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Abstract
While CMOS scaling is currently reaching its limits in power dissipation and circuit density, the analogy between biology

and silicon is emerging as a solution to ultra-low-power signal processing. Urgent applications involving artificial vision

and audition, including intelligent sensing, appeal original energy efficient and ultra-miniaturized silicon-based solutions.

While state-of-the-art is focusing on digital-oriented solutions, this paper proposes a neuromorphic analog signal processor

using Izhikevich-based artificial neurons in an analog spiking modulator. A varicap-based artificial neuron is explored

reducing the silicon area to 98:6 lm2 and the substrate leakage to a 1:95 fJ=spike efficiency. Post-layout simulation results

are presented to investigate the high-resolution, high-speed, and full-scale dynamic range for audio signal processing

applications. The proposal demonstrates a 9 bits spiking-modulator resolution, a maximum of 8 fJ=conv efficiency, and a

root–mean–square error of 0:63 mVRMS .

Keywords Artificial neuron � Spiking signal processing � Non-linear electronics � Ultra-low power

1 Introduction

Neuromorphic computing appeared in the 90 s as a com-

plementary architecture to von Neumann systems using

analog circuits designed to mimic biological neural sys-

tems [1]. Since then, digital neuromorphic systems have

been often implemented in FPGAs considering its shorter

design and manufacturing time, reconfigurability and

reusability for different applications [2]. From both

circuitries, analog one has often been a good solution to

implement the processing components of neurons and

synapses, due to its ability to faithfully mimic biological

systems. Besides, analog solutions have presented the best

energy consumption per unit of information, often repre-

sented in J=spike. However, analog solutions have pre-

sented several reliability challenges in terms of process,

temperature, and voltage variation that are frequently

overcome by digital solutions [3]. A mixed circuit

approach usually presents a better trade-off between digital

and analog solutions [4]. Neuromorphic spiking signal

processors are highly energy-efficient, parallel and dis-

tributed computing enabled, and require a small silicon

area [5].

The immediate applications in neuromorphic spiking

processors are artificial vision and audition by mimicking

the retina and the cochlea, respectively [6] and [7]. Zagh-

loul and Boahen have proposed an artificial retina bio-in-

spired on the signals in the optic nerve in [6]. In their work,

four major ganglion cell types that drive the visual cortex

were modeled using spiking neural models and optical

capabilities rely on local modulation of synaptic strength.

Wen and Boahen have proposed the first integrated circuit

modeling the cochlea’s micromechanics [7]. Such an arti-

ficial cochlea demonstrates sound sensitivity, frequency

selectivity, and dynamic range. Recent system
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architectures are enabling neuromorphic spiking signal

processing for complex and promising future applications

[5].

In [8], nanowire microphones of an artificial cochlea

exploit piezo resistivity to capture an acoustic vibration and

transduces it to an electrical signal of a few millivolts

amplitude in the frequency range from 20 Hz to 20 kHz.

Traditionally, cochlea circuitry includes an analog front

end [9] and multibit DR modulators in order to analog-to-

digital convert the transduced audio signal. Such modula-

tors are well known for its noise shaping capabilities and

the resolution and speed trade-off. Co-integrated micro-

phones and mixed-signal processor enables good speech

comprehension and low background noise. Recent publi-

cations in artificial cochlea applications are focusing on

intelligent acoustic sensing that combines the high energy

efficiency and the signal processing capabilities such as

spiking neural networks [5, 10–12].

The authors have focused on the analog-circuit design of

the two cortex neuron models, named eNeuron [13]. Both

eNeurons are part of the six most fundamental classes of

firing patterns observed in the mammalian neocortex [14].

In a biological neuron for instance, the membrane potential

(Vm) is excited by an ionic current pulse (Iex) of a few

hundreds of picoamperes. Thus, it operates in an average

firing rate (fspike) of few Hertz with an energy efficiency

(Eeff ) of 2:45 pJ=spike. Such neurons have an average

membrane capacitance (Cm) of 245 pF and operate with an

action potential (Vd) of 100 mV [15]. Using electronic

conduction, Rangan et al. [16] and Schaik et al. [17] have

developed current-mirror-based architectures that are cap-

able to mimic all classes of firing patterns. Their works

have proved that once transistors are operating in the weak

inversion regime, the Izhikevich’s models mathematical

behavior [14] can lead to energy efficient hardware devices

mimicking the neocortex neurons.

Recently, Sourikopoulos et al. have considerably

reduced the energy efficiency to 4 fJ=spike using CMOS

65 nm technology to implement a neuromorphic analog

circuit solution [18], and in [19], a compact and energy

efficient sub-threshold analog synapse and neuron circuits

are presented. Using a 28 nm FD-SOI process, Qiao and

Indiveri [19] have optimized neuromorphic circuitry to

implement massively parallel large-scale neuromorphic

computing systems. In [12], Yang et al. have proposed a

spiking neuromorphic computing for cochlea-inspired

analog front end and digital neural networks.

This paper extends the work already presented in [13] by

proposing: (a) a neuromorphic analog spiking processor

(NASP) using both eNeurons in a spiking-modulator

architecture; and (b) a varicap-based version for both

eNeuron to reduce silicon area. Proposed NASP aims at

artificial cochlea applications coding an input-signal

amplitude in fspike inspired by DR modulators. The two-

output spiking-modulated signal in NASP is also capable to

estimate the signal derivative sign from fspike variation over

time combining both Izhikevich’s neuron model proposed

in [13]. Post-layout simulations (PLS) are carried out to

highlight both eNeuron figure-of-merits, and to ensure low-

power and low-silicon area with varicap-based version.

NAPS simulation results demonstrate its capability to

process audio signals from an artificial cochlea.

This paper is organized as follows. Section 2 presents a

literature review of cortex neuron behavior, firing patterns,

and electronic implementationswhich found the background

our study is laid on. In addition, it highlights the principles of

weak inversion model of saturated MOS transistors. Sec-

tion 3 proposes the neuromorphic analog spiking processor

implementation and analyses recent works dealing with

energy efficient circuits [13] and [18]. The proposed NASP

is designed using 55 nm technology node exploring high-

density varicap and low supply voltage (� 200 mV). Sec-

tion 4 highlights PSL results with a focus on multi-spiking

NASP operation in intelligent audio sensing. Finally, con-

clusions are drawn towards a biomimetic fJ/conv NASP for

artificial cochlea neuromorphic sensing in Sect. 5.

2 Background

In this section, literature is revised. Section 2.1 describes

neuromorphic modeling from the biological point of view,

introducing Izhikevich’s neuron model. Section 2.2 pre-

sents a short state-of-the-art review from analog and

mixed-signal neuromorphic systems used in literature

comparison of Sect. 4. For readers wishing to go further, an

interesting survey is available in [1]. Section 2.3 recalls

important model equations for transistors biased in weak

inversion used in this work during circuit design [22].

2.1 Cortex neurons

Cortex neurons are involved in higher functions such as

sensory perception, generation of motor commands, spatial
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reasoning, conscious thought, and human’s language. Most

biologists agree with the classification of cortex neurons in

six most fundamental classes of firing patterns observed in

the mammalian neocortex [14]. These cortex neurons are:

RS Regular spiking neurons fire tonic spikes with adapting

frequency in response to injected pulses of DC current

IB Intrinsically bursting neurons generate a burst of spikes at the

beginning of a strong depolarizing pulse of current, then

switch to tonic spiking mode

CH Chattering neurons fire high-frequency bursts of spikes with

relatively short inter-burst periods; hence fast rhythmic

bursting

FS Fast spiking neurons fire high-frequency tonic spikes with

relatively constant period

LTS Low-threshold spiking neurons fire tonic spikes with

pronounced spike frequency adaptation (decreasing) and

rebound spikes due to post-inhibitory effect

LS Late spiking neurons exhibit voltage ramp in response to

current excitation, resulting in delayed spiking

Cortex neuron firing patterns are often modeled using

the Hodgkin and Huxley [20] or the Moris and Lecar model

[21]. Both most accepted models behave as non-linear leak

integration and fire by exponential functions of real num-

bers. In CMOS technology, such behavior is obtained in

weak inversion (subthreshold regime) [22]. Besides, tran-

sistors operating in such regime also take advantage of

ultra-low-power consumption by a supply voltage around

�Vd (i.e. �100 mV). Drawbacks of such biomimetic-

hardware implementation are obtaining a higher fspike and a

lower Cm than biological counterparts.

2.2 Silicon neurons

Since 2010, eNeuron library proposition of Izhikevich’s

models has caught attention in the scientific community.

Rangan et al. [16] have proposed a current-mirror-based

schematic capable to mimic all classes of firing patterns.

Rangan’s proposal achieves a silicon area of 2980 lm2 and

an Eeff of 1 pJ/spike using MOSIS 90 nm technology.

Eventually, this work did not consider a Vm (current-mode

circuit) which is an indispensable variable to model the

integrating phase or the polarizing region in biological cell

analogy. Besides, Schaik et al. [17] have proposed the

Izhikevich neuron model implementation using two first-

order log-domain low-pass filters and two trans-linear

multipliers. Schaik’s proposal achieves a silicon area of

0.02 mm2, fspike ¼ 40 Hz, and an Eeff ¼ 1 nJ/spike using

AMIS 0.5 lm technology. Both have suggested weak

inversion operation to mimic Izhikevich’s model’s

behavior.

Later then, a variety of eNeuron implementations were

presented in [23]. Most implementations have a smaller sili-

con area than Rangan et al. [16] and Schaik et al. [17] (around

1000 lm2) but achieving an Eeff of few pJ/spike in low fspike
(i.e. few Hz range). Demirkol’s proposal is one of such

examples achieving a chip area of 1100 lm2, fspike ¼ 10 Hz,

and Eeff ¼ 165 pJ/spike using AMS 0.35 lm process [24].

Recently, Wu et al. [25] have included the learning

capability based on resistive synapses in their spiking

neuron proposal. Using class AB-OTAs, Wu’s proposal

presented a silicon area of 110 9 110 lm2 and Eeff ¼ 9:3

pJ/spike using 0.18 lm CMOS process. Azghadi et al. [26]

have improved the learning capabilities using memristor-

based synapses. Using a non-conventional technology

node, their work presented a silicon area of 600 lm2.

Azghadi et al. affirmed that power consumption was not the

design goal. Both have neither detailed fspike range, nor

Izhikevich’s models mathematical behavior (i.e. exponen-

tial functions of real numbers) which requires transistors

operating in weak inversion.

Sourikopoulos et al. [18] has innovated by a biomimetic

and a simplified version of FS eNeurons. Discussing the

trade-off between speed and consumption, biomimetic

version achieves an area of 300 lm2, fspike ¼ 1 kHz, and an

Eeff ¼ 40 fJ/spike; simplified version obtained an area of

35 lm2, fspike ¼ 26 kHz, and an Eeff ¼ 4 fJ/spike. Both

circuits are implemented using TSMC 65 nm technology

and considered only dynamic power consumption in the

figure of merit. Sourikopoulos’ work opens the way to

propose an exhaustive library regarding Izhikevich’s neu-

ron models operating in a higher fspike with Eeff in fJ/spike

range.

Towards a large-scale spiking neural network, Zhang

et al. [27] have made an effort in defining a PVT-robust

eNeurons. A lower Cm ¼ 1 fF is presented to address area

and reliability challenges. Eventually, eNeurons operates at

1 V supply, extremely high fspike, but power consumption is

not presented. Figure of merit values are not available, and

results suggest that Izhikevich’s models mathematical

behavior (i.e. exponential functions of real numbers) were

not considered. The area is estimated at 150 lm2 using

65 nm CMOS technology.

In the previous paper [13], the authors have redesigned

Sourikopoulos’ eNeuron in a higher firing rate (fspike � 200

kHz) to reduce the silicon area and highlight a better

energy efficiency trade-off. Besides, an innovative sche-

matic is proposed to establish an eNeuron library based on

an Izhikevich’s neural firing patterns model. Presented

results suggest that the time to rebound spikes is dependent

of the excitation current amplitude. Both eNeurons have
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presented a 2.3 and 3.6 fF/spike energy efficiency and a

smaller silicon area 357 and 515 lm2 for respectively FS

and LTS implementations.

2.3 Weak inversion

Weak Inversion (WI) model of saturated MOS transistor is

obtained by integrating the charge conduction for the

channel length considering the minority carriers injected

into the channel. Drain-to-source current relationship is

then obtained as [22]:

IDS ¼ I VG;VSð Þ � I VG;VDð Þ
¼ Ise

VGS=g/t � Ise
VGD=g/t

¼ Ise
VGS=g/t 1� e�VDS=g/t

� �
;

ð1Þ

where /t is the thermal voltage kT=q; g is the slope factor

1þ Cd=Cox (i.e. depletion Cd and oxide Cox capacitance

ratio); and Is is the specific current. Considering a small

variation of VDS, then (1) can be approximated by

IDSi ¼ Gie
VGSi
g/t � VDSi; ð2Þ

where the device conductance Gi for a i transistor can be

estimated as a function of the mobility (l) and the tran-

sistor sizing by

Gi ¼ lCox �
/t

2
�W
L
: ð3Þ

An interesting result presented by Sourikopoulos et al.

[18] is the association of a PMOS (MPi) and a NMOS

(MNi) transistors biased in WI, having the drain node

connected as Vout, gate node as Vin, and source node bias as

�Vd. This circuit schematic is in fact a well-known

inverter-based OTA, biased in weak inversion. When

applying Kirchhoff’s Current Law (KCL) at the transistors’

drain node of the OTA, expressing the currents as in (2),

assuming the same g for both transistors; the output voltage
of the transconductor in static WI regimecan be expressed

as:

Vout ¼ �Vd � tanh
Vin

g/t

þ 1

2
ln

GN

GP

� �� �
: ð4Þ

Equation (4) assumes that the output current of the

transconductor MPi

MNi
is negligible. In the circuit schematics

studied in this paper, the output current is in fact the gate

leakage of a following transistors’ gates (PMOS and

NMOS) playing the role of a load for the inverter-based

OTA. Details in the inverter-based OTA circuit analysis

demonstrating (4) are presented in [18].

State-of-the-art biomimetic-hardware uses capacitors

associated to transconductor’s non-linear behavior expres-

sed in (4), in order to model the leak integration and firing

behavior of cortex neurons. Indeed, an eNeuron is a cur-

rent-controlled oscillator having Iex as the control current

and Vm as the spiking output node. This is obtained from

positive feedback association of capacitors and

transconductors.

3 Neuromorphic analog spiking processor

In this section, the proposed neuromorphic analog spiking

processor (NASP) is described. Section 3.1 details the

system-level specifications in terms of dynamic range

(70 mV), resolution (9 bits), and energy consumption

through leakage current minimization. Sections 3.2 and 3.3

present the FS and LTS eNeurons design from transistor-

level point of view. Section 3.4 presents in detail the NASP

physical design and the leakage current minimization from

layout-level point of view.

3.1 System-level NASP proposal

The novel NASP is illustrated in Fig. 1(a); it has a sample

and hold building block, two current-mirror synapse

implementation and both FS and LTS eNeurons. In this

paper, the sample is assumed ideal ðron ! 0Þ for simplicity

and Cin is chosen high enough to a negligible parasitic

capacitance (total CGS of MPin, MPFS, and MPLTS). In fact,

the hold capacitor Cin should be designed considering the

sample and hold speed performance. Indeed, the short-

circuit resistance of the sampler ðronÞ and Cin play an

important role in the sample-and-hold speed performance.

A circuit design technique that minimizes the switch ron
variation in the presence of large input ðVinÞ and output

voltage swings ðVmÞ is detailed in [29]. Considering this

technique, the aforementioned assumption is thus valid.

Bartolozzi and Indiveri have been one of the first to

propose a silicon synaptic circuit in [28]. Synapses emulate

the function of biological synaptic connections. They

modulate the incoming events from the axon array with

synaptic weights and generate destination post-synaptic

signals addressed of the following neurons. Silicon

synapses are designed using a pulsed current-source circuit

activated by a presynaptic VGS signal. Complex synapse

blocks are an array implementation of current mirrors [19],

where current-mirror gains represent the synaptic weights.

The excitation current Iex of FS eNeuron is obtained

through MPin-MPFS, and Iex of LTS eNeuron is obtained

through MPin–MPLTS current mirrors. The spiking modu-

lator generates two spiking signals in Vm;FS and Vm;LTS

outputs having a fspike proportional to excitation. The fspike
can be estimated in a window of observation bounded in a

time of 1=fs, where fs is the sampling frequency. Following
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this constraint, the NASP resolution in number of bits

could be defined as

N bitsð Þ ¼ log2
fspike;max

fs
; ð5Þ

where fspike;max is the full-scale maximum fspike. Thus,

N bitsð Þ depicts the resolution and speed trade-off of the

modulator. Indeed, one might increase the NASP resolution

by setting a longer holding time by decreasing fs.

Current mirror gains in synapse implementation are

weighted to maximize the full-scale dynamic range in

terms of fspike;max, which is similar to an offline spiking

neural network learning process. Current mirror design

focused on minimum leakage, and silicon area for MPin.

Following the results of a previous paper if a supply

voltage of VDD ¼ Vd and VSS ¼ �Vd is chosen

(Vd ¼ 100 mV) the minimum Vm of an eNeuron is

�70 mV [13] mimicking the biological membrane rest

potential [14]. Thus,MPFS andMPLTS sizing is obtained for

an optimal Iex to fspike;max, aiming a full-scale input dynamic

range of �70 mV�Vin n½ � � 70 mV. However, different

strategies could be considered in the learning process to

favor other NASP performance. This paper points out the

synaptic weights for a maximum resolution in terms of

N bitsð Þ 	 9, see Sect. 4 for details.

A two-neuron spiking neural network completes the

proposed NASP system-level, having a FS and an LTS

eNeuron. FS eNeuron generates high-frequency tonic

spikes fspike proportional to the sampled Vin n½ � at Vm;FS

output. LTS eNeuron generates a pronounced spike fre-

quency adaptation (decreasing) and rebound spikes due to

post-inhibitory effect proportional to the sampled

Vin n� 1½ � at Vm;LTS output. FS eNeuron schematic is

depicted in the Fig. 1(b) highlighted gray-dashed box [18].

BothMPNa andMPK transistors mimic the ionic movement

of Na-in and K-out the membrane Cm. The Iex source

models the current pulse excitation and IL the current leak.

LTS eNeuron, as shown in the Fig. 1(b) [13], integrates

and fires tonic spikes similarly to FS eNeuron when

Iex � IL. To mimic the post-inhibitory phenomenon, a non-

linear RC circuit is implemented using a diode-connected

MPd transistor and CK 0 . Following subsections will draw a

circuit analysis of both eNeurons considering transistors in

weak inversion [13].

Fig. 1 Neuromorphic Analog

Spiking Processor proposal: a
spiking-modulator architecture,

and b the LTS e-Neuron

schematic having the FS e-

Neuron core highlighted in the

gray box (VDD ¼ Vd and

VSS ¼ �Vd)
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3.2 FS eNeuron analysis

Sourikopoulos et al. have first demonstrated the fast-spik-

ing behavior of biomimetic neuron with relatively constant

period in [18]. Later, Sourikopoulos et al. have demon-

strated the stochastic resonance behavior of such a neuron

[30]. According to [14], both characteristics are presented

only for FS neurons, and thus Sourikopoulos’ work was

named as FS eNeuron in [13].

Applying KCL at nodes Vm and VGK considering the

gray-box schematics in Fig. 1(b), one gets the system of

equations

ICm ¼ INa � IK þ Iex � IL;

ICk ¼ IP2 � IN2:
ð6Þ

Using (2) and (4); assuming transconductors are in static

WI regime, VDD ¼ Vd and VSS ¼ �Vd; the (6) system leads

to the following coupling system between Vm and VGK

Cm � dVm

dt
¼ GNa � e

Vd 1þtanh
Vm
g/t

þ1
2
�ln GN1

GP1

� �� �� �
g/t � Vd � Vmð Þ � GK

� e
VGKþVd

g/t � Vm þ Vdð Þ þ Iex � GL � Vm;

ð7aÞ

CK � dVGK

dt
¼ GP2 � e

Vd 1þtanh
Vm
g/t

þ1
2
�ln GN3

GP3

� �� �� �
g/t � Vd � VGKð Þ

� GN2 � e
Vd 1�tanh

Vm
g/t

þ1
2
�ln GN3

GP3

� �� �� �
g/t � Vd þ VGKð Þ;

ð7bÞ

with the parameters being:

• Cm;CK are capacitances;

• Vm;VGK are voltages applied to the respective

capacitances;

• Iex; IL are the excitation and leak currents;

• GL;GNa;GK are the leak, sodium and potassium

conductances;

• GL;GNa;GK are the excitation and leak currents;

• GPi;GNi8i 2 1; 2; 3f g are the i-transistor conductances.

Thus, (7) is a time-invariant, first-order, non-linear

system connecting the Vm and the VGK potentials. It

depends on ten parameters Iex;GL;GNa;GK ; GPi;GNið Þ8i 2
1; 2; 3f g when both temperature (/t ¼ 26 mV) and action

potential (Vd ¼ 100 mV) are fixed. A circuit designer

would probably like to solve (7) system using MatLab, for

instance. However, neither analytical solution nor any

analytical equilibrium point can be found for such a sys-

tem. In fact, when considering the exponential argument

Vd=g/t 	 5 and noticing that experimental data of Vm can

have the same order of magnitude as g/t [18], one may

conclude that the linearization of tanh xð Þ and ex functions

have no physical meaning for this non-linear circuit.

3.3 LTS eNeuron analysis

To mimic the post-inhibitory phenomenon in LTS neurons,

the IK 0 current is designed to be a delayed version of IK . By

increasing the total IK þ IK0 , a pronounced spike frequency

adaptation is mimicked. Furthermore, rebound spikes due

to post-inhibitory effects will take place when

Iex � IK 0 ¼ Iex;eff � IL. Applying KCL at nodes Vm and VGK

for the LTS eNeuron, the (6) system turns into

ICm ¼ INa � IK � IK0 þ Iex � IL;

ICk � ICk0 ¼ IP2 � IN2:
ð8Þ

Thus, the additional currents IK 0 and ICk0 are time-de-

pendent model for the spike frequency adaptation.

Assuming CK0 in charged phase and VSS ¼ �Vd constant,

the MPd-CK 0 circuit loop is modeled from

ICk0 ¼ CK0 � dVGK 0

dt
	 e

1
2g � GPd VGK � VGK 0ð Þ; ð9Þ

where VGS;MPd
¼ VDS;MPd

¼ VGK � VGK 0 for MPd transistor

and MNK0 transistor gives

IK0 ¼ GK0e
V
GK0 þVd
g/t Vm þ Vdð Þ ð10Þ

By expressing the (8) system with the parameters of the

circuit from (9) and (10), one gets (11) like the FS eNeuron

solution. Since VGK 0 is dependent on time, the (11) is a

time-variant, first-order, non-linear system relating the Vm

and the VGK potentials. It depends on thirteen parameters

Iex;GL;GNa;GK ; GPi;GNið Þ8i 2 1; 2; 3f g;GPd;CK ;CK0

when both temperature (/t ¼ 26 mV) and action potential

(Vd ¼ 100 mV) are fixed. Thus, the additional branch has

introduced a time dependency in the system of equations

required to model the variation of the spiking frequency

over time.

Cm � dVm

dt
¼ GNa � e

Vd 1þtanh
Vm
g/t

þ1
2
�ln GN1

GP1

� �� �� �
g/t � Vd � Vmð Þ

� GK � e
VGKþVd

g/t � Vm þ Vdð Þ

� GK0 � e
VGK0 þVd

g/t � Vm þ Vdð Þ þ Iex

� GL � Vm;

ð11aÞ
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CK � dVGK

dt
¼ GP2 � e

Vd 1þtanh
Vm
g/t

þ1
2
�ln GN3

GP3

� �� �� �
g/t � Vd � VGKð Þ

� GN2 � e
Vd 1�tanh

Vm
g/t

þ1
2
�ln GN3

GP3

� �� �� �
g/t � Vd þ VGKð Þ

� CK 0 � dVGK 0

dt
:

ð11bÞ

In fact, simulation experiments could prove that VGK 	
�Vd being almost constant over time during the integration

phase, and only spiking in the firing phase. Therefore, one

may solve (9) verifying that the discrete time (t ¼ n=fs)

VGK 0 n½ � depends on previous sample of Iex n� 1½ � according
to CK0 charge and discharge cycles. The delay character-

istic introduced by the additional branch could be given by

a time constant

s ¼ CK 0

e
1
2g � GPd

ð12Þ

Consequently, the settling time (i.e. 5s) of MPd-CK 0

circuit is the time required to the frequency adaptation

(decrease), assuming a discharged CK 0 , i.e. Iex n� 1½ � �
Iex n½ �. Assuming a charged CK 0 (Iex n� 1½ � � Iex n½ �), the
settling time of MPd-CK 0 circuit is the time required to

rebound spikes due to post-inhibitory effect (does not

spike) in LTS eNeuron. To conclude, the voltage value

charged in CK 0 actually mimic the memory effect in LTS

neurons from previous excitation Iex n� 1½ �, depending on

the CK 0 value and its ability to discharge itself throughout

time. The LTS eNeuron fspike therefore depends on

Iex n� 1½ � and Iex n½ � values:

• High fspike is followed by a frequency adaptation

(decrease) is observed if Iex n� 1½ � � Iex n½ �;
• Low fspike according to rebound spikes of post-inhibitory

effect is observed if Iex n� 1½ � � Iex n½ �.

3.4 NASP physical design

Sourikopoulos et al. have proposed a first sizing of FS

eNeuron in 65 nm technology node [18]. The silicon area is

dominated by the total capacitance value, depending on the

capacitance density in the technology node (i.e.

0:2 fF=lm2) [30]. The 55 nm technology node, used in this

paper, is only a shrink down node of 65 nm technology

using a 0.9 optical-lens reduction factor with similar

capacitance density. In previous paper [13], eNeuron

physical design only considers metal–insulator-metal

(MIM) capacitors as proposed in [30]. In this paper, a

varicap-based version is also considered for silicon area

minimization, while the capacitance value (Cm;CK ;CK0 ) is

kept unchanged.

From [18], fspike and Eeff trade-off can be improved by

increasing fspike. In this case, static energy consumption is

reduced when fspike increases. In addition, dynamic energy

consumption is also reduced when total load capacitance

decreases (i.e. Cm) to reach a higher fspike. To find such a

better trade-off, a designer could use (3) to resize MNi and

MPi transistors from Fig. 1(b). FS eNeuron design is car-

ried out aiming at a higher-fspike, as well LTS eNeuron

proposed in [13]. Considering a Iex pulse width of 1 ms,

MPd-CK 0 circuit is sized for a s 	 40 ms having GK ¼ GK 0

for simplicity. After some design-of-experiments, Table 1

presents the final eNeuron circuit sizing. Indeed, layout

constraints were considered in choosing Cm;CK ;CK 0 to

improve the circuit fill factor. To reduce process variabil-

ity, dummy capacitors were added in the layout and

Cm;CK ;CK 0 were positioned in a common centroid to

minimize mismatch. Dummy-capacitor area is not consid-

ered in eNeuron core area depicted in Fig. 2(a) and (b).

Likewise, one may argue that transistors should be inter-

digitized to minimize gate resistance and reduce transistor

mismatch. This common sense in circuit layout also

increases the area of the depletion region of weak inverted

transistors leading to an increasing bulk-leakage current.

The GL conductance, see Fig. 1(b), is not implemented in

both eNeurons, but it represents the total area of such

depletion region. The IL is the sum in i of bulk-leakage

current from all i-transistors. Thus, it will be required a

higher Iex in the integrating phase if the inter-digitization

layout technique is used. Besides, it is expected that LTS

eNeuron requires a higher Iex due to the additional area of

the MPd depletion region.

The MIM-based eNeuron circuit layout is shown in

Fig. 2(a) for FS, and in Fig. 2(b) for LTS. The area of FS

eNeuron is 18:9 9 18:9 lm2. The area of LTS eNeuron is

22:7 9 22:7 lm2. One might notice that capacitors

Cm;CK ;CK 0 take most of the layout area. By increasing

Table 1 Sizing of MNi and MPi transistors in W 9 L (nm) and in

number of cells 9 unity capacitance for Ci fFð Þ

MN1 180 9 55 MP1 121.5 9 55

MN2 121.5 9 55 MP2 1080 9 55

MN3 121.5 9 55 MP3 180 9 55

MNK 1800 9 55 MPNa 720 9 55

Cm 9 9 0.931 CK 16 9 0.931

MNK 0 1800 9 55 MPNa 450 9 9000

CK 0 16 9 0.931

Cin 1 9 197 MPin, 121.5 9 55

MPFS, 486 9 55 MPLTS 1458 9 55
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fspike, the previous work [13] heads toward a large-scale

integration challenge using smaller capacitors. The area of

designed eNeurons are one order of magnitude smaller than

[23], and slightly bigger than reported in [18].

While MIM-based eNeurons are favored by a null

leakage in Cm;CK ;CK 0 , this is hardly true for both varicap-

based eNeuron. Since the bottom plate is physically con-

nected to the substrate, it becomes intrinsically subjected to

leakage. To circumvent this issue, the varicap bottom plate

is wisely chosen to be connected to VSS, which is the same

substrate potential. By this strategy, one may consider a

null leakage in Cm;CK ;CK 0 for varicap-based eNeuron.

PLS results in Sect. 4 shall demonstrate such assumption.

The varicap-based eNeuron circuit layout is shown in

Fig. 2(c) for FS, and in Fig. 2(d) for LTS. The area of FS

eNeuron is 17:3 9 5:7 lm2. The area of LTS eNeuron is

17:3 9 9:1 lm2. As expected, both varicap-based eNeuron

depicted in Fig. 2(c) and (d) present a smaller silicon area

three times smaller to [18] and [13] implementations.

Varicap-based eNeuron is also a very competitive solution

for integration and firing eNeuron implementations in the

state-of-the-art [5].

Still, temperature variation represents a major limitation

for transistors operating in WI regime. Studies have proved

that leakage current is exponentially dependent on tem-

perature; it doubles for every 10 �C increase in temperature

[31]. Thus, IL shall increase over-temperature enabling

eNeuron firing in a higher Iex;min, and increasing static

energy consumption. Zhang et al. have suggested a solution

for temperature sensitivity in eNeurons [27]. State-of-the-

art artificial neurons are often considered in a fixed tem-

perature point [5]. Temperature variation is beyond the

scope of this research and all PLS results consider

T ¼ 27 
C. Future studies should consider analog eNeuron

reliability limitations to cope with digital eNeuron imple-

mentations [5].

Reduce the static energy consumption is the key to

improve Eeff even further and to enable eNeuron to fire

with a smaller Iex;min � IL. Since static energy consumption

does not scale with fspike, physical design shall not neglect

the described phenomenon. To the best of our knowledge,

these layout considerations for WI transistors are first

presented in [13]. Besides, a varicap-based implementation

dealing with substrate leakage and silicon area reduction is

first presented in this paper.

According to PLS results of eNeurons, leakage current

of MIM- and varicap-based solutions are comparable and

as low as 22 pA for FS and 132 pA for LTS eNeuron. For

Fig. 2 eNeuron physical design: a FS eNeuron having 18:9 9 18:9 lm2, b LTS eNeuron having 22:7 9 22:7 lm2, c varicap-based FS eNeuron

having 17:3 9 5:7 lm2, d varicap-based LTS eNeuron having 17:3 9 9:1 lm2
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this reason, varicap-based eNeuron is the adopted solution

for NASP physical design. To maximize the full-scale

dynamic range, the MPFS aspect ratio is four times the

MPin; the MPLTS aspect ratio is twelve times the MPin.

Table 1 presents the NASP circuit sizing and a compact

layout is then obtained. Figure 3 illustrated the NASP

physical implementation having an area of

24:5 9 15:5 lm2.

4 Post-layout simulation results

In this section, post-layout simulations (PLS) are carried

out to demonstrate the spiking modulator characteristics for

audio signal processing. Section 4.1 presents both eNeuron

PLS results and a state-of-the-art comparison. Section 4.2

presents PLS results for NASP operation considering: (a)

figure of merits of the spiking modulator; (b) a reduced

input-signal dynamic (�10 mV) for fin ¼ 440 Hz is sam-

pled at fs ¼ 1 kHz and fin ¼ 20 kHz is sampled at fs ¼
44 kHz to highlight audio bandwidth signal; and (c) a large

input-signal dynamic(�70 mV) for a fixed audio frequency

of fin ¼ 440 Hz, and fs ¼ 1 kHz.

4.1 eNeuron simulations

The eNeuron PLS results are carried out to validate the

biomimetic behavior by a fixed pulse width of 5 ms and an

increasing Iex amplitude from a few pico-amps. When

Iex � IL, the leak integration is negligible and eNeuron fires

at fspike after that point. MIM- and varicap-based eNeuron

PLS results reveal a current IL of 22 pA for FS and of

132 pA for LTS. However, varicap-based eNeuron presents

a slightly higher frequency fspike compared to MIM-based

implementation. Such differences could be explained by its

compact layout which leads to a reduction in parasitic

capacitances.

Figure 4 illustrates the fspike pattern for both MIM-based

eNeurons excited by a current pulse of 30 pA for FS and of

150 pA for LTS. From Fig. 4(a), a tonic fspike 	 20 kHz for

FS eNeuron is observed. As expected, the fspike of LTS

eNeuron starts at 20 kHz, but it decreases over time,

achieving a final value of 5 kHz after 0:2 ms, see Fig. 4(b)

for details. Varicap-based eNeuron achieved tonic a fspike 	
25:2 kHz when excited by a current pulse of 30 pA for FS

and of 150 pA for LTS. Likewise, fspike of varicap-based

LTS eNeuron decreases over time, achieving a final value

of 5:8 kHz after 0:2 ms. Transient simulation results for

both varicap-based eNeurons demonstrate a similar

behavior as observed in Fig. 4.

To demonstrate the spike frequency adaptation and the

rebound spikes due to the post-inhibitory effect, a piece-

wise linear Iex pulse is applied to all eNeurons. Figure 5(a)

presents the estimated fspike response over time for piece-

wise linear Iex pulses. Four different amplitudes are con-

sidered in [30 pA, 45 pA, 60 pA, 75 pA] for FS, and in [150

Fig. 3 NASP physical implementation using the varicap-based eNeurons FS and LTS, having 24:5 9 15:5 lm2
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pA, 225 pA, 300 pA, 375 pA] for LTS eNeuron. Iex
amplitude range under study is considered in increasing

(from 0 to 1:7 ms) and decreasing (from 1:7 to 3:5 ms)

manners. As expected, Fig. 5(a) highlights an increasing

fspike as Iex increases. FS eNeuron, in dashed-gray line,

shows tonic spikes with a relatively constant period vali-

dating the Izhikevich’s model. LTS eNeuron, in continuous

black line, highlights a frequency adaptation (decreasing)

among amplitudes from 0 to 1:7 ms. However, rebound

spikes due to the post-inhibitory effect are observed among

regions from 1:7 to 3:5 ms.

MIM-based eNeuron PLS results were previously pre-

sented in [13]. Varicap-based eNeuron PLS results are

illustrated in square marked lines in Fig. 5(a). One may

observe the fspike increase for both eNeurons FS and LTS.

Nevertheless, FS tonic spikes shape remains unchanged, as

LTS spike frequency adaptation and the rebound spikes

due to the post-inhibitory effect. Using varicap instead of

MIM capacitance does not change the circuit behavior

because the voltage variation (DVm � 200 mV) is negligi-

ble if compared to the required bias voltage changes

(VC 	 2 V) according to measurement results [32]. The

varicap of eNeuron circuit remains biased near the mem-

brane rest potential (� � 70 mV), and under spike vari-

ations, the varicap filters its high-frequency components

(short to VSS).

Figure 5(b) illustrated the Vm spiking behavior of MIM-

based LTS eNeuron during Iex amplitude decreasing from

1:7 to 3:5 ms. Indeed, LTS eNeuron does not spike due to

the post-inhibitory effect but starts firing at a low-fspike
consistent to value achieved after adaptation. Interesting

results are revealed in Fig. 5(b), suggesting that the time to

rebound spikes is actually dependent to Iex pulse variation.

The solution of (9) considering weak inversion is in fact

more complicated than a simple MPd-CK0 circuit charge

and discharge. Moreover, Fig. 5(b) results suggest that GPd

is Iex dependent. Similar behavior is identified for varicap-

based LTS eNeuron.

Spiking eNeuron is often compared in the state-of-the-

art by its spiking frequency fspike, power consumption PRMS

and energy efficiency Eeff ¼ PRMS=fspike, where PRMS is the

root-mean-squared power consumption including static and

dynamic powers [5]. Figure 6 illustrates theses figure-of-

merits of eNeurons as Iex increases from estimated IL to 1

Fig. 4 Post-layout transient

simulation results for both

MIM-based eNeurons excited

by a current pulse, being: a a Iex
of 30 pA for FS and b of 150 pA

for LTS. A tonic

fspike 	 20 kHz is observed for

both eNeurons, and spike

frequency adaptation is

achieved for LTS eNeuron after

0.2 ms. Similar results are

found for varicap-based

eNeurons

Fig. 5 Post-layout simulations demonstrate the spike frequency

adaptation and the rebound spikes due to post-inhibitory effect. a
The fspike response over time for piecewise linear Iex pulses [30 pA, 45
pA, 60 pA, 75 pA, 60 pA, 45 pA, 30 pA] for FS (dashed-gray line)

and [150 pA, 225 pA, 300 pA, 375 pA, 300 pA, 225 pA, 150 pA] for

LTS eNeuron (continuous black line). Varicap-based eNeurons are

square-marked in (a). b The Vm spiking behavior of LTS eNeuron

during Iex decreasing pulse. Similar behavior is identified for varicap-

based LTS eNeuron
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nA using a 1001-points linear DC sweep. MIM-based

implementation is shown in Fig. 6 by lines without marks;

varicap-based implementation is depicted using square

marks. Figure 6(a) illustrates the growth of fspike versus Iex.

The fspike of LTS eNeuron after frequency adaptation is

lower than fspike of FS eNeuron, for both implementations.

Varicap-based FS eNeuron demonstrates an average fspike
increase of 20% and a standard deviation of 2:6%. Varicap-

based LTS eNeuron demonstrates an average fspike increase

of 14% and a standard deviation of 1:9%.

By setting a higher fspike, a power consumption increase

is expected (i.e. dynamic consumption). Figure 6(b) pre-

sents LTS and FS eNeuron power consumption in the range

of few hundreds of pico-Watts. This is a slight power

consumption increase compared to [18] (around 100 pW).

Varicap-based implementation demonstrated an average

PRMS decrease of 0:6% and a negligible standard variation

for both FS and LTS eNeurons in comparison to MIM-

based ones. These results prove that varicap-based solution

achieves a higher fspike performance for a likewise PRMS.

Despite the overall PRMS slight increase, the Eeff is slightly

decreased owing to a higher fspike (around 200 kHz) and

specific eNeuron physical design. Considering static and

dynamic energy consumption, Fig. 6(c) highlights a Eeff as

low as 2.3 fJ/spike for FS and 3.6 fJ/spike for LTS eNeu-

rons implemented with MIM capacitances [13]. Moreover,

a higher fspike for a similar PRMS favors varicap-based

implementations in terms of Eeff . Figure 6(c) highlights a

Eeff as low as 1.95 fJ/spike for FS and 2.83 fJ/spike for LTS

eNeurons, see square-marked data.

Table 2 compares the silicon neurons literature (see Sec.

2.2 for details) with the PSL results of this proposal. The

obtained area in analog solutions for artificial neurons is

limited by technology capacitance density and the number

of required capacitors. Previous reported MIM-based

implementation found a 357 lm2 for FS [13] likewise the

results reported for biomimetic FS having 300 lm2 in [18].

However, varicap-based solution offers a better area trade-

off, being 98.61 lm2 for FS and 157 lm2 for LTS, if

compared to the mixed solution (200 lm2) proposed in [2]

and the digital solution (20 lm2) proposed in [4]. The fspike
is higher than reported values for MIM- and varicap-based

implementations. This design choice leads to a better trade-

off in speed and power consumption. Table 2 highlights a

Eeff slightly below compared to the best (4 fJ=spike sim-

plified FS) in [18], which considers only dynamic

Fig. 6 Figure-of-Merits extracted from post-layout simulation results of LTS and FS eNeurons: a fspike in kHz, b PRMS in pW, and c Eeff in fJ/

spike

Table 2 Literature eNeuron performance comparison: MIM-based from [13] and varicap-based implementation from this work

Ref. [16] [24] [25] [2] [18] [4] [13] This Work

Techn. (nm) 90 350 180 130 65 28 55 55

MOS MOS MOS CMOS MOS FD-SOI MOS MOS

Area (lm2) 2980 1100 10 k 200 300c 20 515a 157.43a

35d 357b 98.61b

fspike (Hz) 7 k 10 NA 135 k 1 kc 100 205 ka 220 ka

26 kd 360 kb 400 kb

Eeff (J/spike) 1 p 165 p 9.3 p 48 p 40 fc 2.8 p 3.6 fa 2.83 fa

4 fd 2.3 fb 1.95 fb

aLTS, bFS, cbiomimetic, dsimplified
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consumption. MIM- and varicap-based implementations

consider both dynamic and static consumption. Such a low

power consumption is obtained due to a specific physical

design for minimal leakage. Previous reported MIM-based

implementation found a 2:3fJ=spike for FS and 3:6fJ=spike

for LTS [13]. Moreover, varicap-based solution highlights

an even lower Eeff , being 1:95 fJ=spike for FS and

2:83 fJ=spike for LTS. Depicted Eeff is among the lowest in

the state-of-the-art [5, 23], while ensuring the Izhikevich’s

mathematical modeling in contrast to simplified neuron in

[18]. Obtained Eeff in analog solutions for artificial neurons

is three orders of magnitude lower than mixed

(48 pJ=spike) [2] and digital (2:8 pJ=spike) [4] solutions.

High efficiency is found due to a better trade-off in speed

and power consumption analog solutions.

4.2 NASP simulations

The NASP post-layout simulation is done using a 64-point

transient noise for a fixed time window. The estimated fspike
resolution is 1 kHz, under a holding time of 1 ms Input

signal Vin n½ � is swept from �70 to 70 mV using 512-point

parametric simulation. For each Vin n½ � value, the estimated

fspike and PRMS are then averaged over all 64-points tran-

sient noise simulations. Figure 7(a) highlights a fspike
variation from 542 to 39:9 kHz for FS membrane output

(Vm;FS), and a variation from 522 to 1 kHz for LTS mem-

brane output (Vm;LTS). Indeed, the synaptic connection was

designed for fspike;LTS 	 fspike;FS � 512 kHz by current-

mirror aspect ratio sizing. From (5), full-scale dynamic

rage is estimated as N 	 9 bits.

The total power consumption of NASP is illustrated in

Fig. 7(b). The PRMS varies over Vin n½ � sweep from 4:2 to

0:46 nW. Energy efficiency in analog signal processing

circuits is often estimated using the Walden’s figure-of-

merit as [33]

FoM ¼ PRMS

fs � 2N
: ð13Þ

Figure 7(c) illustrates FoM variation over Vin n½ � sweep
from 8:2 fJ=conv to 0:89 fJ=conv. This result is in the same

order of the magnitude of state-of-the-art analog-to-digital

RD converters [34]. Towards a neuromorphic computing,

one could use the NAPS proposal combined to a time-to-

digital converter and digital-based spiking neural networks

like [4] in the perspective of a mixed-signal solution as [2],

but still ensure a FoM in fJ=conv range.

The signal processing capabilities of the proposed

NASP are evaluated using transient PLS for 50 samples.

Input signal Vin tð Þ has an amplitude of 10 mV. Its input

frequency fin is sampled at fs using an ideal sample and

hold circuit at NASP input voltage Vin n½ �. Results, shown in
Fig. 8, have total transient simulation time of 50=fs. Both

membrane-voltage spikes in the vicinity of 200 kHz,

according to foreseen fspike from Fig. 7(a). Since power

consumption is only Vin n½ � value dependent, the average

NASP PRMS ¼ 1:73 nW; and considering the amplitude of

10 mV, it is in accordance with results presented in

Fig. 7(b).

To explore the NASP high-resolution, the Vin tð Þ with

fin ¼ 440 Hz is sampled at fs ¼ 1 kHz and results are

depicted in Fig. 8(a). Spiking frequency from Vm;FS output

is illustrated in dashed-gray line; and Vin n½ � can be esti-

mated from the fspike found and the system-level transfer

function. Spiking frequency from Vm;LTS output is illus-

trated in continuous black line; and Vin n� 1½ � � Vin n½ �
(discrete differential) sign can be estimated from the fspike
variation over time. The frequency adaptation is presented

when the sign is negative, and the post-inhibitory effect is

observed when the sign is positive. Both spiking frequency

behavior is presented in the beginning of the sampling in

n=fs.

To explore the NASP high-speed, the Vin tð Þ with fin ¼
20 kHz is sampled at fs ¼ 44 kHz and results are depicted

in Fig. 8(b). Spiking frequency from Vm;FS output is illus-

trated in dashed-gray line; and the fspike found is likewise

the PLS results in Fig. 8(a). Spiking frequency from Vm;LTS

Fig. 7 Figure-of-Merits extracted from post-layout simulation results of NASP: a fspike in kHz, b PRMS in pW, and c FoM in fJ/conv
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Fig. 8 Transient PLS results of

NASP membrane fspike being
Vm;LTS in continuous-black line

and Vm;FS in dashed-gray line

for: a a sinusoidal 440 Hz input

signal (red line) sampled at

1 kHz, b a sinusoidal 20 kHz

input signal (red line) sampled

at 44 kHz

Fig. 9 Transient PLS results of

NASP membrane full-scale

dynamic range as

�70 mV�Vin n½ � � 70 mV:

being Vm;LTS in continuous black

line and Vm;FS in dashed-gray

line
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output is illustrated in continuous black line; and fspike
variation over time is less pronounced than Fig. 8(b). Thus,

the audio-sensing is demonstrated in frequency range of an

artificial cochlea application.

To investigate the NASP full-scale dynamic range, a

transient PLS is considered for a Vin tð Þ amplitude of

70 mV, fin ¼ 440 Hz, and fs ¼ 1 kHz. The estimated NASP

power consumption is 2:26 nW over 50 samples. Figure 9

illustrates the PLS results from 10 to 15 ms highlighting

five samples of Vin n½ � in the red-continuous line. One may

estimate Vin n½ � from Vm;FS spiking modulated signal in the

gray-dashed line in Fig. 9 from Fig. 7(a). Comparing the

estimated Vin n½ � to the input samples Vin n½ �, it is found a

root-mean-square error of 0:63 mVRMS. One may estimate

Vin n� 1½ � � Vin n½ � sign from Vm;LTS spiking modulated

signal in black-continuous line comparing them with

highlighted samples in red-continuous line in Fig. 9. It is

observed:

• High fspike followed by a frequency adaptation (de-

crease) is observed if Vin n� 1½ � � Vin n½ � � 0;

• Low fspike according to rebound spikes of the post-

inhibitory effect is observed if Vin n� 1½ � � Vin n½ � � 0.

5 Conclusions

A neuromorphic analog spiking processor using Izhike-

vich-based artificial neurons is proposed in this paper.

Using a varicap-based eNeuron implementation, the first

novelty of this proposal compared to previous work is a

better trade-off in area and energy efficiency. The eNeuron

silicon area reduced to one-third of recent analog solutions

ð98:6 lm2Þ, but it is still five times greater than the digital

solutions. Dealing with substrate leakage, energy efficiency

is reduced to 1:95 fJ=spike, which is three orders of mag-

nitude lower than mixed and digital solutions. The pro-

posed spiking modulator for audio signal processing

applications is the second novelty presented in this work.

The NASP post-layout simulation results are presented to

investigate the high-resolution, high-speed, and full-scale

dynamic range considering audio signal bandwidth and

input voltage. The proposal achieves a 9 bits spiking-

modulator resolution. NASP demonstrates a maximum of

8 fJ=conv: efficiency while ensuring a root–mean–square

error of 0:63 mVRMS.
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