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Abstract
The basic concepts and techniques involved in the development and analysis of math-
ematical models for individual neurons are reviewed. A spiking neuron model uses dif-
ferential equations to represent various neuronal activities that have more compatibility
with circuit criteria and are chosen for developing a comparative study with circuit
models. For this comparison, a new fully differential neuron that uses the fully differential
aspects to reach more balanced differential equations to mathematical model is presented.
This comparative study of the circuit model and a neuron mathematical model provides a
quantitative understanding of the challenges between mathematical models and micro-
electronic circuit design criteria.

1 | INTRODUCTION

Spiking neurons are the most plausible models of biological
neurons because they accurately mimic the natural mechanisms
of information processing and learning. Recently, extensive
research towards novel realizations of neuronal models and
computing paradigms as a complementary architecture to Von
Neumann systems has been done using electronic techniques
such as CMOS chips [1–4]. These publications have demon-
strated that this technology is capable of impressive levels of
interconnectivity and spike communication in neural‐inspired
circuits.

The key challenge in achieving a complete neuronal network
similar to the human body is to implement a variety of neurons in
electronic circuits to explore new paradigms for neuromorphic
sensors and cortex neurons that are involved in brain‐sensory
perception. Most biologists agree with the classification of cor-
tex neurons in six most fundamental classes of firing patterns
observed in the mammalian neocortex [5]. The immediate ap-
plications of such neurons are an artificial vision [6] and audition
[7] by mimicking the retina and the cochlea, respectively. Many
efforts have been made to design and implement different types
of neurons. However, fast‐spiking (FS) [8,9], low threshold‐
spiking (LTS) [10] neurons have been made so far.

Choosing a special spiking neuron model for implementing
different types of neurons has a significant impact on
increasing the design speed like the works have been done in
references [8,10].

This appropriate mathematical model that is capable of
creating different kinds of neurons should have the flexibility
to produce different waveforms by only some simple variation
to be compatible with circuit design criteria.

A spiking neuron model uses differential equations to
represent various neuronal activities. Some of these activities
can lead to the generation of an action potential, which is the
charge in electrical potential (voltage) associated with a neuron.
When a neuron reaches a certain threshold, it spikes, and the
potential of the neuron resets. A popular simple neuron model
is proposed by reference [5]; a hybrid spiking neuron model is
introduced in reference [11], and a number of spiking neuron
models are discussed in reference [12]. A spiking model based
on logistic function using an analytical approach is presented in
reference [13]. All of these models are developed for software‐
based computation and hardly could be used as a guideline for
circuit design.

The mathematical model of reference [5] is supposed to be
the base of the current comparative study. This selection is
related to the ability of this model to produce different types of
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neurons with only changing the values of some constants. This
feature can provide the right conditions to be used as a
reference for circuit design. Axon‐Hillock (AH) neuron is
considered as the base of neuron circuit implementation
because of more similarity differential circuit equations with
the equations of reference [5]. This comparative study between
the circuit analytical model and the mathematical model of
reference [5] provides a quantitative understanding of the
challenges between mathematical models and microelectronic
circuit design criteria.

To have a more symmetrical circuit equation to ones
mentioned in reference [5] a refined new fully differential AH
electronic neuron (e‐neuron) is presented for the first time.
Circuit equations are extracted to be used in a comparative
study with a mathematical model.

This new implementation of AH e‐neuron could double
the output spikes with the same power budget and increase
energy efficiency too. Doubling the output swing and miti-
gating the effects of temperature changes enables the power
supply to be minimized and more power reduction could be
achieved.

This paper is organized as follows. In Section 2 the required
information of neurons models such as the developed mathe-
matical model of reference [5] is explained. In Section 3 the
novel AH neuron model, reasons for choosing AH structure,
and fully differential structure are explained. The proposed fully
differential AH neuron and its simulation results are shown in
this section. The last part of this section is focussed on the new
proposed mathematical model of the fully differential neuron
model. An adaptive comparison between neuron mathematical
model of reference [5] and the proposed model is presented in
Section 4. A comparative study between the mathematical
model and circuit model and certain issues related to developing
a mathematical model compatible with circuit design are given
in Section 5. Finally, conclusions are drawn in Section 6.

2 | BACKGROUND

A biological neuron model, also known as a spiking
neuron model, is a mathematical description of the
properties of certain cells in the nervous system that
generate sharp electrical potentials across their cell mem-
brane, roughly one millisecond in duration. Here a brief
overview on biological neuron models is presented. Ac-
cording to our comparative study, a suitable mathematical
model is explained too.

2.1 | Biological neurons

Two factors for characterization of each spiking neuron model
are so critical:

1. Biologically plausible: this means a neuron spiking model
can produce a set of firing patterns or behaviours exhibited
by real biological neurons or not;

2. Computational efficiency: this factor shows the complexity
of a neuron model and can be classified into five categories
Very Low, Low, Medium, High and Very High. This factor
is related to the number of floating‐point operations needed
to accomplish one millisecond (ms) of model simulation
and the number of variables used in order to represent the
neuron model (activation function).

Various mathematical models for biological neurons have
been developed to represent their biological activities. As it is
generally believed that neurons communicate with each other
via action potentials, these models basically represent neuronal
behaviour in terms of membrane potential and action poten-
tial. Some most popular models are Hodgkin‐Huxley (HH),
integrate‐and‐fire (I&F), FitzHugh‐Nagumo (FHN), Morris‐
Lecar (ML), Wilson, Izhikevich, Hindmarsh‐Rose (HR) [14].

These neuron models represent some or all of the char-
acteristics of the responses of real neurons. The exact
description of all these models is beyond the scope of this
article, but in a simple comparison (Table 1), the Integrate‐and‐
Fire model is the lowest model in consumption of computa-
tional power; which it could be used in a simple simulation that
accuracy is not an important manner. While the HH model
exhibit all neural behaviours, which could be used in applica-
tions where every single detail is needed, but this model re-
quires very huge computational power. Izhikevich model
exhibits most of the neural behaviours and does not require
huge computational power, which it is the best model that
could be used in any simulation or implementation of spiking
neural networks, for example hippocampus simulation, classi-
fication or solving engineering problems [14].

According to the given explanations, choosing a simple
mathematical model that can use the simplicity of Integrate‐
and‐Fire model and the accuracy of HH model at the same
time will certainly help to implement the circuit of an e‐neuron.

2.2 | Mathematical model

In reference [5], a model is presented that reproduces spiking
and bursting behaviour of known types of cortical
neurons. The model combines the biological plausibility of
HH‐type dynamics and the computational efficiency of

TABLE 1 Spiking neuron models comparison [14]

Model Number of Variables Biologically Plausible Complexity

I&F 1 Poor Very Low

Izhikevich 2 Good Very Low

FHN 1 Medium Low

HR 3 Good Medium

Wilson 2 Good Medium

ML 3 Medium High

HH 1 Good Very High
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integrate‐and‐fire neurons. Depending on four parameters, the
model reproduces spiking and bursting behaviour of known
types of cortical neurons.

The model represented by two differential Equations (1)
and (2), where Equation (3) is used to adjust membrane voltage
v and the recovery variable u, as following:

dv
dt
¼ 0:04v2 þ 5vþ 140 − uþ I ð1Þ

du
dt
¼ aðbv − uÞ ð2Þ

if v ≥ 30 mV→ then
�
v← c
u← uþ d ð3Þ

The v represents the membrane potential of the neuron,
and u represents a membrane recovery variable, which ac-
counts for the activation of K+ ionic currents and inactivation
of Na+ ionic currents, and it provides negative feedback to v.
After the spike reaches its apex (+30 mV), the membrane
voltage and the recovery variable are reset according to
Equation (3). Synaptic currents or injected DC currents are
delivered via the variable I.

The parameters a, b, c and d describe the time scale of the
recovery variable u, sensitivity of the recovery variable u to the
subthreshold fluctuations of the membrane potential v, after‐
spike reset value of the v and after‐spike reset of the recovery
variable u, respectively.

3 | NOVEL E‐NEURON MODEL

If a mathematical model requires to be used in circuit design,
its different parts and mechanisms for making output wave-
form should be clarified. This clarification could help circuit
designers to design a special circuit to implement its equilib-
rium mechanism in mathematics. Chosen mathematical models
in Equations (1)–(3) have two main variables and two inde-
pendent mechanisms for producing the different kinds of
neuron spikes.

Equations (1) and (2) represent the first mechanisms. From
circuit point of view variables v and u are the output voltage
and its control voltage respectively. Solving these two equa-
tions leads to rising part of the output voltage until its apex
point.

Equation (3) implements the jumping down mechanism
which is completely independent of the first part Equations (1)
and (2). Effective parameters in Equation (3) are c and d which
determine the jumping steps.

Figure 1 shows the output and controlling voltages. As
it can be seen these two voltages are in phase in the rising
part and only in the jumping part, they jump in the
opposite direction. According to Figure 1, two points need
to be considered in order to create a comparable circuit
model.

1. Select a specific circuit implementation that has the same
model voltages as the signals obtained from the mathe-
matical equations.Design a circuit which has in phase
output and controlling voltage.

3.1 | AH neuron

In order to choose the proper circuit implementation of the
neuron, which has more similar voltages to ones shown in
Figure 1, different types of implemented state‐of‐the‐art e‐
neurons analysed mathematically [8,10,15–17]. Because AH‐
neuron circuit has two main node voltages which determines
the circuit behaviour and two critical differential equations, AH
neuron has more compatibility with mathematical modelling of
Equations (1)–(3) among all other e‐neuron circuit
implementations.

The original AH circuit is based on a simple voltage
amplifier which most of the time implemented using two in-
verters cascaded in series and uses two capacitances [18,19].
Membrane capacitance and feedback capacitance.

In reference [9], for achieving extremely low DC power
consumption and energy efficiency, a refined AH architecture
was presented (see Figure 2).

F I GURE 1 Mathematical model waveforms and systematic parameter
description [5]

F I GURE 2 Refined single ended AH artificial neuron [9]
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3.2 | Proposed fully differential AH circuit

If in the refined AH architecture of Figure 2, Vmem and Vout
are chosen as the output voltage and controlling voltage
respectively, these two voltages could not be in‐phase because
Vout derive the pull‐down transistor MN3 and Vout should go
high to pull down the Vmem. Therefore, a single ended AH
neuron could not be used for this comparative study. This
problem could be solved by implementing the AH neuron
differentially.

Figure 3 shows the proposed fully differential AH artificial
neuron circuit. The membrane potential, referred to ground, is
denoted by Vm1 and its differential counterpart is Vm2. Con-
trolling voltages of the spike voltages Vm1 and Vm2 are rep-
resented as Vct1 and Vct2, respectively.

The two inputs excitatory currents to the circuit are Iex1
and Iex2 which are directly coupled to the controlling voltages
Vct1 and Vct2, respectively. Feedback capacitances are
completely symmetrical and are shown in Figure 3 by Cf.

When excitatory (DC) current Iex1 and Iex2 are applied,
parasitic capacitances of nodes ct1 and ct2 and feedback ca-
pacitances Cf1 and Cf2 are charged and discharged, respectively.
When the magnitude of Iex is sufficient, the increment of Vct1
and decrement of Vct2 reach the switching voltage of NMOS
transistor Mn2 and PMOS transistor Mp1 and both output
voltages Vm1 and Vm2 states are changed. Vm1 rises towards
Vdd, and vice versa, Vm2 goes towards –Vdd. Meanwhile,
positive feedback occurs through Cf, pulling up the control
voltage Vct2 to a positive value enough for turning off the
PMOS transistor Mp1, similarly on the opposite side Mp3
pulling down the Vct1 and turning off the NMOS transistor
Mn2. Mn1 and Mp2 are turning on quickly and the circuit goes
back to its first state again. This procedure keeps repeating
until excitatory currents are in the appropriate range which
could charge and discharged the ct1 and ct2 equivalent ca-
pacitances respectively in comparison to the counterpart
transistor.
Vm1 (Vm2) magnitude is limited by the voltage, which

develops between drain and source of Mp1 (Mn2). Voltage
waveforms Vm1, Vct1 of the proposed circuit are shown in
Figure 4. Circuit parameters of FS neurons are presented in
Table 2, Cf = 5fF, Iex = 25pA. The FS neuron is designed using
the BiCMOS SiGe 55 nm technology using low‐power low‐

threshold voltage transistors to enable weak inversion (WI)
region bias.

The variation of spike frequency is plotted as a function of
excitation current (Iex1 = Iex2) in Figure 5.

3.3 | Differential circuit mathematical
model

To reduce the power consumption of implemented e‐neuron
WI region is chosen for transistors. WI model of saturated
MOS transistor is obtained as [20]:

IDS ¼ Iz ·
�

e
VGS
ηϕt − e

VGD
ηϕt

�

ð4Þ

where Φt is the thermal voltage kT/q, η is the slope factor
1 + Cd/Cox (i.e. depletion Cd and oxide Cox capacitance ratio)
and Iz is the specific current which has the following equation:

Iz ¼ 2μCox
W
L

ηϕ2
t e

−VTh
ηϕt ð5Þ

where μ is the mobility and VTh is the threshold voltage of the
transistor. According to the proposed schematic of the neuron
(see Figure 3), Kirchhoff's circuit law (KCL) could be used for
four main nodes of the circuits and four equivalent differential

F I GURE 3 The proposed fully differential AH artificial neuron

F I GURE 4 Output and control voltages (Cadence simulation) for
Iex = 25 pA and 55 nm technology

TABLE 2 FS e‐neuron sizing in 55 nm technology

Transistor Size

Mn1 2.43 µm/55 nm

Mp1 3.6 µm/55 nm

Mn2 0.8 µm/55 nm

Mp2 4.95 µm/55 nm

Mn3 0.315 µm/55 nm

Mp3 1.08 µm/55 nm
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equations are obtained. The proposed circuit consists of two
sections whose outputs are 180° out of phase; therefore two
output voltages are supposed to be completely differential. It
leads to Vm1 = −Vm2 = Vm and Vct1 = −Vct2 = Vct and
Iex1 = Iex2 = Iex. Four differential equations are reduced to two.
These two equations are as follows:

�
Cm þ Cf

� dVm
dt
¼ Cf

dV ct
dt

− Izn1
�

e
Vdd−Vm

ηϕt − e
−2Vm

ηϕt

�

þIzp1
�

e
VddþVct

ηϕt − e
VmþVct

ηϕt

�

ð6Þ

�
Cp þ Cf

� dV ct
dt
¼ Cf

dVm
dt
þ Iex − Izp3 ·

�

e
VmþVct

ηϕt − e
Vm−Vdd

ηϕt

�

ð7Þ

In the above equations, the symbols are explained as fol-
lows: Cm is the membrane capacitance which equals to the
parasitic components corresponds to the Vm1 node capaci-
tance, Iex is the excitatory current (Iex1 = Iex2 = Iex), Cp is
parasitic capacitance of Vct1 node.

Substituting dVct/dt from Equation (7) in Equation (6) the
explicit differential equation of Vm could be obtained as
follows:

dVm
dt
¼

Cf · Cp
Cf · Cp þ Cf · Cm þ Cm · Cp
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

α

·

"
Cf

Cp þ Cf
·

Iex −
Cf

Cp þ Cf
· Izp3 ·

�

e
VmþVct

ηϕt − e
Vm−Vdd

ηϕt

�

−

Izn1 ·
�

e
Vdd−Vm

ηϕt − e
−2Vm

ηϕt

�

þ Izp3·

�

e
VddþVct

ηϕt − e
VmþVct

ηϕt

�#

ð8Þ

Minimum excitation current value can be set by adjust-
ing transistor Mp3 dimensions, for more reduction of power

consumption, less excitatory current and low aspect ratio of
Mp3 and Mn3 are needed. According to mentioned expla-
nation, Iex and Mp3 currents are negligible in comparison to
other parts of Equation (8) and it could be simplified as
presented in:

dVm
dt
¼ α ·

2

6
4

Izp1 ·
�

e
VddþVct

ηϕt − e
VmþVct

ηϕt

�

−

Izn1 ·
�

e
Vdd−Vm

ηϕt − e
−2Vm

ηϕt

�

3

7
5 ð9Þ

Now Equations (7) and (9) are the final differential
equations modelling the proposed fully differential neuron.
Because these two exponential differential equations don't
have any intuitive responses, exponential responses are
approximated by their equivalent Taylor expansions which
third and higher order sentences are neglected. These as-
sumptions simplify the differential equations as mentioned in
Equations (10) and (11).

Coefficients A1–A4 and B1–B5 formulas are presented
in Table 3. To check the validity of the above assumptions,
the voltages Vm and Vct are represented in differential
Equations (10) and (11) are drawn in Figure 6. Comparing
the voltages obtained from Equation (6) to Equation (7)
and from Equation (10) to Equation (11) and the exact
voltages obtained from simulations (bold line) in 55 nm
CMOS technology, it is clear that exponential equations
faithfully represent the actual neuron voltages and the only
difference is the frequency of spiking which has less than
10% difference. Polynomial approximated equations have
more differences with ones obtained from simulations,
especially in pulling down phase, which will be discussed
completely in the next section. Hence, we will use Equa-
tions (10) and (11) for the systematic analysis of the circuit
in the next sections.

F I GURE 5 Spike frequency (Cadence simulation) as a function of
excitation currents

TABLE 3 Equation (6) coefficients formula

Symbol Expression

A1 α
2η2ϕ2

t

��
4 − e

Vdd
ηϕt

�
Izn1 − Izp1

�

A2 α
ηϕt

��
e
Vdd
ηϕt − 2

�
Izn1 − Izp1

�

A3 α
��

1 − e
Vdd
ηϕt

�
Izn1 þ

�
e
Vdd
ηϕt − 1

�
Izp1
�

A4 α
ηϕt

��
1 − e

Vdd
ηϕt

�
Izp1
�

B1 αIzn1
4η4ϕ4

t

B2 αIzn1
η3ϕ3

t

B3 αIzp1
4η4ϕ4

t
V2
ct þ

αIzp1
2η3ϕ3

t
Vct

B4 αIzp1
2η2ϕ2

t

�
e
Vdd
ηϕt − 1

�
− αIzp1

2η3ϕ3
t
Vm

B5 αIzp1
η2ϕ2

t
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dVm
dt
¼ α ·

A1 · V 2
m þ A2 · Vm þ A3 þ A4 · V ct

"

B1 · V 4
m − B2 · V 3

m − B3 · V 2
m þ B4 · V

2
ct − B5 · V ct · Vm

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Jumping mechanism

#

ð10Þ

dV ct
dt
¼

Cf
CP þ Cf

·
dVm
dt
þ

Iex
CP þ Cf

−
Izp3

CP þ Cf
·

��

1þ
Vct
ηϕt
þ

V 2
ct

2 · η2 · ϕ2
t

�

·
�

1þ
Vm
ηϕt
þ

V 2
m

2 · η2 · ϕ2
t

��

ð11Þ

Solving both Equations (10) and (11) for two variables,
Vm, and Vct, can be found. However, solving these two
strongly non‐linear equations simultaneously in terms of circuit
parameters is very complicated and the results would not
convey any useful qualitative information about the behaviour
of the output voltages. To overcome this problem, a compar-
ative study with reference [5] is made in the next section to
show how a systematic model of pure mathematical environ-
ment could be implemented in the electronic word and its
challenges.

4 | E‐NEURON AND MATHEMATICAL
MODEL COMPARISON

For more compatibility between the presented model of
reference [5] and the differential equations of the circuit,
Equations (10) and (11) are rewritten as follows:

dVm
dt
¼ α ·

�
A1 · V 2

m þ A2 · Vm þ A3 þ A4 · V ct
�

þ Jumping mechanism ð12Þ

dV ct
dt
¼ αðb · Vm − VctÞ þ β ð13Þ

According to Equations (12) and (13), Vm, Vct, β and γ
could be supposed to be instead of v, u, a and b in the
mathematical model respectively (see Equations (1) and (2)).
Jumping mechanism in Equation (12) is shown in
Equation (10) and Table 2. Spike voltage could be divided in
two phases:

1. rising phase until the spike reaches its apex, and
2. reset phase which the membrane voltage jumps down to its

resting potential.

The first part of Equation (12) models the first phase and
th e jumping mechanism is approximately mimicking the
jumping down process. Substituting Equation (10) in Equation
(11), coefficients β and γ could be obtained as below:

β¼
1

CP þ Cf
·
�
Izp3

η · ϕt
− Cf · A4

�

ð14Þ

γ ¼
Cf · A2 · η · ϕt − Izp3

−Cf · A4 · η · ϕt þ Izp3
ð15Þ

δ in Equation (13) shows the other parts of differential
equation and includes the Iex and other non‐linear parts.

Based on the equations obtained in the previous sections
we compare the Equation (12) with the mathematical model. A
two‐dimensional sweep for NMOS and PMOS widths are
performed and the variation of αA1–αA4 are computed and
illustrated in Figure 7. As can be seen, all the coefficients are in
the range of 10−9 with different dimensions. Except for αA3,
the absolute values of all other ones are increased as the size of
PMOS increases. In the case of αA1 increasing the PMOS
sized cause to sign change and change it from a positive value
to a negative one.

Equation (2) models the variations of variable u from peak
value to the moment of jump upward, but in the proposed
circuit a completely different process is followed to create the
equivalent of this portion of the signal.

Referring to Figure 6, it is clear that, increasing Vct from
its minimum value until the beginning of the jump process

F I GURE 6 Simulations results versus exponential and polynomial
approximation of circuit differential equations. (a)Vm (b) Vct
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is done at a constant rate, which is dependent on the ratio
of the excitation current to the equivalent capacitance of the
node. Going down of Vct is also done by Mp3, which is
relatively faster than the variable u in Equation (2). Using
interpolation techniques can certainly find a single function
for modelling this part of the signal. Therefore, coefficient a
and b are not the main factors in determining the Vct
behaviour.

5 | DISCUSSION

Comparing circuit behaviour and mathematical models in
Equations (1)–(3), it becomes clear that there are some serious
challenges for implementing the mathematical equations in the
electronics domain. These challenges have been attempted to
be presented below in order to provide an overview, improving
the compatibility of mathematical models and implementation
criteria. Certainly, when implementation challenges are also
taken into account, proposed models could be more applicable
and usable in circuit design.

The model presented in reference [5] consists of two
completely separate and independent sections:

1. Spike initiation dynamics are modelled by two ordinary
differential equations.

2. Auxiliary after spike resetting or jumping system in Equa-
tion (3).

In reality, two independent systems for one waveform are
impossible and surely, they will influence each other. As can be
seen in Table 2, B1–B4 are directly dependent on the size of
NMOS and PMOS transistors. It shows that in each mathe-
matical model the relation of these two parts should be
clarified.

Sharp jumping down could be obtained only in the WI
regime because of the exponential I‐V characteristic of tran-
sistors. This difference between polynomial approximation and
exponential relation is shown in Figure 6a. Polynomial
approximation could model the rising part of waveform very
well but the second part of jumping down is not as precise as
exponential one. Due to power consumption limitation and
mimicking the biological system, using WI transistors are
inevitable. Using WI transistors cause the coefficients of the
differential equation to be in the nanoscale because they have a
direct relationship with the size of the transistor. It shows that
in spike dynamic modelling, the range of coefficients should be
considered.

6 | CONCLUSION

A comparative study between the circuit model and the
mathematical model of reference [5] is developed. To find a
more compatible mathematical neuron model with circuit
design, this paper provides the right conditions to be used as a
reference for circuit design. For this purpose, a new topology

F I GURE 7 Differential equation coefficients variations against NMOS (Mn1) and PMOS (Mp1) sizes. (a) αA1, (b) αA2, (c) αA3, (d) αA4
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for a differential AH artificial neuron is designed, which
doubles output spikes using fully differential structures. By
comparing circuit behaviour and mathematical models, chal-
lenges for implementing the mathematical equations in the
electronics domain were addressed.
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