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Natural	convection	of	Casson	fluid	in	a	square	enclosure	

 

Abstract  

In	this	paper,	natural	convection	of	a	yield	stress	fluid	is	studied	in	a	square	enclosure	with	

differentially	heated	side	walls.	In	particular,	we	consider	the	Casson	model	which	is	a	commonly	

used	model.	The	system	is	solved	numerically	by	Galerkin’s	weighted	residuals	scheme	of	finite	

element	method.	 	 Results	 of	 both	 Casson	 and	 Bingham	models	 are	 presented	 and	 compared.	

Nominal	values	of	Rayleigh	number	are	in	the	range	10] − 10_and	the	Prandtl	number	is	fixed	to	

𝑃𝑟 =100	since	results	are	not	sensitive	to	𝑃𝑟	 in	 the	tested	range	10 − 10].	Results	highlight	a	

larger	degree	of	the	shear-thinning	in	the	Bingham	case	than	in	the	Casson	one.	We	show	that	the	

yield	stress	has	a	stabilizing	effect	since	the	convection	can	stop	for	yield	stress	fluids	while	this	

is	not	the	case	for	Newtonian	fluids.	In	the	case	of	yield	stress	fluids,	the	flow	becomes	motionless	

above	a	critical	yield	number	𝑌f	because	the	plug	regions	invade	the	whole	cavity.	The	value	of	𝑌f	

obtained	with	the	Bingham	model	is	larger	than	the	one	obtained	with	the	Casson	model.	For	both	

fluids,	 results	 highlight	 a	 weak	 dependence	 of	 	 𝑌f	 with	 the	 Rayleigh	 number:	 𝑌f~𝑅𝑎k.k]	 for	

Bingham	 fluids	 and	 𝑌f~𝑅𝑎k.kl	 for	 Casson	 fluids.	 	 A	 supercritical	 bifurcation	 at	 the	 transition	

between	 the	 convective	 and	 the	 conductive	 regimes	 is	 found	 for	 both	 Bingham	 and	 Casson	

models.	New	correlations	are	proposed	for	 the	mean	Nusselt	number	𝑁𝑢oooo	 for	both	Casson	and	

Bingham	fluids.		

	

Keywords:	Natural	convection,	Yield	stress,	Casson	model,	Bingham	model,	Finite	element.	

	



1. Introduction 

Natural	convection	in	enclosures	is	one	of	the	most	extensively	studied	configuration.	Several	

systems	 and	 industrial	 processes	 (such	 as	 energy	 transfer	 in	 rooms	 and	 buildings,	 heat	

exchangers,	electronic	cooling,	solar	collectors,	etc.)	are	based	on	natural	convection,	justifying	

the	impressive	volume	of	work	devoted	to	its	understanding	during	more	than	one	century.	Over	

this	period,	numerous	 studies	 related	 to	Newtonian	 fluids	have	been	done,	 extensive	 reviews	

have	been	made	by	Ostrach	[1]	and	Bejan	[2]	where	different	boundary	conditions	are	studied.	

Our	concern	focuses	on	the	natural	convection	induced	by	a	horizontal	temperature	gradient,	i.e.	

a	 fluid	 layer	 heated	 from	 side	 wall.	 When	 considering	 viscous	 fluids,	 the	 flow	 consists	 in	 a	

convective	regime	provided	that	the	temperature	difference	between	the	two	vertical	walls	is	not	

equal	to	zero.		

For	non-Newtonian	fluids,	Lamsaadi	and	Naimi	[3]	are	the	first	to	consider	power	law	fluids	

in	a	vertical	rectangular	cavity	heated	from	side	walls.	More	recently,	Turan	et	al.	[4]	analyzed	

two-dimensional	 laminar	 natural	 convection	 of	 power	 law	 fluids	 in	 square	 enclosures	 with	

differentially	heated	side	walls.	In	the	case	of	yield	stress	fluids,	natural	convection	in	rectangular	

enclosures	have	been	numerically	studied	in	Lyubimova	[5],	Vikhansky	[6]	when	considering	a	

Bingham	fluid.			These	studies	highlight	the	cessation	of	convection	above	a	critical	yield	number	

while	this	is	not	the	case	for	Newtonian	fluids	case.	 	The	unsteady	cessation	of	convection	in	a	

Bingham	fluid	is	also	demonstrated	in	Karimfazli	et	al	[7].	The	heat	transfer	has	been	studied	in	a	

regularized	biviscosity	model	by	Turan	et	al	[8],	[9]for	rectangular	and	square	enclosures	using	

FLUENT.	Without	any	regularization	of	the	Bingham	constitutive	law,	Vola	et	al.	[10]	and	Huilgol	

and	 Kefayati	 [11]	 have	 implemented	 this	 benchmark	 configuration	 by	 using	 respectively	 an	

augmented	Lagrangian	method	and	the	operator	splitting	method.			All	these	latter	articles	have	

studied	the	natural	convection	 in	Bingham	fluids	when	submitted	to	a	horizontal	temperature	

gradient.	The	Bingham	model	 is	 the	most	common	used	model	because	 it	 is	 the	simplest	yield	

stress	fluid	model.	However	another	simple	and	common	yield	stress	fluid	is	the	Casson	fluid	[12].	



Casson	model	was	proposed	by	Casson	[13]	to	describe	the	flow	of	mixtures	of	pigments	and	oil.	

This	model	is	often	used	to	describe	the	behavior	of	numerous	materials	such	as	biological	ones	

(e.g.	 blood)	 and	 agro-food	 ones	 e.g.	 yoghurt,	 tomato	 puree,	 molten	 chocolate,	 etc.	 The	 flow	

behavior	 of	 some	 particulate	 suspensions	 can	 also	 be	 approximated	 by	 this	model	 [14].	 The	

Bingham	 and	Casson	models	 provide	 close	 but	 different	 rheological	 results	 such	 as	 values	of	

viscosity	at	fixed	shear	rate.		In	the	field	of	fluid	flows,	in	particular	natural	convection,	the	Casson	

model	is	understudied	while	this	model	is	often	used	to	fit	rheological	behavior	of	yield	stress	

fluids.		

In	this	paper,	we	propose	to	study	numerically	the	natural	convection	of	viscoplastic	fluids	

obeying	 the	 Casson	model	 in	 square	 enclosures	 with	 differentially	 heated	 side	walls.	 To	 our	

knowledge,	this	situation	has	never	been	studied	before.	For	this	purpose,	a	Galerkin’s	weighted	

residuals	scheme	of	finite	element	method	has	been	developed.	Due	to	the	difficulty	to	treat	the	

transition	between	the	solid-like	to	liquid-like	behaviors,	a	regularized	model	is	used.	In	addition,	

we	 propose	 to	 compare	 results	 obtained	 from	 both	 the	 Casson	 and	 Bingham	models	when	 a	

similar	regularization	is	used.	

An	outline	of	this	paper	is	as	follows.	In	section	2,	the	problem	is	mathematically	formulated.	

The	numerical	method	is	briefly	outlined	and	validated	in	section	3.	Results	in	terms	of	velocity	

and	temperature	 fields	are	proposed	 in	section	4.1.	The	 flow	structure	 is	provided	 in	§	4.2,	 in	

particular,	the	unyielded	regions	are	defined.	Heat	transfer	is	studied	in	§	4.3.	In	the	whole	article	

a	comparison	between	both	Casson	and	Bingham	models	 is	provided,	differences	between	the	

models	are	discussed.	Finally,	concluding	remarks	are	given	in	the	section	5.		

	

	

	



2.  Mathematical formulation 

The	geometry	under	analysis	is	depicted	in	Fig.	1.	The	two	vertical	walls	are	kept	at	different	

temperatures	with		𝑇z		the	temperature	enforced	at	the	left	wall	and	𝑇{,	the	temperature	of	the	

right	wall	 (𝑇z>	 𝑇{).	 The	 horizontal	 boundaries	 are	 considered	 to	 be	 adiabatic.	 Both	 velocity	

components	(i.e.	𝑢	for	the	horizontal	component	and	𝑣	for	the	vertical	one)	are	identically	zero	

on	each	boundary	because	we	consider	no-slip	conditions	and	impenetrability	of	the	fluid	at	rigid	

boundaries.	 Assuming	 the	 Boussinesq	 approximation	 and	 using	 the	 following	 characteristic	

scales:	 𝐻	 for	 length,	 𝑢k = (𝑔𝛽𝐻𝛥𝑇)� �� 	 for	 the	 velocity,	 and	 𝑝k = 𝜌𝑢k�	 for	 the	 pressure,	 the	

dimensionless	mass,	momentum	and	energy	equations	for	two-dimensional	natural	convection	

in	a	square	cavity	are:	
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(1)	

Where	𝜃	and	𝑝	are	respectively	the	dimensionless	temperature	and	pressure. 	

The	dimensionless	temperature	𝜃	is	defined	by:	 

𝜃 =
𝑇 − 𝑇�
𝑇z − 𝑇{

																		 (2)	

with	𝑇�	a	reference	temperature	defined	by		𝑇� = (	𝑇z 	+	𝑇{	) 2⁄ 	.	

The	Prandtl	number,	Pr,	and	Rayleigh	number,	Ra	are	defined	by:	

𝑃𝑟 =
𝜇
𝜌𝛼 

𝑅𝑎 =
𝜌𝑔𝛽∆𝑇𝐻]

𝛼𝜇  

(3)	

	



	

	

	

where	𝜇	is	the	plastic	viscosity,	α	is	the	thermal	diffusivity,	𝜌	is	the	density,	g	is	the	acceleration	

due	to	gravity,	𝛽	 is	 the	coefficient	of	 thermal	expansion,	and	∆𝑇 = 𝑇z − 𝑇{	 is	 the	temperature	

difference	between	the	hot	and	cold	walls.		

	

The	boundary	conditions	for	this	problem	are:	

							𝑢 = 𝑣 = 0	at	walls	

𝜕𝜃
𝜕𝑥 = 0		𝑎𝑡		𝑦 = 0	𝑎𝑛𝑑	𝑦 = 1		 

𝜃 = 0.5				𝑎𝑡	x = 0 

𝜃 = −0.5		𝑎𝑡		𝑥 = 1 

(4)	

The	stress-deformation	behavior	of	viscoplastic	materials	based	on	the	Casson	and	Bingham	

models	is	given	by:	

For	the	Casson	model:	

	

 

 

Fig.	1			Schematic	diagram	of	the	physical	model	and	coordinate	system.	
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For	the	Bingham	model:	

𝜏�� = �1 + �
𝐵𝑛
|𝛾|̇
�	� 𝛾̇��					𝑖𝑓							|𝜏| > 	 𝜏�									 

and 

									𝛾	̇ = 0						𝑓𝑜𝑟					|𝜏| < 	 𝜏�		  

(6)	

for	both	models.	

In	Eqs.	(5)	and	(6),	|𝜏|	and	|𝛾̇|	are	the	second	invariant	of	the	shear	stress	and	the	rate	of	strain	

tensors	respectively,	and	𝐵𝑛	is	the	Bingham	number	defined	by:	

	

𝐵𝑛 = (	𝑃𝑟/𝑅𝑎	)�� ��
­®

¯°±∆²z
= (	𝑃𝑟/𝑅𝑎	)�� �� 	𝑌							  (7)	

	

with	𝑌	 the	 yield	 number	which	 corresponds	 to	 the	 ratio	 between	 the	 yield	 stress	 and	 the	

buoyancy	effects	𝑌 = ­®
¯°±∆²z

.	It	is	worth	noting	that	the	yield	number	𝑌	does	not	depend	on	𝑅𝑎	

and	𝑃𝑟	contrary	to	𝐵𝑛.	

The	component	𝛾̇��	of	the	rate-of-strain	tensor	is	defined	by:	

𝛾̇�� =
𝜕𝑢�
𝜕𝑥�

+
𝜕𝑢�
𝜕𝑥�

																		 (8)	

Finally,	the	second	invariant	of	the	rate	of	strain	and	stress	tensors	are	given	by		

	|𝛾̇| = ³�
�
𝛾̇�� 𝛾̇�� 	and	|𝜏| = ³�

�
𝜏��𝜏��	.	

Papanastasiou	 modifications	 method	 [15]	 can	 be	 applied	 to	 Casson	 model	 to	 avoid	 the	

discontinuity	 between	 yielded	 and	 unyielded	 regions	 since	 the	 stress	 tensor	 is	 indeterminate	

when	|𝜏| < 	𝜏�	and	the	viscosity	tends	to	infinity	when	𝛾̇ → 0.	To	circumvent	this	difficulty,	we	

use	regularized	models	such	as	that	one	proposed	by	Papanastasiou.	Based	on	this	regularization,	



Equations	(5)	and	(6)	are	as	follows:		

	

𝜏�� = µ1 + ¶
𝐵𝑛
|𝛾̇|·

�
�
(1 − exp	(−³𝑚|𝛾|̇ 	)¹

�

γ̇�� (9)	

for	the	Casson	model	and		

𝜏�� = ¶1 + ¶
𝐵𝑛
|𝛾̇|· (1 − exp	(−𝑚

|𝛾̇|	)· γ̇�� (10)	

for	the	Bingham	model.		

In	Equations	(9)	and	(10),	𝑚	is	a	regularization	parameter,	it	allows	to	converge	to	a	finite	

value	of	the	viscosity	when	𝛾̇ → 0	and	it	provides	a	continuous	law	for	the	stress	tensor	whatever	

the	values	of		𝛾̇	and	𝜏.	In	the	Bingham	case,	at	low	shear	rate	(	𝛾̇ → 0)	the	viscosity	tends	to	𝜇 =

1 +𝑚	𝐵𝑛,	in	the	Casson	case	it	tends	to	𝜇 = 1 + 𝑚	𝐵𝑛 + √𝑚𝐵𝑛.	The	viscosity	at	low	or	zero	shear	

rate	depends	on	 the	Bingham	number	but	also	on	 the	 regularization	parameter.	 	Because	 the	

Bingham	or	Casson	models	without	any	regularization	lead	to	infinite	viscosity	when		𝛾̇ → 0,	the	

value	of	𝑚	is	usually	chosen	to	be	large,	in	this	study	we	set	𝑚 = 10¼.	For	this	value	of	𝑚,	the	

regularized	Bingham	 and	Casson	models	 present	 values	 of	 viscosity	 close	 to	 that	 of	 the	 non-

regularized	respective	models	when	𝛾̇ > 10�¼.	The	Figure	2	represents	the	viscosity	as	a	function	

of	the	shear	rate	for	the	Bingham	and	the	Casson	models.	At	low	and	high	shear	rate	values,	the	

two	models	 lead	 to	 close	 values	 of	 viscosity.	 The	 main	 difference	 sets	 in	 the	 shear	 thinning	

behavior.	One	notices	that	the	Bingham	model	presents	a	more	abrupt	decrease	in	viscosity	than	

in	the	case	of	the	Casson	model.	In	other	words,	it	means	that	the	shear-thinning	degree	𝛼,	which	

could	be	characterized	by	the	derivative	of	the	viscosity	with	respect	to	𝛾̇,	i.e.	𝛼 = ½¾¿
¾¡̇
½,	is	larger	in	

the	Bingham	model	case	than	in	the	Casson	one.		

The	heat	flux	averaged	over	the	hot	wall	is	defined	via	the	Nusselt	number:  



𝑁𝑢oooo 	= −À
𝜕𝜃
𝜕𝑦Á�Âk

𝑑𝑥						
�

k

																	 (11)	

	

	

	

3. Numerical analysis 

3.1.     Method of solution 

Numerical	solutions	of	the	coupled	conservation	equations	of	mass,	momentum	and	energy	

related	 to	 the	 two-dimensional	 steady	 state	 natural	 convection	within	 square	 enclosures	 are	

obtained	by	developing	a	numerical	code	based	on	the	Galerkin	weighted	residual	finite	element	

method	with	quadrilateral,	eight	nodes	elements.	The	Galerkin	weak	statement	 is	obtained	by	

minimizing	the	residual	error	over	the	discretized	domain[16].	As	in	Aghighi	et	al.	[17]	in	what	

follows	we	consider	a	penalty	formulation	of	the	incompressibility	constraint.	Thus,	the	equation	

(1)	can	be	rewritten	as	below:	

Fig.	2			Variations	of	the	viscosity	with	the	shear	rate	for	the	Bingham	and	the	Casson	models. 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(12)	

Where	l	is	a	large	constant.	To	solve	these	equations,	initial	values	of	velocity	are	imposed,	

then	the	shear	rate	and	shear	stress	are	evaluated.	From	the	stress	tensor,	new	values	of	velocity	

and	then,	from	the	energy	equation,	new	values	of	the	temperature	can	be	computed.	These	steps	

are	 repeated	 until	 the	 convergence	 of	 velocity	 and	 temperature	 fields.	 Further	 details	 of	 the	

method	can	be	found	in	[18].		

3.2.    Numerical method validation 

A	mesh	analysis	procedure	was	examined	 to	guarantee	a	grid	 independent	 solution	of	 the	

present	study.	Two	cases	(𝑅𝑎 = 	10_, 𝑃𝑟 = 10)	and	(𝑅𝑎 = 	10_, 𝑃𝑟 = 1000)	for	both	Casson	and	

Bingham	 fluids	 are	 tested,	 and	 the	 comparison	 is	 done	 on	 the	 values	 of	 the	 average	 Nusselt	

number	𝑁𝑢oooo.	 	One	finds	that	the	mesh	consisting	in	5985	nodes	guarantees	a	grid	independent	

solution	within	the	relative	tolerance	level	of	10�Ä.		

In	order	to	ensure	convergence	of	results	in	the	case	of	viscoplastic	fluid,	the	convergence	of	

the	 solutions	has	been	checked	by	varying	 the	penalty	and	 regularization	parameters.	Results	

show	that		𝑁𝑢oooo	converges	within	0.1%	by	varying	𝜆	from	10]	to	10¼	and	also	by	varying	𝑚	from	

10]	to	10¼.	In	the	following,	all	results	are	obtained	for	𝜆 = 10¼	and	𝑚 = 10¼.	

Finally,	 the	numerical	code	has	been	validated	by	comparing	our	results	obtained	with	the	

Bingham	model	with	results	obtained	by	Turan	et	al.	[9].	Results	are	depicted	in	Fig	3	for	𝑅𝑎 =

10Ä, 10_	and	𝑃𝑟 = 10.	One	can	notice	an	excellent	agreement	in	results.	

	



	

	

Fig.	3	 	 	Mean	Nusselt	number	Nu	for	Bingham	fluids	at	𝑅𝑎	 = 	10Ä	(left)	and	𝑅𝑎 = 10_	(right)	and	𝑃𝑟	 = 	10	(line:	
present	study,		points:	Turan	study	[9]).	 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Fig.	4			Variations	of	non-dimensional	velocity	𝑣	with	Bingham	number	𝐵𝑛	along	the	horizontal	mid-planes	for	different	
values	of	𝑅𝑎	at	𝑃𝑟 = 100.	(Left:	Casson	model,	Right:	Bingham	model)	

	

	



4.  Results and discussion 

4.1.    Velocity and temperature 

Flow	features	are	given	by	the	coupling	velocity	and	temperature	fields.	In	order	to	display	

these	features,	we	present,	in	Figs.	4	and	5	respectively,	the	variations	of	non-dimensional	vertical	

component	of	velocity	v	as	well	as	the	temperature	profiles	along	the	horizontal	mid-plane	of	the	

cavity	for	different	values	of	𝑅𝑎	and	𝐵𝑛	.	 	We	have	verified	that	results	are	not	sensitive	to	the	

Prandtl	values	in	the	range	𝑃𝑟 = 10 − 10].	For	this,	the	𝑅𝑎	and	𝑌	numbers	are	fixed;	we	observe	

that	 results,	 obtained	 for	 each	model,	 are	 similar	when	𝑃𝑟	 varies.	 All	 results	 depicted	 in	 the	

following	are	obtained	for	𝑃𝑟 = 100.	Results	are	presented	for	both	Casson	(left)	and	Bingham	

(right)	 fluids	 at	 similar	 conditions.	 The	Newtonian	 case	 corresponds	 to	𝐵𝑛 = 0.	 For	 non-zero	

values	of	𝐵𝑛,	 the	Bingham	model	 leads	 to	 larger	values	of	 velocity	 compared	with	 the	Casson	

model.	 Indeed,	 the	ratio	between	the	maximal	velocity	values	of	𝑣	obtained	with	the	Bingham	

model	and	the	Casson	one	is	close	to	2.	It	denotes	a	larger	intensity	of	convection	in	the	Bingham	

case.	A	similar	tendency	is	obtained	considering	the	horizontal	temperature	profiles	as	depicted	

in	Fig.	5	in	which	a	bit	larger	variation	of	𝜃	is	observed	in	the	Bingham	case.	This	phenomenon	is	

also	clearly	highlighted	in	Figs	6-8	where	iso-contours	of	the	non-dimensional	temperature	𝜃	is	

depicted	for	the	Newtonian	case	(𝐵𝑛 = 0)	and	more	specifically	for	both	the	Casson	and	Bingham	

models	at	different	𝑅𝑎	values.	Finally,	the	Bingham	model	is	more	destabilizing	than	the	Casson	

one.	This	 comes	 from	a	 larger	degree	of	 shear-thinning	 in	 the	Bingham	case	as	underlined	 in	

section	2.	

On	the	other	hand,	for	both	models,	a	stabilizing	effect	of	the	yield	stress	is	observed.	When	

𝐵𝑛	 increases,	 at	 fixed	 𝑅𝑎	 and	 𝑃𝑟	 values,	 variations	 of	 velocity	 and	 temperature	 decrease	

significantly,	leading	to	a	decreasing	convective	intensity.	Furthermore,	as	expected,	the	increase	

in	 𝑅𝑎	 values	 induces	 an	 increase	 in	 the	 magnitude	 of	 velocity	 as	 well	 as	 an	 increase	 in	 the	

temperature	variations	at	fixed	𝐵𝑛	values.			
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Fig.	5			Variations	of	non-dimensional	Temperature	𝜃	with	Bingham	number	𝐵𝑛	along	the	horizontal	mid-planes	
for	different	values	of	𝑅𝑎	at	𝑃𝑟 = 100.(Left:	Casson	model,	Right:	Bingham	model)	



	

	

4.2.Flow structure 

The	 contours	 of	 non-dimensional	 stream	 functions	 of	 Casson	 and	 Bingham	 fluids	 are	

displayed	 in	Figs.	9	and	10	respectively.	As	previously,	 it	 is	observed	that	 increasing	the	yield	

stress	(𝐵𝑛	or		𝑌)	decreases	the	magnitude	of	stream	function	which	confirms	the	stabilizing	effect	

of	the	yield	stress.	Larger	values	of	stream	functions	can	be	observed	in	the	Bingham.	case 

Interestingly,	the	stabilizing	effect	of	the	yield	stress	via	𝐵𝑛	is	accompanied	by	the	increase	in	

the	plug	regions	where	𝜏	 < 	 𝜏�	as	represented	by	the	shaded	regions	in	Figs.	9	and	10.	For	both	

Fig.	6			Contours	of	non-dimensional	temperature	𝜃	(top)	and	stream	functions	𝜓	(below)	for	Newtonian	fluids	(	
𝐵𝑛 = 0)		at	𝑅𝑎 = 10¼(left),	𝑅𝑎 = 10Ä(center)	and	𝑅𝑎 = 10_(right).	
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the	 Bingham	 and	 Casson	 models,	 the	 unyielded	 regions	 has	 been	 obtained	 using	 a	 similar	

regularization	and	a	similar	value	of	the	regularized	parameter	m.	In	this	sense,	a	comparison	of	

the	resulting	topology	can	be	done.	Two	types	of	plug	regions	can	be	distinguished:	The	Truly	

Unyielded	Regions	(TUR)	and	the	Apparently	Unyielded	Regions	(AUR).	These	 latter’s	regions	

located	in	the	corners	of	the	cavity	and	correspond	to	dead	zones	without	any	deformation	[12].		

Considering	the	TUR,	it	is	worth	noting	that	they	are	moving	since	the	velocity	is	not	zero	except	

when	the	𝐵𝑛	value	is	such	large	that	no	yielded	region	exists	in	the	cavity	and	the	motion	has	

stopped	leading	to	a	motionless	conductive	regime.	This	motionless	state	is	particular	to	the	yield	

stress	fluids	since	for	Newtonian	fluids,	provided	that	𝑅𝑎 ≠ 0,	there	always	exists	convection	in	a	

cavity	heated	 from	one	 side	wall.	Results	obtained	 in	 the	Bingham	 fluid	 case	are	qualitatively	

similar	 than	 that	 provided	 by	 Turan	 et	 al	 [9]	 and	 Huilgol	 and	 Kefayati	 [11].	 Comparing	 the	

unyielded	region	between	the	two	models	shows	that	AUR	in	Bingham	model	occupy	more	space	

than	in	the	Casson	model.	Comparing	both	models,	the	Truly	Unyielded	Regions	are	close	in	terms	

of	shape	and	area.	Some	differences	can	be	observed:	in	the	Casson	model,	the	unyielded	regions	

are	less	numerous	than	in	the	Bingham	model	case,	especially	in	the	first	diagonal	of	the	cavity	

(defined	by	𝑦 = 𝑥).	This	is	due	to	a	larger	shear	rate	𝛾̇	in	the	Bingham	case,	as	shown	in	Fig.	11.	

This	figure	represents	the	distribution	of	the	second	invariant	of	the	shear	rate	tensor	for	both	

Bingham	(upside)	and	Casson	(downside)	cases	at	𝑅𝑎 = 10Ä.	



	

	

	

	

Fig.	7			Contours	of	non-dimensional	temperature	𝜃	for	different	values	of	𝐵𝑛	at	𝑅𝑎 = 10¼(left),	𝑅𝑎 = 10Ä(center)	
and	𝑅𝑎 = 10_(right).	(Casson	model)	
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Fig.	8			Contours	of	non-dimensional	temperature	𝜃	for	different	values	of	𝐵𝑛	at	𝑅𝑎 = 10¼(left),	𝑅𝑎 = 10Ä(center)	
and	𝑅𝑎 = 10_(right).	(Bingham	model)	
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Fig.	9			Contours	of	non-dimensional	stream	functions	𝜓	and	unyielded	zones	(gray)	for	different	values	of	𝐵𝑛	at	
𝑅𝑎 = 10¼(left),	𝑅𝑎 = 10Ä(center)	and	𝑅𝑎 = 10_(right).	(Casson	model)	

𝑅𝑎 = 10¼	 𝑅𝑎 = 10Ä	 𝑅𝑎 = 10_	
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Fig.	10			Contours	of	non-dimensional	stream	functions	𝜓	and	unyielded	zones	(gray)	for	different	values	of	𝐵𝑛	
at	𝑅𝑎 = 10¼(left),	𝑅𝑎 = 10Ä(center)	and	𝑅𝑎 = 10_(right).	(Bingham	model).	
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In	Fig.	11,	the	dark	blue	regions	correspond	to	values	of	𝛾̇	which	converge	to	zero,	leading	to	

unyielded	regions.	As	expected,	maximal	values	of	shear	rate	are	obtained	at	walls.	Furthermore,	

results	show	that	Bingham	fluids	lead	to	larger	𝛾̇	values	in	the	cavity	than	Casson	fluids.	This	is	in	

agreement	with	the	previous	considerations.		

4.3.Heat transfer (Nusselt number)  

The	variation	of	the	mean	Nusselt	number	𝑁𝑢oooo		with	the	Bingham	number	𝐵𝑛	and	the	Yield	

number	𝑌	is	shown	in	Fig.	12	for	different	values	of	Rayleigh	number	𝑅𝑎 = 10], 10¼, 10Ä, 10_.		We	

observe	that	the	heat	transfer	is	maximal	for	Newtonian	fluids	(𝐵𝑛 = 0).	For	both	the	Casson	and	

Fig.	11			Distribution	of	the	shear	rate	𝛾̇	for	Bingham	(top)	and	Casson	(below)	models	at	𝑅𝑎 = 10Ä.	
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Bingham	models,	 the	 increase	 in	 the	 yield	 stress	 leads	 to	 reduce	 the	 heat	 transfer	 since	𝑁𝑢oooo		

decreases	with	increasing	𝐵𝑛	(or	𝑌)	values.	Comparing	the	two	viscoplastic	fluids,	Bingham	fluids	

lead	to	larger	heat	transfer	than	Casson	fluids.		

On	 the	other	hand,	whatever	 the	model,	 for	 sufficiently	 large	𝐵𝑛	 (or	𝑌)	values,	 convection	

finally	stops	at	𝐵𝑛f	(or	𝑌f)	and	the	heat	transfer	corresponds	only	to	a	conductive	regime.	This	is	

due	to	the	fact	that	the	plug	region	invades	the	whole	cavity	leading	finally	to	a	motionless	state.	

In	 this	 case,	 it	means	 that	 the	 stresses	 induced	 by	 the	 horizontal	 temperature	 difference	 are	
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Fig.	12			Evolution	of	the	mean	Nusselt	number	with	the	Bingham	𝐵𝑛	(yield	number	𝑌)	for	four	different	values	
of		𝑅𝑎	at	𝑃𝑟	 = 	100. [numerical	results	and	prediction	of	the	correlation	given	by	Eq.	(13)].	

	



smaller	than	the	yield	stress	leading	to	a	solid	like	behavior	in	the	whole	cavity.			

Contrary	to	the	Rayleigh-Bénard	convection	heated	from	below	which	leads	to	a	subcritical	

bifurcation	 [19],	 [20],	when	 the	 cavity	 is	heated	 from	a	 side	wall	 for	either	 the	Casson	or	 the	

Bingham	model,	 results	highlight	 a	 supercritical	 bifurcation	 since	 the	 decrease	 of	 the	Nusselt	

number	is	continuous	till	the	motionless	state	is	reached,	i.e.	𝑁𝑢oooo = 1.	Furthermore,	the	convection	

stops	in	Casson	fluids	for	smaller	values	of		𝑌	than	in	the	case	of	Bingham	fluids.	This	observation	

is	all	the	more	true	that	the	Rayleigh	number	is	such	as	𝑅𝑎	 ≤ 10Ä	as	displayed	in	Fig.	13.	For	both	

fluids,	 results	 highlight	 a	 weak	 dependence	 of	 	 𝑌f	 with	 the	 Rayleigh	 number:	 𝑌f~𝑅𝑎k.k]	 for	

Bingham	fluids	and	𝑌f~𝑅𝑎k.kl	for	Casson	fluids.	
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4.3.1 Correlation for the mean Nusselt number 

A correlation for the mean Nusselt number 𝑁𝑢oooo can be proposed in a general form as below: 

𝑁𝑢oooo 	= 1 + (	𝑁𝑢ooook − 1) Ê1 − ¶
𝑌
𝑌f
·
Ë

Ì
Í

																	 (13)	

where	𝑁𝑢ooook	 is	 the	mean	Nusselt	number	obtained	 in	the	Newtonian	case	(𝑌 = 0)	and	𝑌f	 is	 the	

critical	yield	number	above	which	𝑁𝑢oooo = 1	(no	convection	occurs).	The	values	of		𝑁𝑢ooook	and	𝑌f	can	

be	estimated	by	fitting	our	numerical	results	as	follows:	

𝑁𝑢ooook 	= 0.1495 ∗ 𝑅𝑎k.�ÏlÏ															 (14)	

	

𝑌f 	= 0.0231 ∗ 𝑅𝑎k.k�ÏÐ¼														 (15)	

and		

𝑎	 = 0.6423 ∗ 𝑒𝑥𝑝(−6.663 ∗ 10�Ä ∗ 𝑅𝑎) + 0.7991 ∗ 𝑒𝑥𝑝(1.14 ∗ 10�Ï

∗ 𝑅𝑎)				
(16)	

	

𝑏	 = 2.936 ∗ 𝑒𝑥𝑝(−0.0001853 ∗ 𝑅𝑎) + 1.321 ∗ 𝑒𝑥𝑝(5.013 ∗ 10�l ∗ 𝑅𝑎	)		 (17)	

for the Bingham	model.	

And	

𝑁𝑢ooook 	= 0.1495 ∗ 𝑅𝑎k.�ÏlÏ												 (18)	

	

𝑌f 	= 0.01185 ∗ 𝑅𝑎k.k_Ï]_													 (19)	

and		

𝑎	 = 0.4102 ∗ 𝑒𝑥𝑝(−1.191 ∗ 10�Ä ∗ 𝑅𝑎) + 0.3738 ∗ 𝑒𝑥𝑝(2.575 ∗ 10�l

∗ 𝑅𝑎)	
(20)	

	

𝑏	 = 5.205 ∗ 𝑒𝑥𝑝(−0.0001233 ∗ 𝑅𝑎) + 1.481 ∗ 𝑒𝑥𝑝(1.292 ∗ 10�l ∗ 𝑅𝑎)		 (21)	

for the Casson model. 



The	correlation	proposed	 for	𝑁𝑢ooook	 in	Eq.	 (14)	 leads	 to	a	mean	 relative	difference	with	our	

numerical	 results	 which	 is	 less	 than	 2%	 for	 10] < 𝑅𝑎 < 10_	 as	 depicted	 in	 Fig.	 12.	 These	

correlations	 are	 also	 very	 useful	 in	 the	 case	 of	 viscoplastic	 fluids	 since	 they	 provide	 the	 heat	

transfer	via	Eq.	(13)	and	also	𝑌f	(Eqs.	(15)	and	(19)),	the	value	above	which	the	flow	cannot	occur.	

This	last	value	is	determined	as	a	function	of		𝑅𝑎,	with	a	mean	relative	difference	less	than	2%.	

5. Conclusions 

In	this	study,	a	finite	element	numerical	code	has	been	developed	to	study	the	laminar	natural	

convection	 in	 viscoplastic	 fluids	 in	 a	 square	 enclosure	with	differentially	 heated	 side	walls.	A	

Casson	fluid	is	studied	and	compared	with	a	Bingham	fluid.	For	this	purpose,	a	Papanastasiou	

regularization	and	a	similar	value	of	the	regularization	parameter	(𝑚 = 10¼)	are	used	for	both	

models.	 Under	 these	 conditions,	 the	 degree	 of	 shear-thinning	 is	 larger	 when	 considering	 a	

Bingham	fluid.		

Concerning	the	natural	convection,	the	effect	of	the	yield	stress,	via	𝐵𝑛	or	𝑌,	on	heat	transfer	

and	flow	features	are	investigated	for	10] < 𝑅𝑎 < 10_.	Results	are	not	sensitive	to	the	Prandtl	

number.	Because	the	Casson	and	Bingham	models	lead	to	close	values	of	rheological	features	(e.g.	

the	viscosity),	results	are	qualitatively	the	same.	It	means	that	the	yield	stress	has	a	stabilizing	

effect	since	the	convection	can	stop	while	this	is	not	the	case	for	Newtonian	fluids.	The	increase	

in	the	yield	stress	value	induces	the	growth	of	unyielded	regions.	Above	𝑌f	(or	𝐵𝑛f),	these	regions	

invade	the	whole	cavity	leading	to	a	motionless	state.	Results	highlight	a	supercritical	bifurcation	

at	 the	 transition	between	 the	 convective	and	conductive	regimes	 for	both	models.	Differences	

between	the	two	yield	stress	models	lie	in	larger	values	of	temperature,	velocity	magnitude	and	

shear	rate	in	the	case	of	Bingham	fluids.	The	same	applies	to	the	convective	intensity	since	larger	

values	of	𝑁𝑢oooo	are	obtained	for	Bingham	fluids.	The	more	destabilizing	effect	of	the	Bingham	model	

compared	with	the	Casson	model	is	due	to	a	larger	degree	of	shear-thinning	in	the	Bingham	case.		
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