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[1] Proper assignment of error statistics is essential in the
field of Bayesian inference. This paper studies the impact of
correlated observation errors in the case of the estimation of
CO2 surface fluxes from NASA’s forthcoming Orbiting
Carbon Observatory (OCO). Using a series of observation
simulation system experiments, it is shown that hypothetical
observation error correlations of 0.5 in neighbouring
observations have a rather limited impact on the accuracy
of the inverted fluxes when they are correctly taken into
account. The information loss induced by commonly-used
approximate treatments of the observation error correlations
(neglecting, observation thinning and error inflating), that
are computationally more efficient, is quantified. Error
inflation has the least detrimental impact among the
suboptimal set-ups and limits the loss in uncertainty
reduction to a few per cent, in spite of its very low
reduced chi-squared. Citation: Chevallier, F. (2007), Impact

of correlated observation errors on inverted CO2 surface fluxes

from OCO measurements, Geophys. Res. Lett., 34, L24804,

doi:10.1029/2007GL030463.

1. Introduction

[2] Statistical inference systems are vulnerable to any
structure in their random variables that is not well accounted
for. Systematic errors, or biases, are a prominent example of
such structures and receive much attention. Error correlations
are another expression of organized patterns in the inference
systems. A proper inference system should link correlated
information pieces and weight them properly. For instance,
correlated errors in the prior information reduce the effective
dimension of the inversion problem and therefore theoreti-
cally should induce more accurate solutions. Correlated
observation errors have a similar beneficial effect when each
observation corresponds to a different variable to estimate.
However, for a series of observations of a single variable x, the
final uncertainty on x is larger for positively-correlated than
for uncorrelated errors (the effect is opposite for negative
correlations). In practice, correlations are often ignored, both
because there are difficult to detect and quantify, and because
properly taking them into account slows down the inversion
systems to a large extent. A prominent illustration is given by
the numerical weather prediction systems, since most of them
assume uncorrelated observation errors (but correlated prior
errors). To attenuate the effects of such a rough simplification,
these systems include two empirical adjustments [e.g., Liu
and Rabier, 2003, and references therein]: the observation

density is thinned (i.e., only a subset of all possible remotely-
sensed weather data is assimilated) and the errors assigned to
the assimilated ones are usually inflated. For the estimation of
CO2 surface fluxes from measurements of atmospheric con-
centrations, diagonal error matrices have been empirically
used until recently [e.g., Gurney et al., 2002]. Prior error
correlations have been introduced in some studies [e.g.,
Rödenbeck et al., 2003], but observation errors are still
assumed to be uncorrelated, even though all components of
the observation errors can be affected by correlations. For
instance, error correlations in remote sensing measurements
are generated by misinterpreted features in the electromag-
netic spectrum and by the ancillary data used in retrieval [see,
e.g.,Chevallier et al., 2005, Figure 2]. Since the observations
are interpreted in the inversion system with the help of an
atmospheric transport model (that links the fluxes to the
measurements), such models also contribute to the observa-
tion error budget and induce space-time correlations between
observation errors [e.g., Kaminski et al., 2001].
[3] Before the end of the decade, two groundbreaking

CO2-dedicated instruments will be launched to monitor CO2

concentrations from space: Orbiting Carbon Observatory
(OCO) [Crisp et al., 2004] and Greenhouse Gases Observ-
ing Satellite (GOSAT) [Inoue et al., 2006]. Several articles
[e.g., Rayner and O’Brien, 2001; Pak and Prather, 2001;
Houweling et al., 2004; Chevallier et al., 2007] have
highlighted the potential of such data to significantly reduce
the uncertainties related to flux variations. These successive
studies describe observing system simulation experiments
(OSSEs) with increasing realism, but all of them made the
assumption of null observation error correlations. At best,
the observation density was preliminarily thinned.
[4] This paper aims at investigating the impact of corre-

lated errors in inverse modelling. OCO serves as a case
study, with hypothetical error correlations of +0.5 intro-
duced for observations 280 km apart. Such correlation
errors could be present in the remote sensing product itself
or could be caused by the transport model used in the
inversion system. Despite the large number of observations,
an analytical form of the covariance matrix inverse is found,
given the instrument measurement configuration. This form
serves us as a rigorous reference to assess the impact of
commonly-used simplified treatments of the correlations:
neglecting, observation thinning and error inflating. The set-
up of our OSSEs is described in the next section. Results are
shown in section 3, followed by a conclusion in section 4.

2. Method

[5] The simulation of the observing system impact on
flux estimation closely follows the method of Chevallier et
al. [2007]. We recall here its successive steps: (1) use a
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climatology of CO2 surface fluxes as boundary conditions
to a transport model and generate a set of pseudo observa-
tions accounting for the satellite orbit and cloud cover,
(2) perturb the pseudo-observations consistently with
assumed observation error statistics, (3) perturb the surface
flux climatology consistently with assumed error statistics,
(4) perform a Bayesian inversion of the surface fluxes using
the perturbed pseudo-observations as data and the perturbed
climatology as the prior field, (5) compare the estimate of
the inversion to the flux climatology to get the errors in the
estimate.
[6] The method is actually applied several times with

different perturbations each time, in order to compute the
inversion error statistics. The present study relies on an
ensemble of four one-year inversions of surface fluxes in
eight-day segments. Doing that, a series of 180 fluxes is
available at each location of the world that provides stable
statistics. In the case of large-dimensional systems, like the
present one, the errors in the estimate can also be computed
with the Lanczos algorithm [Chevallier et al., 2005], but
only in the case of optimal systems. The Monte Carlo
approach used here does not have such a limitation.
[7] The atmospheric transport is simulated by the general

circulation model of the Laboratoire de Météorologie Dyna-
mique (LMDZ) [Hourdin et al., 2007] at 3.75� � 2.5�
(longitude-latitude) resolution, nudged to winds from
weather analyses. Atmospheric conditions correspond to
year 2003. The CO2 flux climatology includes 3-hourly
biospheric fluxes, monthly oceanic fluxes and yearly fossil
fuel emissions, but, by construction of our OSSEs, the
results presented here are not sensitive to their definition
(but rather to the definition of their errors, which is given
later in this section).
[8] The observations are individual column-averaged dry

air mole fractions of CO2, denoted XCO2, in clear spots and
in the sunlit hemisphere, like those of the forthcoming OCO
instrument [Crisp et al., 2004]. Their time-space sampling
emulates the OCO planned orbitography and accounts for
cloud cover statistics. It is assumed that the instrument is in
the glint observing mode. Before being processed, the
observations are binned per orbit at the 3.75� � 2.5� model
resolution. This preliminary thinning is motivated by the
large observation error correlations that the transport model
may induce at short distances. In this study, we investigate
the impact of hypothetical mid-range correlations (+0.5)
between neighboring model grid boxes. The simulated OCO
orbit and cloud cover give about 243,500 observations at
the horizontal resolution of the LMDZ transport model for
the whole year 2003.
[9] The Bayesian inversion is achieved by the variational

scheme of Chevallier et al. [2005]. This system finds the
optimal fluxes xa that fit both the observations y with their
specified error covariance matrix R and the prior fluxes xb
with their specified error covariance matrix B, by iteratively
minimizing the cost function J defined by:

J xð Þ ¼ x� xbð ÞTB�1 x� xbð Þ þ H xð Þ � yð ÞTR�1 H xð Þ � yð Þ
ð1Þ

H is the transport model convolved with a uniform vertical
weighting function.

[10] The control variables x are the CO2 surface fluxes
both at daytime and night-time, at each point of the 3.75� �
2.5� model grid every eight days. The inversion also
retrieves the CO2 concentrations at the initial time step of
the LMDZ simulation, but this has a negligible impact on
the surface flux results presented here. Spatial correlations
of the individual flux errors are specified as a function of
distance, with correlation e-folding lengths of 500 and
1000 km over land and ocean respectively. No temporal
correlations are considered for these fluxes at eight-day
resolution. The square root of the sum of the error cova-
riances in B is set to 0.8 and 2.0 Gt C per year for ocean and
land respectively. The errors are spread in space propor-
tionally to grid size over ocean and to an annual-mean
heterotrophic respiration flux pattern over land. Error stan-
dard deviations at the grid point level correspond to about
0.4 gC.m�2 per day over ocean and 4 gC.m�2 per day over
vegetated areas. This configuration, detailed and discussed
by Chevallier et al. [2007], expresses the current uncertainty
of the carbon budget at the Earth surface in a simple, but
rather realistic manner. However, it is subjective and the
absolute values of the figures presented in the result section
should be interpreted with caution.
[11] The observation error statistics of the 243,500 inde-

pendent XCO2 observations are the focus of the present
study and five configurations (C1 to C5) are considered.
They differ in the definition of the covariance matrix R for
the generation of the simulated observations and for the
inversion formulation (equation (1)).
[12] The first two cases are statistically optimal, i.e. the

inversion finds the most likely value of the fluxes given the
information provided by the prior fluxes and by the obser-
vations. Consistent with the theory, the covariance matrix R
used to generate the observations is also used in the
minimisation (equation (1)).
[13] C1 corresponds to the set-up of Chevallier et al.

[2007], with uniform observation-error standard deviations
of 2 ppm (accounting for the combination of expected
measurement and transport errors) and no observation error
correlations. Observations are simply generated from the
Gaussian distribution centered on the ‘true’ XCO2 values
and a 2 ppm standard deviation.
[14] In C2, the standard deviations have the same values

(2 ppm), but the observation error correlations are arbitrarily
set to +0.5 from one observation to the next along the
satellite track, which corresponds to a distance of about
280 km. Distant correlations are set accordingly (e.g., 0.25
between two observations separated by one). Correlated
observation errors are generated with a Markov chain. Note
that, at the model resolution, the OCO subtracks follow a
mostly South-North line from and to the high-latitudes of
the two hemispheres, with about 14 orbits per day separated
by about 25 degrees of longitude (measurements are made
in the sunlit part of the orbits): the linear correlation pattern
defined here may not be appropriate for instruments with
large swaths. Technically, this configuration involves invert-
ing the non-diagonal R matrix for the computation of the
cost function (equation (1)). This is made possible by the
simple form of the exact inverse in our case: without any
approximation R�1 is simply a tridiagonal matrix with
about 1.67 ppm�2 in the main diagonal, and about
�0.67 ppm�2 in the two sub-diagonals.
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[15] The third, fourth and fifth inversion configurations
are approximate (and suboptimal) treatments of the error-
correlated observations (configuration C2), using an ad hoc
diagonal R matrix in the inversion, rather than the non-
diagonal one used to generate the observations. Those three
configurations are borrowed from the usual practice in
variational data assimilation.
[16] Configuration C3 simply ignores the existence of

correlations: the off-diagonal terms of R are suppressed for
the inversion (equation (1)) without any further adaptation.
[17] In C4, the observation density is thinned in order to

remove the largest correlations from the system. Keeping
one observation out of every two, the remaining correlations
are less than 0.25 and are neglected. Note that a correlation
threshold of 0.2 gave an optimal thinning interval in the
study by Liu and Rabier [2003], in the context of numerical
weather prediction.
[18] The last configuration (C5) inflates the observation

errors of the 243,500 XCO2 observations in the inversion, so
that the system trusts them less: variances in R are arbi-
trarily multiplied by 2 for the inversion (i.e., the assigned
standard deviations are about 2.8 ppm) and the off-diagonal
terms are neglected. The twofold factor was chosen by trial-
and-error so as to make the standard deviation of the flux
increments (xa � xb) in this configuration about that of the
optimal configuration C1.

3. Results

[19] Figure 1 presents the maps of the uncertainty reduc-
tion from the prior to the analysis for the eight-day fluxes, in
the case of configuration C1. This optimal set-up without
observation error correlations corresponds to the results of
Chevallier et al. [2007, Figure 2], the main difference being
that four years instead of six are used in the statistics (which
are, therefore, slightly less representative). The uncertainty
reduction is defined as one minus the ratio of the posterior
error standard deviation to the prior error standard devia-
tions. A value of zero indicates that the observations have
not provided any information to the prior. A value of one
would be reached if the observations gave a perfect knowl-

edge about the fluxes. Negative values occur when the
analysis is worse than the prior and happen only in
suboptimal configurations (see configuration C3 hereafter).
Figure 1 shows that the OCO-type observing system should
significantly reduce the flux uncertainty over the vegetated
areas (by up to about 45% with our set-up). The reduction is
smaller over the oceans, but still exceeds 10% in some
regions, like the Western Pacific.
[20] The impact of observation error correlations is dis-

played in Figure 2 for the optimal scenario C2. The error
correlations slightly degrade the analysis and correspond-
ingly diminish the fractional error reduction, mainly over
ocean, by up to 0.06. The largest impact over ocean may be
explained by the length of the prior error structures which is
smaller over land (500 km vs. 1000 km, see section 2): there
are fewer observations for a given flux error structure over
land than over ocean and therefore the impact is less. The
different a priori uncertainties assigned to the land and to
the ocean may also play a role. An indication of our proper
treatment of the off-diagonal terms in R is given by the
value of the cost function J (equation 1) at its minimum: as
expected for an optimal system [e.g., Chevallier et al.,
2007], it is very close to the number of observations
(243,500) and the reduced chi-squared (J divided by the
number of observations) is one.
[21] Ignoring the observation error correlations (configu-

ration C3) further degrades the results by up to about 0.1
over both land and ocean (Figure 3a). Since the error
reduction in the reference set-up C2 is usually less than
0.10 over sea (Figure 2), the results indicate that the
suboptimal flux analysis provides little information in those
parts of the globe. It is even slightly worse than the prior
fluxes in some oceanic regions (e.g., in the Pacific about
French Polynesia and about latitude 50S, or off the coasts of
Somalia and of the Arabic Peninsula). The standard devi-
ation of the inversion flux increments is about 30% larger
than for the optimal configuration C2 over ocean and about
10% larger over land (not shown). The cost function
minimum is not close to the number of observations, as
expected from a suboptimal system. It reduces to about

Figure 1. Fractional error reduction of the eight-day mean grid point CO2 surface fluxes for configuration C1 (no
observation error correlations). The error reduction is defined as (1 � sa/sb), with sa the posterior error standard deviation
and sb the prior error standard deviation.
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238,500 vs. 243,500 because the system trusts the observa-
tions too much. The reduced chi-squared is about 0.98.
[22] Configuration C4 relies on data thinning to perform

the inversion without dealing with the off-diagonal terms of
R. In this case (Figure 3b), while the observations never
drive the estimate further from the truth than the prior (as
happens in some places in C3), they generally only correct it
by two-thirds of the way as in C2, resulting in larger errors
than in C3. The twofold-reduced number of observations
makes the cost function about 121,000 and therefore a
reduced chi-squared about 0.99.
[23] The alternative of inflating the observation error

variances (configuration C5) appears to be the least detri-
mental among the three approximate (and computationally-
simple) solutions, with degradations usually less than 0.03
over ocean and 0.06 over land. Note that this confirms the
strategy chosen for the Atmospheric Tracer Transport Model
Intercomparison Project [Gurney et al., 2002]. In contrast
with C3 and C4, the relatively small spatial scale of the
difference patterns implies that the quality of the inverted
carbon fluxes is hardly affected by the approximate C5 set-
up when integrated over continental-size regions. The
standard deviation of the inversion flux increments are
within 10% of those of the optimal configuration C2 over
both land and ocean (not shown). The twofold-inflated

observation error variances make J about half the number
of observations at its minimum and induce a chi-squared
about 0.5. This very low value despite the rather good
performance of the suboptimal configuration emphasises the
ambiguity of the chi-squared diagnostic. In particular, it
cannot be used alone to tune prior or observation errors
safely.

4. Discussion and Conclusions

[24] Performing Bayesian inversion involves modelling
the statistical characteristics of the errors. The chosen
models potentially include a huge number of monovariate
and multivariate moments. Multivariate moments, like
covariances, are even more difficult to assign than univar-
iate ones, like biases and variances. Further, technical
considerations may cause one to neglect some of them.
Based on the Monte Carlo approach of Chevallier et al.
[2007], this paper quantifies the detrimental impact of
unaccounted observation error correlations in the inversion
of CO2 surface fluxes for a particular set-up of the inference
problem: in some (limited) cases, the inverted fluxes are of
lesser quality than the prior ones. Observation thinning and
error inflation are safer alternatives, but leave out some of
the observation information content, as illustrated with our

Figure 2. (a) The same as Figure 1, but for the optimal configuration C2, where observation error correlations exist and
are properly taken into account. (b) The difference between Figure 1 and Figure 2a (Figure 1 minus Figure 2a).
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inversion configurations C4 and, to a lesser extent, C5. The
practical consequence is the importance of rigorous knowl-
edge of spatial error correlations not only for the prior
[Chevallier et al., 2006], but also for the observations. Such
task is particularly challenging for observation errors since
they combine measurement, model and representativeness

errors. Multi-sensor observing systems (with, e.g., OCO,
GOSAT and in situ measurements together) would be less
sensitive to inadequate specification of the measurement
errors of the individual instruments because independent
biases would partially cancel out. Representativeness and
transport error correlations should be studied, e.g., along the

Figure 3. Degradation of the fractional error reduction (FER) shown in Figure 2a (configuration C2), induced by the
suboptimal configurations (a) C3, (b) C4, and (c) C5. The degradation is expressed as the FER of configuration C2 minus
the suboptimal FER.
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lines of the methods described by Gerbig et al. [2003] and
Lin and Gerbig [2005] for standard deviations. The present
paper focussed on spatial error correlations in the context of
a satellite instrument with a sampling repeat cycle of several
days (16 for OCO). Temporal correlations of the transport
model errors are an important issue for the processing of in
situ high-frequency measurements and should be carefully
studied as well.
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