/2,
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which completes the proof.
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